
Computational Reproducibility in Finance:
Evidence from 1,000 Tests

Christophe Pérignon 1,2,∗ Olivier Akmansoy 2,3 Christophe Hurlin 2,4

Anna Dreber 5,6 Felix Holzmeister 6 Jürgen Huber 6 Magnus Johannesson 5

Michael Kirchler 6 Albert J. Menkveld 7,8 Michael Razen 6 Utz Weitzel 7,8,9

1 HEC Paris, France 2 cascad, France 3 CNRS, France 4 University of Orléans, France 5 Stockholm School of
Economics, Sweden 6 University of Innsbruck, Austria 7 Vrije Universiteit Amsterdam, Netherlands 8

Tinbergen Institute, Netherlands 9 Radboud University, Netherlands

∗ Corresponding author: perignon@hec.fr

This draft: April 14, 2023

Abstract

We analyze the computational reproducibility of more than 1,000 empirical an-
swers to six research questions in �nance provided by 168 international research
teams. Running the original researchers’ code on the same raw data regener-
ates exactly the same results only 52% of the time. Reproducibility is higher for
researchers with better coding skills and for those exerting more e�ort. It is
lower for more technical research questions, more complex code, and for out-
lier results. Neither researcher seniority, nor peer-review ratings appear to be
related to the level of reproducibility. Moreover, researchers exhibit strong over-
con�dence when assessing the reproducibility of their own research. We pro-
vide guidelines for �nance researchers and discuss several implementable re-
producibility policies for academic journals.
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“Non-reproducible single occurrences
are of no signi�cance to science.”

—Popper (1959)

1. Introduction

Finance bene�ts from reanalysis studies, as they reinforce its scienti�c nature and build trust

(Harvey, 2017, 2019; Welch, 2019). Overlooked for decades, reanalyses have recently been given

more attention in leading �nance journals. Indeed, most top �nance journals have introduced and

enforced stricter data availability policies (see the policies of the Journal of Finance, the Review

of Financial Studies, the Journal of Financial Economics, and the Review of Finance). Furthermore,

the Journal of Finance promoted a section dedicated to reanalyses (Nagel, 2019) and retracted a

non-reproducible article (Nagel, 2021). Several authors have recently challenged the validity and

robustness of some classic empirical results in corporate �nance (Mitton, 2021; Cohn et al., 2023)

and in asset pricing (Harvey et al., 2016; McLean and Ponti�, 2016; Linnainmaa and Roberts,

2018; Hou et al., 2020). In contrast, Chen and Zimmermann (2022) and Jensen et al. (2022) depict

a much more positive view of the validity of most of the anomalies reported in empirical asset

pricing.

There are two main types of reanalyses: reproductions and replications (National Academies of

Sciences, Engineering, and Medicine, 2019; Welch, 2019). A reproduction consists of an attempt

to regenerate the same result in the same sample with the same method, whereas a replication

does so by changing either the sample, the method, or both. As shown in Table 1, several types of

reanalysis can be considered in practice. One can �rst verify whether the regenerated result βR

obtained by running the original code on the original sample is equal to the original result β. This

strict de�nition, called computational reproducibility (Buckheit and Donoho, 1995; Peng, 2011),

is related to the concepts of code/data sharing and code/data quality (Trisovic et al., 2022).

Another de�nition consists of verifying whether the original and regenerated results are similar:

i.e., same sign, same magnitude, and same statistical signi�cance. Furthermore, when the original

code or dataset are not available, one needs to write a new code (cR) or reconstruct the exact
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same sample from the original database (CRSP, Compustat, etc). The latter de�nition is the most

common de�nition of reproducibility in �nance (Welch, 2019; Chen and Zimmermann, 2022).

Alternatively, when testing the replicability of a result, one can test whether the original and

regenerated results are similar when the data (dR), the method (mR), or both are modi�ed.

Table 1: Typology of reanalyses. This table displays several types of reanalyses used in economics and
�nance. In each case, the test is whether the original result β(d,m, c) in a given article can be regenerated
by another researcher using the same or di�erent data (d vs. dR), methods (m vs. mR), and code (c vs. cR).
Depending on the de�nition, the test is whether the original result (β) and the regenerated result (βR) are
either equal (=) or similar (≈).

Concepts De�nitions Examples

Reproduction βR(d,m, c) = β(d,m, c) Vilhuber (2022), this study

βR(d,m, c) ≈ β(d,m, c) Chang and Li (2017)

βR(d,m, cR) ≈ β(d,m, c) Chen and Zimmermann (2022)

Replication βR(dR,m, cR) ≈ β(d,m, c) McLean and Ponti� (2016)

βR(d,mR, cR) ≈ β(d,m, c) Cohn et al. (2023)

βR(dR,mR, cR) ≈ β(d,m, c) Jensen et al. (2022), Mitton
(2021), and Hou et al. (2020)

In this paper, we conduct a large-scale empirical analysis of the level of computational repro-

ducibility in �nance. As in most computational sciences, this property acts as a minimum stan-

dard that is expected for any scienti�c result (Du�o and Hoynes, 2018; Christensen and Miguel,

2018; Welch, 2019). When a result is reproducible, it is easier for other scientists to consider richer

concepts such as replication, robustness, or sensitivity-analysis, which examine the general va-

lidity of a scienti�c result.1 In practice, testing for computational reproducibility is challeng-

ing because the code and data associated with publications are not always available in �nance.

Reasons include the lack of obligations, incentives, or tradition to share and the frequent use

of restricted or copyrighted data (Gertler et al., 2018; Colliard et al., 2022). While not yet the

norm in �nance, the systemic veri�cation of the computational reproducibility of the results of

conditionally-accepted papers is now required in many leading academic journals including the

1 This is emphasized by statements like “reproducibility of research �ndings is a basic principle of science and a pre-
requisite for replicability” (Nagel, 2018) or “the best starting point for a replication is always a reproduction. They are
the foundation of science” (Welch, 2019).
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American Economic Review, American Economic Journal, Econometrica (starting Summer 2023),

Review of Economic Studies, Economic Journal, Journal of the American Statistical Association, or

the American Journal of Political Science.

Unlike existing studies that aim to reproduce published papers, we rely on a crowdsourcing study

referred to as the Finance Crowd Analysis Project, or in short #�ncap (Menkveld et al., 2023). In the

context of this project, 168 research teams from 37 countries were instructed to analyze the same

dataset containing 720 million futures transactions to answer the same six research questions.

Using the teams’ replication kits (common dataset, teams’ computer code and readme �le), a

single veri�cator attempted to reproduce the results provided by all teams for all the research

questions, for a total of 168 × 6 = 1, 008 empirical �ndings. For each �nding, the veri�cator

produces a reproducibility score by contrasting original and regenerated results. The score can

take �ve values: 100 (perfect accuracy), 75 (only small di�erences), 50 (one large di�erence), 25

(several large di�erences), and 0 (no result generated).

When attempting to run a piece of code in our experiment, two outcomes could arise. For 53.9%

of the results in our study, the code ran smoothly and for 46.1% of the results, it did not. In the

latter cases, the veri�cator made some changes to the code and/or to the computing environment.

When he was still unsuccessful, the situation was systematically discussed with two tenured pro-

fessors specialized in econometrics, �nance, and computational reproducibility. In some cases,

the veri�cator also sought some technical help from the IT team of his university. Besides all the

e�ort exerted and help received, the veri�cator was unable to make the code run and to produce

any result in 29.1% of the cases. At the end of the process, the distribution of the reproducibility

scores is: 52% of 100, 11.3% of 75, 2.5% of 50, 5.2% of 25, and 29.1% of 0, and the average repro-

ducibility score is 63. When only focusing on the code that we have been able to run, the average

score is 88.8.

Is the glass half empty or half full? A positive interpretation of our results is that our success rate

is larger than those reported in the economics literature (Chang and Li, 2017; Gertler et al., 2018)

and relatively close to the high success rates on stock market anomalies reported by Chen and

Zimmermann (2022) and Jensen et al. (2022). This is particularly remarkable because the studies
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we aim to reanalyze are in the market microstructure �eld, which is known for its huge datasets

and complex data processing. Furthermore, one could say that our conclusion can be viewed as a

lower bound as someone with more skills, time, and resources than us could reach an even higher

success rate. However, a less positive interpretation is that reproduction kits do not always run,

and when they do, they do not always produce the results reported in the corresponding paper.

This is an important problem as hard-to-run code imposes a cost on other researchers who try

to reproduce the results. Similarly, nonworking code and result discrepancies create negative

externalities and can lower the trust put in these results, and in �nance in general.

To investigate why some empirical results can be reproduced while others cannot, we proceed

in three main steps. First, we classify all the problems we faced during our 1,008 reproducibil-

ity attempts, both the problems we have been able to solve, and those we have been unable to

solve. To do so, we create a typology of 20 types of problems related to the readme �le, software,

hardware, code, and data. We �nd that, collectively, these issues prevent us from reproducing

46.1% of the results, of which 17 percentage points could be solved while 29.1 percentage points

could not. Approximately half of the problems impacting the code were solved by the veri�cator,

which allowed us to successfully regenerate another 13.5% of the results. In contrast, none of the

problems a�ecting the readme �les (4.8%) and those a�ecting computational capacity (3.9%) could

be resolved. To test the external validity of our results, we analyzed 48 replication kits associated

with papers published in leading economics journals. We report a comparable reproducibility

rate and similar bugs and problems as in our original sample.

Second, we study the cross-section of computational reproducibility among the various teams by

considering the following six dimensions of scholarship: (i) the researchers’ characteristics and

skills, (ii) the type of research question addressed, (iii) the software used, (iv) the complexity of

the computer code, (v) the quality of the research, and (vi) the e�ort exhibited by researchers to

make their results reproducible. There are some important di�erences between these families of

variables. On the one hand, variables (i)–(iii) are exogenous and permit to test some intuitive

economic channels. For instance, engaging in reproducible research can be less desirable for

researchers with high opportunity costs (e.g., for tenure-track researchers), but it can also be

more desirable (e.g., for top-tier scholars) because it lowers reputation risk (Colliard et al., 2022).

5



On the other hand, variables (iv)–(vi) are expected to covary with the level of reproducibility but

do not necessarily have a causal e�ect on it.

In the cross-section, we �nd that the level of reproducibility is much lower for answers that lie

in the tails of the result distribution. This �nding points toward a positive relationship between

reproducibility and research quality. Indeed, by design, outlier results contribute more to the

dispersion of the results across teams (level noise in Kahneman et al., 2021) and can be viewed

as a proxy for lower research quality. Furthermore, we show that our measure of computational

reproducibility tends to be higher when the original researchers have better coding skills and

lower when the research questions are more technically challenging. We also �nd that code

complexity (respectively, the quality of the documentation prepared by the researchers) covaries

negatively (positively) with the level of reproducibility. We do not �nd evidence that peer-review

ratings or the academic quality of the researchers, as proxied by seniority, top publications, and

citations, has an impact on reproducibility. Other variables that show no e�ect include software,

location, and the presence of a coauthor.

Third, the researchers in our study seem to exhibit strong overcon�dence when assessing the

level of reproducibility of their own research ex ante. More than 70% of the teams indicate that

one could �nd the exact same results by running their code on the initial dataset, whereas only

approximately 30% of the papers are actually fully reproducible. Fourth, we show that partici-

pants also severely underestimate the di�culty faced by their peers when attempting to repro-

duce their �ndings. Close to 95% of the teams claimed that regenerating their results would be

either “straightforward” or “quite easy”. However, the reproducibility veri�cator disagreed with

this self-assessment and assigned these favorable ratings to only 62% of the teams.

In the �nal section, we draw some implications for researchers and academic journals. Speci�-

cally, we provide guidelines for researchers in �nance to increase the reproducibility of their own

research. Our guidelines are informed by the empirical �ndings of our study, our own experience

as reproducibility veri�cators, and discussions with data editors at leading economic journals. We

also compare alternative policies that �nance journals could implement to ensure the research

they publish is computationally reproducible.
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This paper adds to the growing literature on the reproducibility and credibility of academic re-

search in economics and �nance (see the surveys of Christensen and Miguel (2018) and Colliard

et al. (2022)). Early evidence was provided by Dewald et al. (1986) and McCullough et al. (2006)

for the Journal of Money, Credit and Banking and by McCullough and Vinod (2003) and Glan-

don (2011) for the American Economic Review. In a study of 67 articles published in a dozen

well-regarded economics journals, Chang and Li (2017) were able to reproduce the results from

one-third of these papers using the code and data available in the journals’ repositories. In the

same vein, Gertler et al. (2018) considered a sample of 203 empirical papers published in nine

leading economics journals that did not use any proprietary or otherwise restricted data. They

were able to produce �nal tables and �gures from the raw data for only 14% of these 203 studies.

Recently, Herbert et al. (2021) attempted to regenerate the �ndings of all 303 articles published in

the American Economic Journal: Applied Economics between 2009 and 2018 using dozens of Cor-

nell undergraduate students as veri�cators. After excluding papers that used con�dential data or

papers with either no or incomplete data, the students were able to fully reproduce approximately

42% of the papers.

In �nance, we are not aware of similar large-scale studies based on original scripts and data.

However, most replication studies in �nance start with a reproduction. Recent examples include

the successful reproductions of Acharya and Pedersen (2005) by Holden and Nam (2019) and

Kazumori et al. (2019), of Amihud (2002) by Drienko et al. (2019) and Harris and Amato (2019), or

of Pástor and Stambaugh (2003) by Li et al. (2019) and Ponti� and Singla (2019). More recently,

Chen and Zimmermann (2022) successfully reproduce the �ndings of a large number of market

anomalies papers. For the 161 characteristics that were clearly signi�cant in the original papers,

98% of their regenerated long-short portfolios lead to t-stats above 1.96. Similarly, Jensen et al.

(2022) report a high degree of internal validity of prior research on asset pricing factors. These

�ndings contrast with those of Hou et al. (2020) who �nd that approximately half of the literature

cannot be reproduced when applying the same methods to the same data and same sample peri-

ods. They highlight the key role played in the �ndings by small caps and the weighting schemes

used to compute returns.

To conduct such reanalyses, researchers have to reconstruct the original dataset and to rewrite the
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script. In practice, these steps can be challenging because some ambiguity may exist regarding the

data preparation and analysis, or because data providers sometimes alter the raw data. Unlike the

aforementioned reanalyses in �nance, our paper focuses on computational reproducibility and

only relies on original scripts and raw data. This approach allows us to speak about code/data

availability, code/data quality, and the (lack of) e�ciency of the data and code availability policies

in place in academic journals. Moreover, our �ndings on the strong positive relationship between

research quality and computational reproducibility suggest that more attention should be paid to

the latter.

2. Experiment and Data

Several components are required to investigate the level and drivers of computational repro-

ducibility. We need a sample of research papers that report some empirical tests, as well as the

code and data used to generate the reported results. In addition, we require detailed information

about the authors, the associated computer code, and the research piece itself. As shown below,

we collected all these elements in the context of the #�ncap study.

2.1. The Finance Crowd Analyses Study (#�ncap)

Most of the data used in our paper come from the #�ncap study, which is the �rst multi-analyst

study in empirical �nance (Menkveld et al., 2023). It aims to analyze the level and dynamics of

heterogeneity in empirical results when di�erent researchers test the same research questions

using the same dataset. The �ndings by Menkveld et al. indicate that the variability in results

that is due to researchers choosing di�erent analysis pipelines adds uncertainty—which they

refer to as non-standard errors—to the evidence-generating process. In particular, they show that

non-standard errors are comparable in size with standard errors, signi�cantly decline after peer

feedback, and are substantially underestimated by participants.

The teams in #�ncap consisted of one or two researchers, with at least one member holding

a Ph.D. degree in �nance or economics. In addition, the included teams were required to be
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su�ciently skilled in the �eld of empirical �nance, to have an understanding of market liquidity,

and to be familiar with the analysis of large datasets. Based on a survey completed by all team

members upon their application to join the project, the project coordinators decided whether

each team was su�ciently quali�ed to participate.2

The dataset used in #�ncap was provided by Deutsche Börse and contains 720 million trade

records of the EuroStoxx 50 index futures between 2002 and 2018. Based on these data, teams

were asked to test six research questions on trends in (i) market e�ciency, (ii) the realized bid-ask

spread, (iii) the share of client volume in total volume, (iv) the realized spread on client orders, (v)

the share of market orders in all client orders, and (vi) the gross trading revenue of clients.3 For

each research question, the teams were required to report both an e�ect size estimate (measured

in terms of the average annualized percentage change in the dependent variable) and an estimate

of the corresponding standard error. Together with a short paper summarizing the results of

their analyses, the teams were required to submit the analysis scripts that generated their results

and a readme �le that outlined how to reproduce their estimates.4 Each paper was evaluated by

two anonymous peer evaluators who rated the quality of the papers and provided feedback for

making improvements.5

The controlled nature of the #�ncap project provides several advantages. First, as by design,

#�ncap removes the major impediments for reproducing results (i.e., lack of data and code), this

project is well suited to identify some of the drivers and barriers of computational reproducibility.

Second, given its multi-research question structure, it leads to many more data points (1,000+)

than in all the aforementioned studies on the reproducibility of economics or �nance research.

2 A total of 259 teams registered to participate in #�ncap. Out of them, 231 teams ful�lled the participation require-
ments and were accepted into the project. A total of 223 teams complied with the requirement to sign the project’s
non-disclosure agreement and were provided access to the dataset. Eventually, 168 teams completed the required
analysis by the due date.

3 The instructions provided to the research teams, including the verbatim phrasing of the six research questions, are
provided in Appendix A.

4 Although teams were not explicitly informed that their results would be veri�ed, they could infer from the require-
ment to submit their computer code that their results might be veri�ed. Therefore, the experiment simulated a
regime similar to the one currently used by all top-3 �nance journals in which authors must submit their code, but
they do not know for sure whether someone will ever run it to verify the results.

5 The assessment was single-blind as the evaluators could see the names of the authors but their names were unknown
to the authors. Reputation-wise, this creates strong incentives for authors to exert e�ort as both their names and
their paper are seen by two senior members of the academic �nance community (see Section 2.3 for details).
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Another important aspect is that we have multiple teams addressing the same research questions

using the same database, which is a truly unique feature since in the literature di�erent obser-

vations are drawn from papers on di�erent topics. Third, the research teams in #�ncap are of

high quality, in terms of, for instance, tenure and number of publications in the top �nance or

economics journals. They are also quite representative of the �nance research community, in

terms of software, gender, and coauthorship.

2.2. Reproducibility Scores

For each team and each research question, the team’s analysis script and readme �le were used

to generate a speci�c reproducibility score. The latter is obtained at the end of a rigorous repro-

ducibility assessment conducted by cascad, which stands for Certi�cation Agency for Scienti�c

Code And Data (www.cascad.tech). It is a nonpro�t academic organization that helps individual

researchers signal the reproducibility of their research (pre-submission check) and helps academic

journals verify the reproducibility of the research they publish (pre-publication check).6 In prac-

tice, this veri�cation was conducted by a single reproducibility veri�cator working for cascad,

under the supervision of two reproducibility editors. Having a single veri�cator for all reproduc-

tions brings the bene�t that heterogeneity in reproduction outcomes attributable to veri�cator

�xed e�ects is ruled out by design.

For each research question addressed by a given team, the reproducibility score was determined

at the end of the following process. After downloading the common dataset, the veri�cator at-

tempted to run the computer code by following the various steps indicated in the readme �le.7

The computation was performed either on a workstation or on a virtual machine, depending on

6 cascad regularly acts as a third party to verify the results of papers conditionally accepted by the American Economic
Review, American Economic Journal (AEJ): Applied Economics, AEJ: Economic Policy, AEJ: Macroeconomics, AEJ: Mi-
croeconomics (Vilhuber, 2021, 2022), and by the Economic Journal.

7 As in most previous studies (see, e.g., Gertler et al., 2018; Herbert et al., 2021), the reproducibility veri�cator was
prevented from seeking advice or help from the original authors. Another reason for not contacting the researchers
was to not interfere with the course of the #�ncap study.
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availability and the required environment (PC, Mac, Linux).8 To deliver the reproducibility scores

in a timely manner and not delay the #�ncap study, the veri�cator stayed within a one-week time

budget for each team. As shown in Table 4, this time limit corresponds to 18 times the average

CPU time and 50 times the median CPU time across all teams. Because of the time limit, no results

were generated for four teams.

Then, both the regenerated e�ect size estimates and standard errors were displayed in a team-

speci�c execution report. This report also included comments about potential problems encoun-

tered during the computation phase. For each parameter (e�ect size and standard-error), the

di�erence, if any, between the original result and the regenerated result was either small (≤ 10%

of the original result) or large (> 10% of the original result). Finally, for each research question,

the reproducibility score could take one of �ve values ranging between 0 and 100, which were

set as shown in Table 2.

Table 2: Reproducibility ratings and scores. Scores are assigned independently for each of
the six research questions addressed by the research teams. Di�erence refers to the potential
discrepancies between the original and the regenerated results (size and standard-error): small
indicates di�erences smaller than 10% of the original result; large indicates di�erences strictly
larger than 10%. For the RR rating, we can detect a di�erence on one or two parameters (size
and/or standard-errors).

Reproducibility Rating Reproducibility Score Di�erence

RRR 100 None, perfect accuracy
RR 75 Only small di�erences
R 50 One large di�erence
D 25 Several large di�erences

DD 0 No result generated

In our analyses, we use two versions of the reproducibility scores. The �rst is a binary variable,

which contrasts full reproducibility (score of 100) with no/partial reproducibility (score lower

than 100). The second one is an ordinal variable with �ve levels (0, 25, 50, 75, and 100). This �ve-

8 The workstation was equipped with 64GB RAM, Intel® Core™ i9-9900K CPU @3.60-5.00GHz, Nvidia Geforce RTX
2060, and Windows 10. It includes R 4.0.5, Matlab R2019b and R2020a, Python 3.9.2 (through Anaconda 2020.11),
Stata 16.1, SAS 9.4, Haskell, and PostgreSQL. In addition, we used two Microsoft Azure virtual machines: (1) one
machine with Windows 10, 32 cores, 512GB RAM, and with the following software: Microsoft SQL Server, R 4.0.4,
Matlab R2020a, Python 3.9.2 (through Anaconda 2020.11), and Julia v1.5.4 and (2) one machine with Linux (Ubuntu
distribution), 32 cores, 128GB RAM, and with the following software: R 4.0.5, Python 3.9.2 (through Anaconda
2020.11), and Java SDK 16.0.1.
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notch scale is consistent with the one used during the internal reproducibility audit conducted

by the American Economic Review (Glandon, 2011).

2.3. Covariates

To identify the drivers of the reproducibility scores, we build a rich dataset of variables that

characterize several facets of scholarship. To ease exposition, we organize these variables into six

categories, namely, variables related to (i) the researchers’ characteristics and skills, (ii) the type of

research questions, (iii) the software used, (iv) the complexity of the computer code, (v) the quality

of the research, and (vi) the e�ort exhibited by researchers to make their results reproducible. A

comprehensive description of each variable is provided in Table B1 in Appendix B.

Researchers’ characteristics and skills. We characterize the academic quality of a team us-

ing four variables. The �rst two are binary variables that indicate whether the team includes at

least one tenured faculty member (associate or full professor) and whether the team includes at

least one researcher who has already published in a top-5 economics or top-3 �nance journal. In

our sample, 52.4% of the teams include at least one tenured faculty member, and 42.9% include a

researcher with at least one top publication. Another proxy that we use for academic excellence

is the number of Google Scholar citations (maximum number across the team members). The

average number of citations—as self-reported by all participants upon registration for #�ncap in

December 2020—is 1,595, with a maximum of 29,000. To assess expertise in the �eld, we ask each

participant to self-assess his or her experience with market liquidity and empirical �nance using

a scale ranging from 0 to 10. The average score is 8.23 (sd = 1.39). Overall, these indicators show

that the academic quality of the participants is quite good.

To measure the coding and data handling skills of the research teams, we take two actions. First,

we ask the team members about the size of the largest database they have worked with and

about their self-assessment of their coding skills (low, average, high, excellent). A total of 72.6%

of the teams state that they have direct experience with datasets that are comparable in size to

the dataset analyzed in #�ncap, and 32.1% report that their coding skills are excellent. Second, we
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Table 3: Summary statistics on researchers and software. m and sd denote the mean and the standard
deviation, respectively; p25, p50, and p75 indicate the 25th, the 50th, and the 75th percentile; min andmax
denote the minimum and maximum values. Variables marked with ∗ are dichotomous, i.e., means (m;
reported as percentages) correspond to the fraction of “successes;” variables not marked with ∗ are metrics.
Superscript a indicates that the data were elicited on the individual level in #�ncap’s entry survey and is,
thus, based on individual researchers’ self-reports; team-level aggregates correspond to the maximum
value per team. Superscript b indicates that the data were recorded on the team level in the course of
cascad’s evaluation process. n = 168 for all variables.

Variable m sd min p25 p50 p75 max

Academic quality:
» Seniority (assoc. / full professor) a,∗ 52.4%
» Top publication (top-3 / top-5) a,∗ 42.9%
» Citations (in thousands) a 1.59 3.62 0.00 0.05 0.30 1.42 29.00
» Expertise (emp. �n. & liquidity) a 8.23 1.39 3.50 7.50 8.50 9.00 10.00

Variable m

Coding and data handling skills:
» Experience with large data a,∗ 72.6%
» Excellent coding skills a,∗ 32.1%
» Parallel computing b,∗ 10.1%
» Loops/matrix operations b,∗ 88.7%

Team composition:
» Coauthor (team of two) ∗ 78.6%
» Gender (female) a,∗ 29.2%

Location:
» North America a,∗ 25.0%
» Europe a,∗ 63.1%
» Asia-Paci�c a,∗ 15.5%

Variable m

Software used:

» Eviews b,∗ 1.8%
» Excel b,∗ 1.8%
» GAUSS b,∗ 0.6%
» Haskell b,∗ 0.6%
» Java b,∗ 0.6%
» Julia b,∗ 0.6%
» Matlab b,∗ 11.9%
» OneTick b,∗ 0.6%
» Python b,∗ 29.2%
» R b,∗ 28.6%
» SAS b,∗ 22.0%
» SQL/PostgreSQL b,∗ 3.6%
» Stata b,∗ 29.2%
» Visual Basic b,∗ 0.6%

measure their skills ourselves by scrutinizing their code. In particular, we systematically check

whether the researchers use parallel computing techniques (10.1%) and whether they use loops

or matrix operations (88.7%).

We also consider the size of the teams (one vs. two members). In our sample, 78.6% of the teams

consist of two researchers, which is quite close to what is observed in practice in the �nance �eld.

For instance, Grossmann and Lee (2022) report that the percentage of single-authored papers

published in the Journal of Finance, the Journal of Financial Economics, and the Review of Financial

Studies between 2015 and 2019 is 16.2%, 13.0%, and 11.3%, respectively.

13



Other features we control for are gender and location. In the sample, 29.2% of the teams consist of

at least one woman. This proportion is close to the actual proportion observed in the economics

and �nance �elds. Indeed, Hengel (2022) �nds that the percentage of papers published in top-

4 economics journals with at least one female author was approximately 25% in 2015, with an

overall positive trend over the past 25 years. Schwert (2021) indicates that, over the 2010–2020

period, the percentage of female coauthors in the Journal of Financial Economics was around 15%.

Regarding location, our sample appears to be tilted toward Europe. Indeed, 63.1% of the teams

involve at least one researcher who is a�liated with a European institution. The corresponding

frequencies are 25.0% for North America and 15.5% for the Asia-Paci�c region. For the top-3

�nance journals, Grossmann and Lee (2022) indicate that the percentage of coauthors located in

Europe is between 29.4 and 35.0%, whereas the corresponding percentage range is between 52.8

and 56.5% in North America and between 5.6% and 10.6% in the Asia-Paci�c region.

Type of research questions. The six research questions vary in terms of complexity and the

econometric techniques required. For instance, RQ1 focuses on a relatively hard-to-measure and

quite abstract concept (i.e., market e�ciency) whereas RQ5 deals with a straightforward measure

(i.e., percentage of market orders in all client orders). In our tests, we use research-question

speci�c binary variables in order to estimate �xed e�ects.

Software. We collect information about the software used by the researchers. Collectively, the

researchers used 14 di�erent software languages (see Table 4). The �ve most common languages

are Stata (29.2%), Python (29.2%), R (28.6%), SAS (22.0%), and Matlab (11.9%). The popularity of

Stata is consistent with the results of an economics research survey conducted by Vilhuber (2021).

However, our sample contains more Python, R, and SAS users than what is typically observed in

top �nance and economics journals (according to Vilhuber, the market share of Python and R is

between 5 and 10% each, and less than 5% for SAS). We believe this is because #�ncap participants

must analyze a particularly large database.

14



Table 4: Summary statistics on code, research quality, and e�ort. m and sd denote the mean and
the standard deviation, respectively; p25, p50, and p75 indicate the 25th, the 50th, and the 75th percentile;
min and max denote the minimum and maximum values. Variables marked with ∗ are dichotomous, i.e.,
means (m; reported as percentages) correspond to the fraction of “successes;” variables not marked with
∗ are metrics. Superscript a indicates that the data were elicited on the individual level in #�ncap’s entry
survey and is, thus, based on individual researchers’ self-reports; team-level aggregates correspond to the
maximum value per team. Superscript b indicates that the data were recorded on the team level in the
course of cascad’s evaluation process. n = 168 for all variables except for “Actual CPU time” and “Size of
software” for which the numbers of observations amount to n = 151 and n = 167, respectively.

m sd min p25 p50 p75 max

Code complexity:
» Lack of master �le a,∗ 33.3%
» Help of cascad veri�cator a,∗ 17.9%
» Number of software a 1.32 0.62 0.00 1.00 1.00 2.00 5.00
» Size of software (in 100kb) a 1.05 4.98 0.03 0.16 0.26 0.42 58.40
» Number of script �les a 6.25 9.38 1.00 1.00 3.00 7.00 85.00
» CPU time (in hours) a 9.66 17.73 0.17 1.67 3.50 8.50 145.00

Peer evaluations:

» Research Question RQ1 b −0.25 1.89 −5.33 −1.63 −0.15 1.12 4.14
» Research Question RQ2 b −0.35 1.73 −5.41 −1.61 −0.27 0.98 3.25
» Research Question RQ3 b 0.81 1.59 −4.91 −0.09 1.03 1.89 4.12
» Research Question RQ4 b −0.33 1.73 −5.41 −1.69 −0.33 0.99 3.24
» Research Question RQ5 b 0.47 1.53 −4.91 −0.40 0.55 1.53 3.81
» Research Question RQ6 b −0.23 1.86 −5.41 −1.46 −0.02 1.11 3.76

Documentation quality:
» Software requirements a,∗ 93.5%
» Computer speci�cation a,∗ 3.6%
» Instructions to veri�cators a,∗ 92.3%
» Mapping output/results a,∗ 82.1%
» Runtime a,∗ 7.1%
» Readme �le a,∗ 94.6%
» Size of readme �le (in kb) a 1.81 2.05 0.00 0.62 1.17 2.23 13.00

Code complexity. We characterize the complexity of the computer code submitted by the var-

ious teams using the following six variables. We start by simply counting the number of software

languages used by the researchers. Intuitively, we expect that having to switch from one software

to another is more cumbersome for someone who is trying to regenerate the results, as well as

being a source of error. On average, teams use 1.32 software applications and/or programming

languages; the maximum number of di�erent software applications used is 5. When they utilize

more than one software, researchers typically use one software for data cleaning and the prepara-

tion phase and another one for the econometric analysis. The other measures we analyze are the

number of script �les (average number is 6.25), the size of the software (average size is 105 KB),
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the computing time (average CPU time is 9.66 hours but the median is only 3.50 hours), the lack

of a master �le (33.3% do not provide a master �le), and the fact that the cascad reproducibility

veri�cator had to modify the code to make it run (which applied to 17.0% of the results). We notice

that, by construction, the six considered variables are positively correlated with complexity.

Research quality. We rely on a team of 34 experienced peer evaluators to assess the academic

quality of each sample paper. Collectively, the evaluators are signi�cantly more senior than the

participants: 88.2% are tenured faculty members (associate or full professor), 85.3% have published

in a top-5 economics or top-3 �nance journal, and their average number of citations is 6,663. Each

paper was reviewed twice and the assessment was conducted at the research question level. As

a result, each paper received six ratings two times, each of which was provided on a 0–10 scale.

To account for peer evaluator �xed-e�ects, we subtract the mean of all the ratings assigned by

an evaluator from his or her scores. Thus, for each research team, the peer evaluation rating per

hypothesis is based on the average (demeaned) rating of the two peer evaluators. Table 3 shows

that the mean ratings for two of the research questions (RQ3 and RQ5) are positive, whereas

the other four are negative; this indicates that the analyses and the results for the two research

questions that are the least abstract (RQ3 and RQ5) are on average more positively assessed by

peers compared to other research questions.

We also consider a dichotomous variable, called outlier result, that indicates whether or not a

team’s result is an outlier relative to the distribution of all point estimates. We implement a 2.5%

threshold on both tails of the distribution as the de�nition for outlier results, consistent with

the threshold used to winsorize the data in #�ncap (Menkveld et al., 2021). By construction, this

variable is directly related to the contribution of a team to the dispersion of the results across

teams, also known as non-standard error (Menkveld et al., 2023) or level noise (Kahneman et al.,

2021).

E�ort. We measure the completeness and quality of the documentation provided by the au-

thors. Speci�cally, we check whether there is a readme �le present (94.6% of the teams provided

one). We also measure the size of the readme �les (converted to .txt-format) and report large
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cross-sectional variation across teams, ranging from minimal to very detailed, 13KB, read-me

�les (m = 1.81KB). In addition, we search for �ve types of information in the readme �les that

the current Data Editors of several economics journals have identi�ed as being useful for ensuring

that an economic paper is reproducible.9 The useful types of information consist of information

about software requirements (mentioned by 93.5% of the teams), runtime (7.1%), computer spec-

i�cations (3.6%), instructions to veri�cators (92.3%), and information that allows one to link the

output from the code with the �gures and tables in the paper (82.1%).

3. Analysis and Results

3.1. Reproducibility, Bugs, and Problems

Panel (a) of Figure 1 shows the distribution of the 1,008 reproducibility scores, computed at the

research question level. A full-reproducibility score of 100 is observed for 52.0% of the results.

The frequencies of scores of 75, 50, and 25 are 11.3%, 2.5%, and 5.2%, respectively. Finally, a

reproducibility score of zero was assigned to 29.1% of the sample. The average reproducibility

score is 63.0 (sd = 44.3; n = 1, 008) and the median score is 100.0. When excluding scores of 0,

the average reproducibility score is 88.8.

In the next step, we study the reproducibility scores at the research team and research ques-

tion levels. Panel (b) of Figure 1 illustrates the average reproducibility score per research team

(i.e., the average of the reproducibility scores for the six research questions per team); the mean

score across teams is 63.0 (sd = 40.6; n = 168), and the median score is 83.3. Panel (c) of Fig-

ure 1 displays the distribution of the reproducibility scores for the six research questions. For

each question, a large proportion—47.6 to 58.3%—of the teams’ results is perfectly reproducible.

Partial-reproducibility scores (25, 50, or 75) account for 14.3 to 21.4% of the cases, while scores

of 0 account for 26.8 to 31.0% of the cases. The overall U-shaped pattern for the reproducibility

9 The �ve data editors are Lars Vilhuber (American Economic Association), Miklós Koren (Review of Economic Studies),
Joan Llull (Royal Economic Society), Peter Morrow (Canadian Journal of Economics), and Marie Connolly (Canadian
Journal of Economics). Their common continuously-updated template readme is available at https://social-science-
data-editors.github.io. In this paper, we use a version retrieved on October 1, 2021.
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Figure 1: Reproducibility scores. (a) Distribution of reproducibility scores at the research
question level (n = 1, 008). (b) Strip plot (jittered) of average reproducibility scores at the
research team level (i.e., the average of the reproducibility scores for the six research questions
per team). The dashed line corresponds to the mean (m = 63.0, sd = 40.6). The box plot
indicates the median (p50 = 83.3), the interquartile range, and the 5th and 95th percentiles;
n = 168. (c) Distribution of reproducibility scores separated by the six research questions;
n = 168 in all subpanels.

scores is stable across the research questions. Furthermore, within a given team, we observe some

variation across the research questions. The pairwise associations of reproducibility indicators

between research questions (mean square contingency coe�cients φ) vary between 0.545 [H3

vs. H4] and 0.780 [H3 vs. H5], with p < 0.001 for all comparisons. Similarly, the pairwise as-

sociations of (ordinal) reproducibility scores between research questions (Spearman correlation

coe�cients ρS) vary between 0.712 [H1 vs. H5] and 0.881 [H3 vs. H5], with p < 0.001 for all
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comparisons.

While the success rate in our sample tends to be higher than that reported by previous empirical

studies (Chang and Li, 2017; Gertler et al., 2018; Herbert et al., 2021), one may still wonder why

the average reproducibility success rate is far from 100%. This is particularly surprising given

that we have access to all data and all computer code, rely on the expertise of an experienced

reproducibility veri�cator, use massive computing resources, allocate an extended amount of

time, and have access to any commercial software needed. While this legitimate concern is at

the heart of the empirical study presented below, we provide some �rst elements by studying

the problems faced when attempting to regenerate the results. In Panel (a) of Figure 2, we show

that 46.1% of the reproduction attempts were initially unsuccessful (i.e., code does not run and

reproducibility score (RS) = 0) and that this �gure dropped to 29.1% after the intervention of the

cascad veri�cator. We �nd that the most common causes of nonreproducibility are, in decreasing

order, bugs and problems a�ecting the code/scripts, software, readme, CPU/memory, and data.

Interestingly, the cascad veri�cator was able to solve approximately 50% of the problems a�ecting

scripts and software. As a complement, we provide in Table C1 in Appendix C, a more granular

typology of the problems faced during the veri�cation process, both those that were �xed and

those that were not. We also provide actual examples for each of the 20 types of problems.

Since our results are based on an experiment, we test their external validity using 48 real replica-

tion kits associated with 32 papers published in leading economics journals (American Economic

Review, American Economic Journal, Economic Journal). As these journals are managed by either

the American Economic Association or by the Royal Economic Society, we refer to this extra dataset

as the AEA/RES sample. These replication kits were sent to cascad by the respective data editors

of these journals to request third-party veri�cations of the computational reproducibility of the

results (Vilhuber, 2021). As the veri�cations for #�ncap and for AEA/RES were conducted by the

same veri�cator, with the same computing infrastructure, during approximately the same period,

and without contacting the authors, we believe this comparison is meaningful. In the AEA/RES

sample, 16 papers required only one veri�cation, whereas 16 of the papers had to be veri�ed a

second time. The observation that half of the papers have to be veri�ed more than once is con-

sistent with the �gures disclosed by the AEA data editor for 2020 and 2021 in its annual report
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Figure 2: Causes of non-reproducible results. (a) The �gure shows the percentage of reproduction
attempts for the 1,008 estimates in #�ncap that did not generate any results before and after possible
interventions by the cascad veri�cator. The greenish portion of the bar (RS = 0 → RS > 0) indicates
the fraction of results with a reproducibility score of zero that could be �xed by the veri�cator to result in
a score larger than 0. (b) The �gure shows the percentage of reproduction attempts for 818 items (tables
and �gures) in a sample of 32 papers reviewed by cascad for the AEA/RES. The bars indicate the fraction
of non-generatable results for the initial submissions of replication kits (after potential intervention of
the cascad veri�cator; round 1); the green dots indicate the fraction of non-generatable results after the
replication kits have been revised by the original authors (round 2).

(Vilhuber, 2022).

Panel (b) in Figure 2 displays the percentage of the 818 results (tables and �gures) displayed in

these papers that were not reproduced in the �rst round (R1) or in the second round (R2). We

�nd that 30.3% of the results were not reproduced, which is very similar to the #�ncap results.

As for the breakdown of problems, we observe some reassuring similarities between the #�ncap

project and the real world. However, 8.4% of the results cannot be regenerated in the AEA/RES

sample because of data-related issues, which is of course much higher than in #�ncap as the data

were provided to the participants.

3.2. Cross-Sectional Determinants of Reproducibility

The strong cross-sectional variability illustrated in the previous section, both across the research

questions and across the teams, should be useful in regard to identifying some of the forces that
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drive the level of reproducibility. To identify these factors, we de�ne and test formal hypotheses

using several regression models. Then, we investigate whether the researchers in our sample

have a good sense of the level of reproducibility of their own research, as well as the di�culty of

regenerating their results.

To discipline ourselves, we prespeci�ed the hypotheses to be examined and constructed a de-

tailed analysis plan before examining the data.10 When we decided to examine the computational

reproducibility in #�ncap in detail, the data collection had already been completed. A formal pre-

registration was therefore no longer possible, but the prespeci�ed plan is publicly available at

https://osf.io/bn7wx/. Analyses not included in our analysis plan are transparently labeled as

exploratory analyses below.

Hypotheses. We formally test several hypotheses with the aim of identifying the drivers of

computational reproducibility of results in �nance. We divide the variables previously presented

in Section 2 into two groups. First, the variables that characterize the researchers’ characteristics

and skills, the type of research questions, and the software used are pre-determined variables with

respect to the level of computational reproducibility. Indeed, they are provided at the beginning

of the experiment, i.e., prior to writing the computer code, the readme �le, and the paper. Second,

variables describing the complexity of the computer code, the quality of the research as assessed

by peer evaluators, and the e�ort exhibited by researchers to ensure their results are reproducible

are co-determined variables with respect to the level of computational reproducibility. This parti-

tion of the variables is the basis of our two main null hypotheses: H1. None of the pre-determined

variables drive computational reproducibility; H2. None of the co-determined variables covary with

computational reproducibility, neither with nor without using the pre-determined variables as con-

trols. While both hypotheses are interesting per se, the former allows us to directly and cleanly

test for the drivers of reproducibility.

We also analyze whether research teams are able to assess the reproducibility rate of their own

10 The three team members responsible for the reproducibility assessment had access to all data generated by cascad
during the reproduction process but they were blinded to the data elicited in #�ncap. Only three members of the
#�ncap’s coordinator team had access to the data generated in #�ncap. However, they were blinded to all data
generated by cascad, except for the reproducibility scores, which enter the analyses as a covariate in Menkveld et al.
(2023). The two datasets were merged after the analysis plan was agreed on.
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research and whether they are aware of the level of di�culty faced by their peers when attempting

to reproduce their �ndings. To do so, we de�ne the following hypotheses: H3a. Researchers

do not exhibit over- or undercon�dence when estimating the computational reproducibility of their

results; H3b. Researchers do not exhibit over- or undercon�dence when estimating the di�culty of

reproducing their results.

Empirical Strategy. Our primary hypothesis tests for H1 and H2 are based on Wald tests for

joint statistical signi�cance of all explanatory variables included in the respective regression mod-

els. If the overall joint test turns out to be signi�cant, we proceed with conducting Wald tests

for the joint signi�cance of the coe�cient estimates associated with one of the pre-determined or

co-determined variables in the particular regression models. In addition, we report the coe�cient

estimates and the associated p-values of the individual covariates in the regression models. How-

ever, we interpret the estimates of the individual predictors and covariates in terms of statistical

signi�cance only if the corresponding joint test yields a statistically signi�cant result (p < 0.05).

Irrespective of the p-value of the joint test, we report the p-values of the individual coe�cients.

To test hypotheses H1 and H2, we estimate logistic regressions of the reproducibility indicator on

the set of pre-determined variables and co-determined variables, respectively. Standard-errors

are clustered at the team level.11

As described in detail in Section 2.3, two of the pre-determined variables (i.e., academic quality

and coding/data handling skills) and two of the co-determined variables (i.e., code complexity and

documentation quality) involve multiple dimensions that are captured by varying sets of factors.

In the �rst step, for each of the four variables, we conduct principal component analyses of the as-

sociated factors and use the �rst principal components as proxies for the relevant characteristics.

In a second step, we replace the proxies with the individual input factors. Similar to the constraint

that individual variables are only interpreted in terms of statistical signi�cance if the joint Wald

11 We cluster standard errors on the research team level as there are six observations per team (i.e., one per hypothesis)
and it appears sensible to expect that the reproducibility outcomes are correlated within clusters. Note that we do
not account for �xed intercepts per research team as characteristics that are constant across hypotheses would get
absorbed by the �xed e�ects.
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test results in p < 0.05, the coe�cient estimates of the factors are only interpreted in terms of

statistical signi�cance if the proxy (�rst principal component) is found to be signi�cant.

For hypothesis H3a, we need to test the equality between the probability of underestimating the

reproducibility level and the probability of overestimating it. Similarly, for hypothesis H3b, we

contrast the distribution of the expected level of di�culty (by the researchers) and the distribution

of the actual level of di�culty (as measured by cascad). All statistical tests are two-tailed. We

refer to results with p-values smaller than 0.05 as “statistically signi�cant.”12

Below, we empirically investigate the drivers of computational reproducibility using the indicator

variable for full reproducibility as the outcome variable. In robustness analyses (presented in Ap-

pendix D), we replace the dichotomous dependent variable with cascad’s ordinal reproducibility

scores.13 In exploratory analyses, we replace the team-level data with individual-level data and

restrict the sample to single-authored reports; the results are presented in Appendix E.

E�ects of Pre-Determined Variables. Hypothesis H1 addresses whether the (i) researchers’

academic quality, (ii) researchers’ coding and data-handling skills, (iii) number of coauthors, (iv)

teams’ gender composition, (v) teams’ location, (vi) software used, and (vii) research questions

examined by the teams in #�ncap systematically a�ect the computational reproducibility. The

model estimates in terms of marginal e�ects are reported in Table 5; Wald tests for joint signi�-

cance of groups of independent variables are tabulated in the bottom panel. Robustness analyses

using the ordinal reproducibility scores instead of the binary indicator for full reproducibility

12 We agreed on adopting the conventional cuto� value of 5%, instead of the stricter 0.5% signi�cance threshold pro-
posed by Benjamin et al. (2018), with the constraint that the p-values of individual regressors only be interpreted
in terms of statistical signi�cance if the corresponding joint Wald test results in p < 0.05. Given the restrictive
nature of the latter requirement, we abstain from correcting our results for family-wise error rates. Note that our
�nal decision regarding the signi�cance threshold and using Wald tests as primary hypothesis tests was made before
we conducted any data analyses (see our analysis plan at https://osf.io/bn7wx/).

13 We planned to use ordered logistic regressions of the (ordinal) reproducibility scores on the set of pre- and co-
determined variables. However, when estimating the models, we realized that the assumptions of the ordinal logit
model are violated for our data. In particular, Brant tests indicated that the parallel line assumption must be rejected
for all six regression models. Multinomial logit models would qualify as an alternative to ordinal logit models. How-
ever, given that the number of observations for partial reproducibility scores (25, 50, and 75) are small (see Figure 1),
multinomial models were not a sensible choice either. We therefore opted to estimate linear models instead, know-
ing well that the ordinary least squares assumptions are not ful�lled either, resulting in ine�cient (but unbiased)
estimates.
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as the dependent variable show qualitatively robust results; see Table D2 in Appendix D for de-

tails.

The joint Wald test for all variables in model (1) is statistically signi�cant (χ2(17) = 42.383;

p = 0.001), which indicates that the set of pre-determined variables explains a signi�cant part

of the variation in teams’ reproducibility scores. Regarding the individual predictors included

in the model, we do not �nd evidence for a systematic e�ect of teams’ academic quality on the

likelihood of full reproducibility.14 In model (2), the joint Wald test of the four factors associated

with academic quality is insigni�cant (χ2(4) = 4.782, p = 0.310), as are the individual coe�cient

estimates for the four factors. We �nd this result surprising, as one may expect more experienced

and more successful researchers to produce results that are more reproducible than those of less

experienced members of the profession. Another theoretical reason to expect more senior re-

searchers to produce reproducible research is to limit reputation risk. However, we do not �nd

evidence in support of this view; rather, our results appear to be in line with an opportunity cost

story (Colliard et al., 2022; Miguel, 2021).15

The �rst principal component of variables associated with coding and data handling skills, how-

ever, signi�cantly increases the likelihood of computational reproducibility. For a one-standard

deviation increase in our proxy for coding skills, the probability that teams’ results are perfectly

reproducible increases, on average, by 9.2 percentage points, hereafter pp (p = 0.001).16 The joint

Wald test of the coe�cient estimates of the four factors associated with coding skills is statisti-

cally signi�cant (χ2(4) = 14.598, p = 0.006). The individual coe�cient estimates (see model (2)

for details) suggest that the positive impact on reproducibility is governed by whether teams use

loops and/or matrix operations in their analyses (AME = 33.0 pp, p < 0.001), which is the factor

14 The �rst principal component captures 61.4% of the variability of the four factors associated with academic quality,
indicating that a common dimension explains a substantial part of the overall variation. Components 2, 3, and 4
explain 20.5%, 11.6%, and 6.5% of the variance, respectively.

15 In exploratory analysis, we re-estimate model (2) on the dataset expanded to the individual level as well as on the sam-
ple of single-authored papers. Both analyses suggest that seniority negatively a�ects computational reproducibility,
with marginal e�ects of −16.1 (p = 0.023) and −34.0 (p = 0.046) percentage points, respectively. See Tables E1
and E2 in Appendix E for details.

16 The principal component analysis reveals that the �rst component captures only 28.5% of the overall variation in the
four factors. Components 2, 3, and 4 explain 26.8%, 25.2%, and 19.5% of the variance, respectively, which suggests
that the four factors describe distinct characteristics that do not stem from a common dimension. As such, we deem
the individual estimates reported in model (2) more informative than the estimate of the �rst principal component.
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Table 5: Logit regressions of the reproducibility indicator on pre-determined covari-
ates. Estimates are reported in terms of marginal e�ects. PC-1 indicates the �rst principal com-
ponent from a principal component analysis of the covariates associated with academic quality
and coding skills, respectively. Variables marked with † are dichotomous; see Table B1 in Ap-
pendix B for details. The bottom panel reports χ2(df)-statistics, with df being de�ned as the
number of coe�cients (k), for Wald tests for joint statistical signi�cance of groups of covariates.
n = 1, 008, clustered for 168 research teams, in both models. McFadden’s Pseudo R2 is 0.058
and 0.078 for models (1) and (2), respectively. p-values are reported in parentheses; ∗ p < 0.05.

Model (1) Model (2)

Academic Quality:
» PC-1 −0.021 (0.319)
» Seniority† −0.152 (0.070)
» Top Publication† 0.090 (0.287)
» Citations (in logs) −0.004 (0.853)
» Expertise (0–10) 0.009 (0.691)

Coding Skills:
» PC-1 0.092∗ (0.001)
» Parallel Comp.† 0.107 (0.319)
» Loops/Matrix Operations† 0.330∗ (0.000)
» Large Data† 0.001 (0.982)
» Coding Skills† −0.015 (0.832)

Coauthor:
» Team of Two† 0.052 (0.524) 0.038 (0.634)

Gender:
» Female† −0.059 (0.408) −0.046 (0.523)

Location:
» North America† −0.010 (0.901) −0.024 (0.765)
» Asia-Paci�c† −0.138 (0.168) −0.161 (0.104)
» Other countries† 0.036 (0.755) 0.085 (0.478)

Software:
» Matlab† −0.080 (0.473) −0.069 (0.507)
» Python† 0.014 (0.884) 0.014 (0.881)
» R† −0.052 (0.552) −0.063 (0.464)
» SAS† 0.130 (0.131) 0.147 (0.095)
» Stata† −0.116 (0.132) −0.110 (0.146)

Research Questions:
» RQ2† −0.006 (0.862) −0.006 (0.862)
» RQ3† 0.101∗ (0.003) 0.101∗ (0.003)
» RQ4† 0.012 (0.732) 0.012 (0.732)
» RQ5† 0.101∗ (0.006) 0.101∗ (0.005)
» RQ6† 0.018 (0.613) 0.018 (0.613)

Wald Tests:
» Overall model 42.383∗ (0.001) 56.243∗ (0.000)
» Academic quality (k = 4) 4.782 (0.310)
» Coding skills (k = 4) 14.598∗ (0.006)
» Location (k = 3) 2.205 (0.531) 3.479 (0.324)
» Software (k = 5) 7.828 (0.166) 8.003 (0.156)
» Research questions (k = 5) 15.037∗ (0.010) 15.021∗ (0.010)
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that loads the strongest on the �rst principal component.

We conjecture that the presence of a coauthor can increase the incentives to clean-up and better

document the code and could thus act as a monitoring device. However, we report no signi�cant

di�erence in the likelihood of reproducibility for teams comprising one researcher and teams

comprising two researchers (AME = 5.2 pp, p = 0.524).17 Likewise, we neither �nd evidence

that the likelihood of reproducibility signi�cantly di�ers between teams involving a female team

member and teams only consisting of males, nor �nd evidence that reproducibility systematically

varies across researchers’ location/region.18 With respect to the software and/or programming

languages used by teams, the coe�cient estimates and the joint tests are insigni�cant for both

models (1) and (2).19

Finally, we report a signi�cant Wald test result for the research question �xed e�ects (χ2(5) =

15.037, p = 0.010). More particularly, we �nd signi�cant e�ects for RQ3 and RQ5; on average,

teams’ estimates for these two research questions are about 10 pp more likely to be fully repro-

ducible than estimates for RQ1.20 Note that the six research questions tested by teams exhibit—on

purpose—considerable variation in terms of the level of abstraction. While RQ1 is based on the

relatively abstract notion of market e�ciency and calls for advanced econometric methods, RQ3

and RQ5 only require the computation of simple ratios for the share of client volume in total vol-

ume and the share of market orders in all client orders, respectively. Thus, the positive coe�cient

17 In an exploratory analysis, we examine whether the team composition, i.e., whether the team is composed of two
professors, one professor and one early-career researcher (ECR), or two ECRs correlates with reproducibility. We do
not �nd evidence that team composition a�ects reproducibility. Refer to Table E3 in Appendix E for details.

18 Not only the coe�cient estimates of the three location indicators (relative to the baseline category Europe) are
statistically insigni�cant, but also all the comparisons between them. In particular, Wald tests for model (1) yield
the following results: (i) North America vs. Asia-Paci�c: χ2(1) = 1.296, p = 0.255; (ii) North America vs. Other
Countries: χ2(1) = 0.129, p = 0.720; and (iii) Asia-Paci�c vs. Other Countries: χ2(1) = 1.528, p = 0.216. The
pairwise comparisons for model (2) yield a similar picture: (i) North America vs. Asia-Paci�c: χ2(1) = 1.505,
p = 0.220; (ii) North America vs. Other Countries: χ2(1) = 0.669, p = 0.414; and (iii) Asia-Paci�c vs. Other
Countries: χ2(1) = 2.835, p = 0.092.

19 Exploratory pairwise comparisons between the coe�cient estimates for the di�erent software applications and pro-
gramming languages used suggest that using SAS tends to increase reproducibility rates as compared to using Stata
(χ2(1) = 6.545, p = 0.011 in models (1); and χ2(1) = 6.557, p = 0.010 in model (2), respectively) and using R
(χ2(1) = 3.639, p = 0.056 in models (1); and χ2(1) = 4.654, p = 0.031 in model (2), respectively). All remaining
pairwise comparisons of coe�cient estimates for the software dummies are statistically insigni�cant.

20 The coe�cient estimates of RQ3 and RQ5 are not only signi�cantly higher than the base category (RQ1); pairwise
Wald tests between the six RQ-coe�cients indicate that, for both models (1) and (2), the likelihood of being fully
reproducible is signi�cantly higher for RQ3 and RQ5 than for the remaining four research questions (p < 0.05 for all
comparisons). All pairwise comparisons between coe�cient estimates for RQ1, RQ2, RQ4, and RQ6 are statistically
insigni�cant (p > 0.05).
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estimates for RQ3 and RQ5 are in line with our expectations.

E�ects of Co-Determined Variables. Hypothesis H2 addresses whether research quality,

code complexity, and documentation quality systematically co-vary with computational repro-

ducibility.21 The model estimates in terms of marginal e�ects are reported in Table 6; the results

of the Wald tests for joint signi�cance of groups of covariates are tabulated in the bottom panel.

Table 6: Logit regressions of the reproducibility indicator on co-determined covariates.
Estimates are reported in terms of marginal e�ects. PC-1 indicates the �rst principal component
from a principal component analysis of the covariates associated with code complexity and
documentation quality, respectively. Variables marked with † are dichotomous; see Table B1 in
Appendix B for details. The bottom panel reports χ2(df)-statistics, with df being de�ned as the
number of coe�cients (k), for Wald tests for joint statistical signi�cance of groups of covariates.
n = 906, clustered for 151 research teams, in both models. McFadden’s Pseudo R2 is 0.030 and
0.045 for models (3) and (4), respectively. p-values are reported in parentheses; ∗ p < 0.05.

Model (3) Model (4)

Research Quality:
» Peer Evaluation (0–10) 0.019 (0.197) 0.017 (0.248)
» Outlier Result† −0.235∗ (0.010) −0.209∗ (0.014)

Code Complexity:
» PC-1 −0.045∗ (0.048)
» Number of Software −0.083 (0.209)
» Number of Script Files 0.000 (0.975)
» Size of Software (in kb) 0.000 (0.188)
» Actual CPU Time (in minutes) 0.000 (0.520)
» Lack of Master File† 0.029 (0.686)
» Help from Veri�cator† 0.065 (0.414)

Documentation Quality:
» PC-1 0.046∗ (0.041)
» Readme File† 0.090 (0.830)
» Size of Readme File (in kb) −0.005 (0.743)
» Software Requirements† −0.047 (0.846)
» Runtime† 0.046 (0.675)
» Computer Speci�cation† 0.114 (0.439)
» Instructions to Veri�cators† 0.211 (0.478)
» Mapping Output/Results† 0.125 (0.151)

Wald Tests:
» Overall model 15.216∗ (0.004) 25.164∗ (0.048)
» Code complexity (k = 6) 5.840 (0.441)
» Documentation quality (k = 7) 7.155 (0.413)

21 The number of observations drops from 168 × 6 = 1, 008 to 151 × 6 = 906 when addressing the relationship
between reproducibility and the set of co-determined variables since the code of 17 teams could not be executed at
all, which resulted in the variable “Actual CPU time” being unde�ned for 17 teams.
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The covariates in models (3) and (4) are jointly signi�cant (see the bottom panel in Table 6 for

details), which indicates that the set of co-determined variables explains some of the observed

heterogeneity in computational reproducibility. Regarding the estimates of the individual covari-

ates, we do not �nd evidence that the quality of the short papers, as proxied by the peer-reviewed

ratings, signi�cantly correlates with the variation in reproducibility. We deem this null result re-

markable as it seems reasonable to conjecture that results that are considered by peers to be of

high quality should be more likely to be reproducible.

In contrast, the �nding on the e�ect of the outlier results variable is striking.22 Indeed, we �nd

strong evidence that the results lying in the tails of the distribution are substantially less likely to

be fully reproducible, with a marginal e�ect of approximately 20 percentage points. By construc-

tion, the outlier result variable is directly related to the contribution of a team to the dispersion

of the results across teams, also referred to as non-standard error (Menkveld et al., 2023) or level

noise (Kahneman et al., 2021). One potential interpretation is to assume that deviations from

the center of the distribution serve as a proxy for the quality of a team’s estimate, presuming

that the “concensus” estimate is informative as to the ground truth.23 With this interpretation,

the negative coe�cient associated with outlier result suggests a positive relationship between

computational reproducibility and research quality. To the best of our knowledge, this is the

�rst time that such a positive relationship has been empirically established. In most scienti�c

contexts, the distribution of the results across researchers for a given research question is not ob-

servable. This distribution is only available in the following two situations: (1) in meta-analyses

and (2) in multi-analyst studies such as #�ncap. As a result, we are usually unable to determine

whether a reported estimate quali�es as an outlier result relative to the latent distribution of es-

timates. However, we can always assess the computational reproducibility of any result, as long

as a replication kit is available; and this can be used as a proxy for research quality. We see this

22 Note that the inclusion of the variable outlier result was not part of our initial analysis plan, but was added to
our analysis as per the suggestion of a reviewer and the associate editor. We use the 2.5th and 97.5th percentile of
the distribution of point estimates to characterize outlier results, consistent with the winsorization level used in
Menkveld et al. (2021); robustness tests using di�erent thresholds are presented in Appendix F and indicate that the
correlation is not governed by the threshold value.

23 Alternatively, ending up in the center of the distribution could just as well capture reliance on commonly accepted
methodologies in the �eld (which may or may not be due to skills). For instance, results in the tails might rely on
more “exotic” methodologies, calling for less well-established computational methods, which in turn could imply
lower reproducibility rates.
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as an additional reason to pay attention to the computational reproducibility of research.

We also report that the �rst principal component of factors associated with code complexity tends

to be signi�cantly negatively related to reproducibility. For a one standard deviation increase in

the standardized proxy of code complexity, the likelihood of results being fully reproducible de-

creases by 4.5 pp (p = 0.048). However, the joint Wald test for the six factors associated with

code complexity in model (4) is statistically insigni�cant (χ2(6) = 5.840, p = 0.441), as are the

individual coe�cient estimates. At a comparable order of magnitude, we �nd that the likelihood

of full reproducibility tends to increase with documentation quality; a one standard deviation

increase in the proxy of documentation quality, on average, is associated with a 4.6 pp increase

(p = 0.041) in the probability of successful reproduction. However again, the joint Wald test of

the seven coe�cients associated with documentation quality in model (4) is statistically insignif-

icant (χ2(7) = 7.155, p = 0.413).24

3.3. Expected Reproducibility and Di�culty

After the teams completed all four stages of #�ncap, they were asked to answer an exit survey

that comprised two questions regarding their expectations about their own code’s reproducibil-

ity.25 The �rst question elicited teams’ expectations about the reproducibility of their analyses,

as follows: Do you think it would be possible to reproduce your results from the raw data and your

computer code? The question was answered on an ordinal scale with the following options: A.

one would �nd exactly the same results, B. only minor di�erences may arise, C. major di�erences

may arise, and D. it would be impossible to reproduce the results. Since the scaling of the ques-

tion di�ers from the reproducibility scores generated by cascad, we focus our attention on full

reproducibility and de�ne a dichotomous variable that takes a value of one if the team selects

the highest expected reproducibility score and zero otherwise. Comparing teams’ expectations

24 The discrepancy in conclusions between models (3) and (4) in Table 6 is likely due to the fact that PC-1 captures
a relatively small share of the cross-sectional variability (28.4% for code complexity and 40.4% for documentation
quality). Auxiliary analyses (see Tables D2 through D4 in Appendix D) controlling for the heterogeneity in the set
of pre-determined variables indicate that the results reported above are qualitatively robust.

25 Note that two teams completed all stages in #�ncap but failed to complete the exit survey. Thus, the number of
observations in all tests reported in this section is n = 166 rather than n = 168.
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about whether or not their results will be fully reproducible to the assessments of actual repro-

ducibility by the cascad veri�cator allows us to address hypothesis H3a, i.e., whether researchers

systematically over- or underestimate the reproducibility of their results.

The second question in #�ncap’s exit survey elicited teams’ beliefs about how di�cult it would

be to reproduce their results. In particular, teams answered the following question: How easy

would it be to reproduce your results? The question was answered on an ordinal scale with the

following four possible responses: A. straightforward, B. quite easy, C. challenging, and D. very

di�cult. Comparing teams’ expectations about the di�culty of reproducing their estimates to

the assessments made by cascad’s veri�cator—who assigned a rating for the actual di�culty of

reproducing the results on the same scale—allows us to address hypothesis H3b, i.e., whether

researchers systematically over- or underestimate the di�culty of reproducing their results.

At the paper level, only 28.3% of the results are fully reproducible; for the majority of the results

(71.7%), at least one minor discrepancy emerged between the results reported in the paper and

the results obtained from the reproduction exercise. However, 70.5% of the teams in the sample

expect that one would �nd exactly the same results as those reported in their short paper when

attempting to reconduct their analyses, whereas only 29.5% indicate that at least minor di�er-

ences might arise.26 Panel (a) in Figure 3 illustrates the proportion of teams who expect their

results (not) to be fully reproducible, separated by whether the results are actually reproducible.

Teams whose results are reproducible turn out to have relatively well-calibrated expectations:

74.5% (21.1% ÷ 28.3%) correctly anticipate that their results will be reproducible, while 25.5%

(7.2% ÷ 28.3%) are even undercon�dent in their expectations (i.e., they expect their results not

to be perfectly reproducible even though the reproduction exercise generated exactly the same

results). However, zeroing in on the expectations of teams whose results could not be fully repro-

duced reveals that a substantial share of the sample is overcon�dent. Indeed, only 31.1% (22.3%

÷ 71.7%) of the teams correctly anticipate that the results reported in their paper will not be fully

reproducible, whereas 68.9% (49.4% ÷ 71.7%) erroneously suppose that their estimates could be

perfectly reproduced. The McNemar’s test indicates that the teams’ expectations signi�cantly

26 We acknowledge that it may be di�cult for some researchers to respond in a survey that they believe their results
cannot be regenerated. As a result, they may pick response A even if they know this may not be true. This behavior
biases upward our overcon�dence estimate.
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exceed the actual reproducibility assessments (χ2(1) = 52.128, p < 0.001; n = 166) with a large

standardized e�ect size (Cohen’s d) of d = 1.060 (95% CI [0.723, 1.446]).

Figure 3: Actual and expected (di�culty of) reproducibility. (a) Actual reproducibility separated
by research teams’ expectation about reproducibility. Both actual and expected reproducibility refers to
full reproducibility of all six results reported in the short papers. n = 166. (b) Scatter plot of expected
di�culty of reproducibility over actual di�culty to reproduce the research teams’ results. Observations are
jittered with weights being determined by the fraction per cell. Observations on the diagonal correspond to
accurate expectations; observations below (above) the diagonal indicate overcon�dence (undercon�dence).
n = 166.

We report a similar pattern with respect to teams’ expectations about the di�culty in reproducing

their analyses. Regarding teams’ expectations, 94.6% indicate that it would be “straightforward”

(A) or “quite easy” (B) to reproduce their results. Only 5.4% expect the reproduction of their es-

timates to be “challenging” (C); not a single team anticipates that it would be “very di�cult” (D)

to reproduce their �ndings. The distribution of cascad’s assessments of the actual di�culty gives

a very di�erent picture; while 62.0% of the analyses are rated A or B, reproducing the teams’

estimates actually turned out to be “challenging” (C) or “very di�cult” (D) in 38% of the cases.

Panel (b) in Figure 3 shows a scatter plot of teams’ expected di�culty regarding reproduction

compared to cascad’s assessment of the actual di�culty. While 33.7% of the teams have well-

calibrated expectations (on the diagonal) and 20.5% are undercon�dent (above the diagonal), a
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substantial share of the sample, i.e., 45.8%, is overcon�dent in their expectations (below the diag-

onal). A Wilcoxon signed-rank test indicates that the teams’ anticipations are statistically signi�-

cantly more positive than cascad’s actual di�culty assessments (z = 5.212, p < 0.001; n = 166),

with a large standardized e�ect size of d = 0.885 (95% CI [0.558, 1.049]).

We believe that the results in this �nal subsection are particularly important. They provide a

potential explanation for why the reproducibility rate is not higher in economics and �nance

research. Many researchers seem to be unaware of the fact that (i) their research may not be fully

reproducible and that (ii) attempting to regenerate empirical results is much more challenging

than they seem to anticipate. As a consequence, these researchers might simply not exert enough

e�ort such that the equilibrium reproducibility level tends to remain low.

4. Implications for Researchers and Journals

Researchers. What are researchers supposed to do to increase the reproducibility of their own

research? To answer this question in a very clear way, we provide in Exhibit 1 some guidelines

related to the readme �le, the code, and the data. Our guidelines are informed by the empirical

�ndings in this paper, in particular the analysis of the problems and bugs in Section 3.1 and of

the cross-team variation in reproducibility across teams in Section 3.2. For instance, providing

information on the items listed in Exhibit 1 would solve most of the issues listed in Table C1.

Items R1-R6 (readme) collectively re�ect the positive relationship between reproducibility and

documentation quality in Table 6. Furthermore, item D2 addresses the most common bug en-

countered in #�ncap, namely missing and misspelled variables. The guidelines are also fueled

by our own experience as reproducibility veri�cators at cascad, discussions with data editors of

economics journals, and by data and code availability standards endorsed by leading journals in

the social sciences (https://datacodestandard.org).

We believe that complying with these guidelines would both boost computational reproducibil-

ity and save time for reproducibility veri�cators and for any researcher willing to verify or build

upon existing research in �nance. It may also reduce the chance that journals’ data editors and
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other interested researchers will have to contact the authors with questions about and problems

regarding their replication kits, which prolongs the time from an article being accepted to be-

ing published. Answering such requests can be particularly challenging if they arise months or

years after the paper is published, when all the contributors, including research assistants, may

no longer be available, and when some of the details of the analysis may have been forgotten.

Moreover, it may signi�cantly reduce the likelihood of someone subsequently raising a lack of

reproducibility problem.

As general guidance, we recommend that researchers attempt to reproduce the results reported in

their paper before submitting their replication kit to an academic journal. Ideally, reproduction

should be undertaken by an independent researcher (e.g., a coauthor or research assistant not

involved in the data analysis) and in a “fresh” computing environment. Simple on-site reproduc-

tion attempts would likely reveal most of the problems that would be encountered by data editors

and their reproducibility teams and qualify as a straightforward means to advance computational

reproducibility.

Academic Finance Journals. Our �ndings can also have valuable implications for academic

journals and their editorial teams. Currently, an increasing number of academic �nance jour-

nals are requesting access to the code and, when possible, to the data associated with published

papers (Whited, 2021). However, we are not aware of any �nance journals both systematically

checking the submitted material for completeness and verifying the computational reproducibil-

ity of the reported results. The current journal policies do not prevent publication of papers with

incomplete material or information, bugs, and – when the code runs – discrepancies between the

regenerated and original results.

One solution, which is being implemented by a growing number of economics journals, is to con-

duct a systematic reproducibility check for all conditionally-accepted articles. The check consists

of verifying the submitted material, requesting any additional information and material, running

the code, comparing the results, and potentially requesting revisions of the replication kits by the

authors until there is no discrepancy in results remaining. Such veri�cation can be performed

either by (i) by the journal (e.g., Review of Economic Studies), (ii) a scienti�c association for all
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Exhibit 1: Guidelines to improve computational reproducibility in �nance. The guidelines are
structured in three parts (readme �le, data, and code) and within each part, we distinguish must-have
information from good-to-have information; the latter are indicated with an asterisk (*).

PART 1: README FILE

R1. Data availability: (i) For each sharable dataset, mention whether it is directly included in the
replication kit or available elsewhere (repository, website). (ii) For each nonsharable dataset (copyright,
NDA, restricted access), provide the following relevant information on how to obtain it: data provider,
database identifier (name, DOI, vintage), application and registration procedures, monetary costs, time
requirements, instructions on which range and variables to pick; indicate whether a third party can
temporarily access the data (for reproduction purposes). (iii)*For nonsharable data (including widely
available but proprietary data, such as CRSP or Compustat), provide a synthetic dataset to demonstrate
that the code runs and generates outputs for all figures and tables; indicate whether a script needs to be
run to generate the synthetic dataset or where to locate it.

R2. Data preparation: Ensure that minimal manual action is needed before running the code, i.e.,
automate the data preprocessing. If manual action is needed (cleaning, merging, converting), describe
the necessary steps in detail.

R3. Computational requirements: Provide information on (i) any required so�ware (and its version),
(ii) any required packages/libraries (and their versions), (iii) any required compiler (and its version), (iv)
the operating system (and its version/distribution), (v) the hardware specifications of the computer(s)
used (RAM, processor, number of cores, clusters), (vi) the runtime, and (vii)*the required space on the
drive to store intermediary data/results.

R4. List of scripts and their functions:*Do so for all scripts and not only for those which need to be
run (the master files). This information can prove useful when the code does not run smoothly.

R5. Intermediary datasets: Some scripts create intermediary datasets from the raw data. As a default,
include them in the replication kit; indicate which data files are intermediary and which part of the code
generates them. If one is unable to reproduce intermediary data files from the raw data because of bugs,
time constraints, or insu�icient CPU, the rest of the verification can still be carried out.

R6. Instructions on how to run the code: Describe all steps that need to be followed to generate the
results reported in the paper (whether one needs to change the path, which scripts to run and in which
order, whether command line/shell prompts need to be executed, whether one needs to change so�ware
se�ings). If the code does not automatically generate the tables and figures, indicate how to recreate
them from results in the output/log file.

PART 2. CODE

C1. Structure:*There should be one or a few master files that require minimal modifications, call the
required scripts in order, and automate the replication process.

C2. Cleaning: Clean up the code and ensure that no futile parts (functions, commands) are included.

C3. Commenting: Annotate all code such that it can be easily understood by independent researchers,
and by yourself in the future. Structure your code and scripts using comments to enhance readability
and intelligibility.

PART 3. DATA

D1. Format.*Ensure that the formats and file types of the raw data files match the ones used/required
by the code.

D2. Variables. Check for missing and misspelled variables.

D3. Codebook.*Provide a variable dictionary (codebook) and/or assign self-explanatory variable labels
(in data formats that allow for labeling variables and values). Describe all variables in the dataset such
that they can be easily understood.
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its academic journals (e.g, American Economic Association, Royal Economic Studies), or (iii) by an

external third-party veri�cator (e.g., cascad, the Odum Institute for Research in Social Science at

the University of North Carolina). As shown by Colliard et al. (2022), models (ii) and (iii) permit

the exploitation of some important economies of scale and third-parties can have a comparative

advantage in accessing restricted data. This systematic computational veri�cation solution solves

the problems but is costly for journals and some authors may �nd it bothersome. An alternative

model would be to only verify a subset of conditionally-accepted papers. The composition of

the subset could be random or be based on some features of the research (e.g., having important

policy implications or challenging the current consensus). This would be less costly for journals

and authors, yet maintain some incentives to prepare high-quality replication kits.

A third solution is to create strong incentives for authors and other researchers to improve the

computational reproducibility of published results, without conducting any pre-publication re-

producibility test. This can be achieved by encouraging and publishing comments on or reanaly-

ses of published papers (Nagel, 2019) and by red-penciling or retracting nonreproducible papers.

By design, this would increase both the likelihood of detecting nonreproducible research and the

reputational risk for authors. The third solution dominates the �rst two in terms of monetary

and organizational costs (the lower bound of the veri�cation costs estimated by Colliard et al.

(2022) is $3̇34 per paper). However, as it relies on ex-post veri�cations, it requires �agging or re-

tracting scienti�c results that are already in the public domain. As a result, the scienti�c damage

is more severe, as is the reputational cost for the authors, the journal, and the scienti�c disci-

pline. Furthermore, it is well known that self-correction within science can be challenging and

ine�cient (see, e.g., Jamieson, 2018; Serra-Garcia and Gneezy, 2021). In contrast, pre-publication

checks allow any discrepancies to be detected before the article becomes an o�cial peer-reviewed

contribution to scholarship. In case of minor discrepancies, the paper can still be �xed and even-

tually published; if some of the main conclusions do not hold true, the article can be rejected at

this stage without creating too many negative externalities for the research community.
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5. Conclusion

We have presented a large-scale analysis of computational reproducibility in �nance using 168

research papers written in the context of a multi-analyst study in market microstructure. Our

average success rate compares favorably with existing evidence in economics. However, this

paper highlights a problem with the current policies around code and data availability in �nance,

i.e., when they are available, replication kits sometimes do not run and, when they do, they do not

always produce the exact results reported in the corresponding papers. In this paper, we quantify

this phenomenon in the �eld of market microstructure, try to understand some of its causes, and

suggest some remedies.

Ensuring that published research in �nance can be reproduced helps to boost trust in �nance,

but this is not a panacea. Computationally reproducible research can still be plagued by various

honest mistakes (e.g. typo in the code) or plain fraud (e.g. data alteration). Being computationally

reproducible is a minimum requirement that calls for, and facilitates, additional reanalyses such

as the ones discussed in Table 1. As called for in his AFA presidential address by Harvey (2017),

�nance needs to nurture a culture of reanalysis, and we hope this paper will contribute to it.

36



References

Acharya, V. V., & Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal of Financial
Economics, 77 (2), 375–410.

Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series e�ects. Journal of
Financial Markets, 5(1), 31–56.

Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., & et al. (2018).
Rede�ne statistical signi�cance. Nature Human Behaviour, 2, 6–10.

Buckheit, J. B., & Donoho, D. L. (1995). WaveLab and reproducible research. In A. Antoniadis &
G. Oppenheim (Eds.), Wavelets and statistics. Lecture notes in statistics. Springer.

Chang, A. C., & Li, P. (2017). A preanalysis plan to replicate sixty economics research papers that
worked half of the time. American Economic Review, 107 (5), 60–64.

Chen, A. Y., & Zimmermann, T. (2022). Open source cross-sectional asset pricing. Critical Finance
Review, 11(2), 207–264.

Christensen, G., & Miguel, E. (2018). Transparency, reproducibility, and the credibility of eco-
nomics research. Journal of Economic Literature, 56(3), 920–980.

Cohn, J. B., Liu, Z., & Wardlaw, M. I. (2023). Count (and count-like) data in �nance. Journal of
Financial Economics, 146(2), 529–551.

Colliard, J.-E., Hurlin, C., & Pérignon, C. (2022). The economics of computational reproducibility.
HEC Paris Research Paper, FIN-2019-1345.

Dewald, W. G., Thursby, J. G., & Anderson, R. G. (1986). Replication in empirical economics: The
Journal of Money, Credit and Banking project. American Economic Review, 76(4), 587–603.

Drienko, J., Smith, T., & von Reibnitz, A. (2019). A review of the return–illiquidity relationship.
Critical Finance Review, 8, 127–171.

Du�o, E., & Hoynes, H. (2018). Report of the search committee to appoint a data editor for the
AEA. AEA Papers and Proceedings, 108, 745.

Gertler, P., Galiani, S., & Romero, M. (2018). How to make replication the norm. Nature, 554(7693),
417–419.

Glandon, P. J. (2011). Appendix to the report of the editor: Report on the American Economic
Review data availability compliance project. American Economic Review, 101(3), 696–699.

Grossmann, A., & Lee, A. (2022). An analysis of �nance journal accessibility: Author inclusivity
and journal quality. Journal of Banking and Finance, forthcoming, 106427.

Harris, L., & Amato, A. (2019). Illiquidity and stock returns: Cross-section and time-series e�ects:
A replication. Critical Finance Review, 8, 173–202.

Harvey, C. R. (2017). Presidential address: The scienti�c outlook in �nancial economics. Journal
of Finance, 72(4), 1399–1440.

Harvey, C. R. (2019). Editorial: Replication in �nancial economics. Critical Finance Review, 8(1–2),
1–9.

37



Harvey, C. R., Liu, Y., & Zhu, H. (2016). ... and the cross-section of expected returns. Review of
Financial Studies, 29(1), 5–68.

Hengel, E. (2022). Publishing while female: Are women held to higher standards? Evidence from
peer review. The Economic Journal, 132(648), 2951–2991.

Herbert, S., Kingi, H., Stanchi, F., & Vilhuber, L. (2021). The reproducibility of economics research:
A case study. Banque de France Working Paper Series, WP #853.

Holden, C. W., & Nam, J. (2019). Do the LCAPM predictions hold? Replication and extension
evidence. Critical Finance Review, 8, 29–71.

Hou, K., Xue, C., & Zhang, L. (2020). Replicating anomalies. Review of Financial Studies, 33(5),
2019–2133.

Jamieson, H. (2018). Crisis or self-correction: Rethinking media narratives about the well-being
of science. Proceedings of the National Academy of Sciences, 115(11), 2620–2627.

Jensen, T. I., Kelly, B., & Pedersen, L. (2022). Is there a replication crisis in �nance? Journal of
Finance, forthcoming.

Kahneman, D., Sibony, O., & Sunstein, C. R. (2021). Noise: A �aw in human judgment. Harper
Collins.

Kazumori, E., Fang, F., Sharman, R., Takeda, F., & Yu, H. (2019). Asset pricing with liquidity risk:
A replication and out-of-sample tests with the recent US and the Japanese market data.
Critical Finance Review, 8, 73–110.

Li, H., Novy-Marx, R., & Velikov, M. (2019). Liquidity risk and asset Pricing. Critical Finance Re-
view, 8, 223–255.

Linnainmaa, J. T., & Roberts, M. R. (2018). The history of the cross-section of stock returns. Review
of Financial Studies, 31(7), 2606–2649.

McCullough, B. D., McGeary, K. A., & Harrison, T. D. (2006). Lessons from the JMCB archive.
Journal of Money, Credit and Banking, 38(4), 1093–1107.

McCullough, B. D., & Vinod, H. D. (2003). Verifying the solution from a nonlinear solver: A case
study. American Economic Review, 93(3), 873–892.

McLean, R. D., & Ponti�, J. (2016). Does academic publication destroy stock return predictability?
Journal of Finance, 71(1), 5–32.

Menkveld, A. J., Dreber, A., Holzmeister, F., Huber, J., Johannesson, M., Kirchler, M., Neusüss, S.,
Razen, M., Weitzel, U., & et al. (2021). Non-standard errors. Tinbergen Institute Discussion
Paper 2021-102/IV. https://bit.ly/3JcSFJ9

Menkveld, A. J., Dreber, A., Holzmeister, F., Huber, J., Johannesson, M., Kirchler, M., Neusüss, S.,
Razen, M., Weitzel, U., & et al. (2023). Non-standard errors. Journal of Finance, forthcoming.

Miguel, E. (2021). Evidence on research transparency in economics. Journal of Economic Perspec-
tives, 35(4), 193–214.

Mitton, T. (2021). Methodological variation in empirical corporate �nance. Review of Financial
Studies, 35(2), 527–575.

38

https://bit.ly/3JcSFJ9


Nagel, S. (2018). Code-sharing policy: Update. Journal of Finance (Editorial).

Nagel, S. (2019). Replication papers in the JF: An update. Journal of Finance (Editorial).

Nagel, S. (2021). Answers to FAQ about the recent retraction of an article in the JF. Journal of
Finance (Editorial).

National Academies of Sciences, Engineering, and Medicine. (2019). Reproducibility and replica-
bility in science. The National Academies Press.

Pástor, L., & Stambaugh, R. F. (2003). Liquidity risk and expected stock returns. Journal of Political
Economy, 111(3), 642–685.

Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060), 1226–1227.

Ponti�, J., & Singla, R. (2019). Liquidity risk? Critical Finance Review, 8, 257–276.

Popper, K. R. (1959). The logic of scienti�c discovery. Routledge.

Schwert, G. W. (2021). The remarkable growth in �nancial economics, 1974–2020. Journal of Fi-
nancial Economics, 140, 1008–1046.

Serra-Garcia, M., & Gneezy, U. (2021). Nonreplicable publications are cited more than replicable
ones. Science Advances, 7 (21), eabd1705.

Trisovic, A., Lau, M., Pasquier, T., & M., C. (2022). A large-scale study on research code quality
and execution. Scienti�c Data, (9).

Vilhuber, L. (2021). Report by the AEA data editor. AEA Papers and Proceedings, 111, 808–817.

Vilhuber, L. (2022). Report by the AEA data editor. AEA Papers and Proceedings, 112, 813–823.

Welch, I. (2019). Reproducing, extending, updating, replicating, reexamining, and reconciling.
Critical Finance Review, 8, 301–304.

Whited, T. M. (2021). Editorial. Journal of Financial Economics, 141(1), 1–5.

39



Online Appendices

Computational Reproducibility in Finance:
Evidence from 1,000 Tests

Contents

A Instructions for Research Teams in #�ncap. . . . . . . . . . . . . . . . . . . . . . . . . 1
B De�nition of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
C Bugs and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
D Robustness Tests: Alternative Model Speci�cations . . . . . . . . . . . . . . . . . . . 8
E Robustness Tests: Individual Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
F Robustness Tests: Outlier Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



A. Instructions for Research Teams in #�ncap

The box below presents a reformatted copy of the instructions that were provided to research
teams in #�ncap. The instruction sheet was forwarded to teams when they were provided access
to the Deutsche Börse dataset.

Instruction sheet for research teams

This three-page instruction sheet clarifies what is expected of you as a research team in the #fincap
project. It first provides some context for the hypotheses you are expected to test, then presents
the assignment, and finally lists the hypotheses you are asked to test with only the Deutsche Börse
data that is made available to you by the #fincap team. These data contain trade information on
the EuroStoxx 50 futures.

A. Context
Electronic order matching systems (automated exchanges) and electronic order generation sys-
tems (algorithms) have changed financial markets over time. Investors used to trade through
broker-dealers by paying the dealers’ quoted ask prices when buying, and accepting their bid
prices when selling. The wedge between dealer bid and ask prices, the bid-ask spread, was a use-
ful measure of trading cost, and o�en still is.

Now, investors more commonly trade in electronic limit-order markets (as is the case for Eu-
roStoxx 50 futures). They still trade at bid and ask prices. They do so by submi�ing so-called
market orders and marketable limit orders. However, investors now also can quote bid and ask
prices themselves by submi�ing (non-marketable) standing limit orders. Increasingly, investors
now also use agency algorithms to automate their trades. Concurrently, exchanges have been
continuously upgrading their systems to be�er serve their clients. Has market quality improved,
in particular when taking the viewpoint of non-exchange members: (end-user) clients?

B. Assignment
You are expected to write an academic paper that is maximum five pages long. To make that
feasible you can skip many parts of a typical academic paper. You only need to do the following
for all hypotheses listed below:

1. Propose a statistical measure, briefly motivate it, and present the formula to calculate it.

2. For this measure, estimate the average per-year change in percentage terms, based on the
full sample (or at least the longest possible period because some series are not available yet
at the beginning of the sample). Test it against the null of no change.

3. Report this estimate along with its standard error in four decimals (e.g., “measure Z declined
by 1.251% with a standard error 0.241%”)

4. Briefly discuss your result.

For example, an appropriate outcome statement for testing hypothesis X which states that Y has
not changed is:

“We propose measure Z to test hypothesis X because [...]. It is calculated as Z =
f(DATA). Implementing it leads to the following result: We reject the null of no
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change. We find that Y declined as our measure Z declined by 1.251% on average per
year where the standard error of this change is 0.421% and the resulting t-statistic is
2.971. This result shows [...]”

We emphasize that you are asked to report your results in a brief manner. If the paper is longer
than five pages we will not consider the paper and we will have to exclude you as co-authors from the
project.

C. Hypotheses

1. Assuming that informationally-e�icient prices follow a random walk, did market e�iciency
change over time?

Null hypothesis 1: Market e�iciency has not changed over time.

2. Did the (realized) bid-ask spread paid on market orders change over time? The realized
spread could be thought of as the gross-profit component of the spread as earned by the
limit-order submi�er.

Null hypothesis 2: The realized spread on market orders has not changed over
time.

The remaining hypotheses focus on client trades only (i.e., trades implemented by exchange
members on behalf of their clients).

3. Did the share of client volume in total volume change over time?

Null hypothesis 3: Client share volume as a fraction of total volume has not
changed over time.

4. On their market orders and marketable limit orders, did the realized bid-ask spread that
clients paid, change over time?

Null hypothesis 4: Client realized spreads have not changed over time.

5. Realized spread is a standard cost measure for market orders, but to what extent do investors
continue to use market and marketable limit orders (as opposed to non-marketable limit
orders)?

Null hypothesis 5: The fraction of client trades executed via market orders and
marketable limit orders has not changed over time.

6. A measure that does not rely on the classic limit- or market-order distinction is gross trading
revenue (GTR). Investor GTR for a particular trading day can be computed by assuming a
zero position at the start of the day and evaluating an end-of-day position at an appropri-
ate reference price. Relative investor GTR can then be defined as this GTR divided by the
investor’s total (euro) volume for that trading day. This relative GTR is, in a sense, a realized
spread. It reveals what various groups of market participants pay in aggregate for (or earn
on) their trading. It transcends market structure as it can be meaningfully computed for
any type of trading in any type of market (be it trading through limit-orders only, through
market-orders only, through a mix of both, or in a completely di�erent market structure).

Null hypothesis 6: Relative gross trading revenue (GTR) for clients has not
changed over time.
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B. De�nition of Variables

Table B1: Variable descriptions. This table provides detailed descriptions of how the variables that enter
the regression analyses are de�ned, elicited, and constructed. Columns “#�ncap” and “cascad” indicate
whether the variable was elicited in the entry- or exit survey of #�ncap or whether the variable was
recorded during cascad’s evaluation process.

Variable #�ncap cascad Description

Academic quality:

» Seniority

� � Indicator variable; takes value one if at least one
team member is a tenured faculty (i.e., associate
or full professor), zero otherwise.

Academic quality:

» Citations

� � Upon registration for #�ncap, participants self-
reported their number of Google Scholar cita-
tions. Participants were asked to provide an es-
timate instead in case they did not have a Google
Scholar pro�le. On the team level, the variable is
de�ned as the maximum value per team. In the
analyses, the number of citations enters in logs,
i.e., as log(c+ 1).

Academic quality:

» Top publications

� � Indicator variable; takes value one if at least one
team member has published in a top-3 �nance
journal (JoF, JFE, RFS) and/or a top-5 economics
journal (AER, ECMA, JPE, REStud, QJE), zero oth-
erwise.

Academic quality:

» Expertise

� � Expertise is de�ned as the mean of participants’
self-assessed expertise in empirical �nance and
their self-assessed expertise in market liquidity.
Both items were indicated on a Likert scale from
0 to 10, i.e., expertise takes values between 0 and
10 in steps of 0.5. On the team level, the variable
is de�ned as the maximum value per team.

Coding skills:

» Parallel computing

� � Indicator variable; takes value one if parallel com-
puting techniques were used, zero otherwise.

Coding skills:

» Loops / matrix operations

� � Indicator variable; takes value one if loops and/or
matrix operations were used instead of copy-
pasting code (“Don’t Repeat Yourself”) were used,
zero otherwise.

(continued on next page)
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Table B1—continued

Variable #�ncap cascad Description

Coding skills:

» Large data

� � Indicator variable; takes value one at least one
team member worked with datasets comparable
in size to the #�ncap dataset (720M observations)
before, zero otherwise; based on participants’
self-reports with respect to the question: “What
is the largest dataset you have worked with so far
(in terms of observations)?” (answers were pro-
vided in terms of log-scaled buckets: <10k, 10k–
100k, ..., 1b–10b, >10b).

Coding skills:

» Coding skills

� � Indicator variable; takes value one if a research
team considers their own coding skills to be “ex-
cellent”, zero otherwise; based on participants’
self-reports with respect to the question: “How
would you rate the coding skills of your team?”
(answers were provided on an ordinal scale from
A “excellent” to D “low”.).

Coauthor:

» Team of two

� � Indicator variable; takes value one if the research
team consists of two researchers, zero otherwise
(i.e., if the team consists of only one researcher).

Gender:

» Female

� � Indicator variable; takes value one if at least one
of the research team members is female, zero oth-
erwise (i.e., if the team only consists of males).

Location:

» Asia-Paci�c,
» Europe, &
» North America

� � Indicator variables for the Asia-Paci�c region, for
Europe, and for Northern America; the three vari-
ables take value one if at least one of the team
members is from the respective region, zero oth-
erwise.

Software:

» Matlab,
» Python,
» R,
» SAS, &
» Stata

� � Indicator variables for Matlab, Python, R, SAS,
and Stata, i.e., the �ve most frequently used soft-
ware applications/programming languages used
in #�ncap; the �ve variables take value one if
the respective software/programming language is
used by the research team, zero otherwise.

(continued on next page)
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Table B1—continued

Variable #�ncap cascad Description

Research questions:

» RQ2–RQ6

� � Indicator variables for the research questions ex-
amined by the research teams in #�ncap; we take
into account �ve dichotomous variables for RQ2
through RQ6 to account for research question
�xed e�ects.

Research Quality:

» Peer evaluation

� � Each paper in #�ncap was assessed by two inde-
pendent peers. Evaluators assessed the quality of
the analysis for each of the six hypotheses and
the overall paper on a scale from 0 (“very weak”)
to 10 (“excellent”). Scores are demeand per eval-
uator (to account for evaluator �xed-e�ects) and
averaged across the two independent evaluators
per research team.

Research Quality:

» Outlier result

� � Indicator variable for whether a research team’s
result is in the 2.5 or 97.5 percentile of the distri-
bution of all teams’ reported e�ect size estimates
per hypothesis. (Robustness tests for alternative
de�nitions of “outlier result” are presented in Ap-
pendix F.)

Code complexity:

» Number of software

� � Number of di�erent software applications and/or
programming languages used by a research team.

Code complexity:

» Number of script �les

� � Number of di�erent �les written in the various
software applications and/or programming lan-
guages.

Code complexity:

» Size of software

� � Aggregate size of all �les written in the various
software applications and/or programming lan-
guages, measured in kilobytes (kb).

Code complexity:

» Lack of master �le

� � Indicator variable; takes value one if no master-
�le was provided by the research team, zero oth-
erwise.

Code complexity:

» Actual CPU time

� � Actual CPU time (in minutes) required in cascad’s
computational reproduction attempt (see Foot-
note 8 for details about the computer speci�cation
used by cascad).

(continued on next page)
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Table B1—continued

Variable #�ncap cascad Description

Code complexity:

» Help from veri�cator

� � Indicator variable; takes value one if help from the
reproducibility veri�cator was needed to attempt
the reproduction (e.g., whether the veri�cator had
to modify the code, change paths to make the code
run, debug, etc.), zero otherwise.

Documentation Quality:

» Readme �le

� � Indicator variable; takes value one if a readme �le
was provided by the research team, zero other-
wise.

Documentation Quality:

» Size of readme �le

� � Size of the readme �le (in .txt format) in kilobytes
(kb). Files provided in other formats have been
converted into .txt before measuring the �le size.
The variable takes value zero if no readme �le was
provided.

Documentation Quality:

» Software requirements

� � Indicator variable; takes value one if software re-
quirements were speci�ed, zero otherwise.

Documentation Quality:

» Runtime

� � Indicator variable; takes value one if runtime was
speci�ed, zero otherwise.

Documentation Quality:

» Computer speci�cation

� � Indicator variable; takes value one if computer
speci�cations were provided, zero otherwise.

Documentation Quality:

» Instructions to veri�cator

� � Indicator variable; takes value one if instructions
how to reproduce the results were speci�ed, zero
otherwise.

Documentation Quality:

» Mapping output/results

� � Indicator variable; takes value one if a mapping
of analysis outputs and results in the paper was
provided, zero otherwise. The variable also takes
value one if the analysis outputs were automat-
ically displayed in the order in which they were
presented in the paper, which makes any mapping
unnecessary.
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C. Bugs and Problems

Table C1: Bugs and problems preventing the generation of results. The table lists bugs and problems identi�ed in attempting to reproduce results in #�ncap
and in the AEA/RES sample that resulted in a failure to generate a result. All numbers are in percentage terms, with the overall number of results as the base rate:
for #�ncap, percentages refer to 1,008 tests; for AEA/RES, percentages refer to 818 items (i.e., results reported in tables and/or �gures). For #�ncap, the columns R0
and R1 refer indicate the percentages of non-generatable results before and after the interventions of the cascad veri�cator, respectively; for the AEA/RES sample,
R1 and R2 indicate initial submissions (Round 1) and replication kits revised by the original authors (Round 2), respectively.

#�ncap AEA/RES

Type Problems Examples R0 R1 R1 R2

CPU/Memory Time constraint exceeded Code fails to complete within 168 hours (1 week) 2.5 2.5 2.0 2.0
Insu�cient CPU/memory Code requires more than 512 GB of RAM 1.4 1.4 — 2.7

Code/Scripts Improperly named variables Code uses one variable that do not exist or one which is misspelled 10.8 5.7 0.9 —
Code fails to import the raw data Python code attempts to load the data but cannot parse it 5.8 4.2 5.3 5.7
Data conversion failure Code fails to convert the .csv into .Rdata �les 3.0 3.0 — —
Missing/unreadable scripts Scripts become unreadable due to conversion errors from MAC 2.1 2.1 — —
Code runs but does not produce results SAS code runs but does not generate results for one #�ncap hypothesis 1.6 1.6 — —
Problems with intermediary results Intermediary results generated with SAS but R fails to use them 3.3 0.3 0.9 0.2
Lines of code must be added/removed Part of the code was bugged but not used to generate results 3.8 — — —
Code fails to compile Fortran code does not generate any executable �le — — 1.3 1.3

Data Missing data Missing required dataset from the American Time Use Survey (ATUS) — — 4.9 —
Altered data Data provider (French Customs) updated the raw data — — 3.1 —
Restricted data access No access to National Center for Education Stat. (NCES) outside the US — — 0.2 0.2
Inappropriate data format Code expected .dta �les instead of .csv 0.5 — — —

Readme Information to map output/results Missing explanation on where to �nd results in a 100-page log �le 3.0 3.0 0.1 0.4
Information about code/software Missing command to run a given Fortran code 1.8 1.8 2.4 2.2
Information about data access Missing instructions to download speci�c data from IPUMS platform — — 2.4 —

Software Incompatible environment Inability to run SAS code in Linux 1.8 1.8 6.7 2.0
Unavailable libraries/software Speci�c R library removed from the CRAN repository 1.9 1.9 — —
Versioning Code runs in Matlab R2019b but not in more recent versions 3.0 — — —

Total 46.1 29.1 30.3 19.7



D. Robustness Tests: Alternative Model Speci�cations

Below, we present robustness tests for the analyses on hypotheses H1 (impact of pre-determined
variables on reproducibility) and H2 (association of co-determined variables and reproducibility)
in the main text.

In a �rst set of robustness tests, we replace the binary dependent variable indicating full repro-
ducibility by the ordinal reproducibility score: Models (1a) and (2a) reported in Table D1 replicate
models (1) and (2) presented in Table 5 in the main text; models (3a) and (4a) reported Table D2
replicates models (3) and (4) presented in Table 6.

In a second set of robustness tests, we extend models (3) and (4) reported in Table 6 by controlling
for the set of pre-determined variables used in model (1). Table D3 replicates models (3) and (4)
presented in Table 6 in the main text but controls for the variation in pre-determined variables
(based on a logistic model). For the sake of completeness, Table D4 replicates models (3) and (4)
presented in Table 6 in the main text but (i) replaces the binary dependent variable by the ordinal
reproducibility score, and (ii) controls for the set of pre-determined variables.

8



Table D1: Ordinary least squares regressions of the reproducibility score (0, 25, ..., 100)
on pre-determined covariates. PC-1 indicates the �rst principal component from a princi-
pal component analysis of the covariates associated with academic quality and coding skills,
respectively. Variables marked with † are dichotomous; see Table B1 in Appendix B for details.
The bottom panel reports F (df1, df2)-statistics, with df1 being de�ned as the number of coe�-
cients k and df2 = 167, for Wald tests for joint statistical signi�cance of groups of covariates.
n = 1, 008, clustered for 168 research teams, in both models. Adj. R2 is 0.080 and 0.104 for
models (1a) and (2a), respectively. p-values are reported in parentheses; ∗ p < 0.05.

Model (1a) Model (2a)

Academic Quality:
» PC-1 −3.012 (0.149)
» Seniority† −14.246 (0.083)
» Top Publication† 4.816 (0.582)
» Citations (in logs) −0.294 (0.881)
» Expertise (0–10) 0.512 (0.827)

Coding Skills:
» PC-1 6.741∗ (0.026)
» Parallel Comp.† 5.519 (0.608)
» Loops/Matrix Operations† 28.291∗ (0.004)
» Large Data† 0.164 (0.981)
» Coding Skills† −5.147 (0.464)

Coauthor:
» Team of Two† 0.681 (0.934) −0.250 (0.975)

Gender:
» Female† −9.658 (0.190) −8.468 (0.260)

Location:
» North America† −2.842 (0.726) −3.314 (0.692)
» Asia-Paci�c† −13.266 (0.195) −14.561 (0.166)
» Other Continent† 0.814 (0.950) 5.770 (0.652)
Software:
» Matlab† −9.005 (0.420) −8.559 (0.418)
» Python† −0.773 (0.935) −0.904 (0.922)
» R† −6.350 (0.472) −8.249 (0.349)
» SAS† 14.480 (0.115) 16.021 (0.080)
» Stata† −11.509 (0.157) −11.455 (0.150)
Research Questions:
» RQ2† −0.149 (0.950) −0.149 (0.950)
» RQ3† 6.101∗ (0.007) 6.101∗ (0.008)
» RQ4† 0.298 (0.900) 0.298 (0.901)
» RQ5† 4.762∗ (0.046) 4.762∗ (0.047)
» RQ6† 0.893 (0.711) 0.893 (0.712)

Constant 69.308∗ (0.000) 48.687∗ (0.023)

Wald Tests:
» Overall model 2.073∗ (0.010) 2.054∗ (0.005)
» Academic quality (k = 4) 1.115 (0.351)
» Coding skills (k = 4) 2.238 (0.067)
» Location (k = 3) 0.605 (0.613) 0.828 (0.480)
» Software (k = 5) 1.743 (0.127) 1.955 (0.088)
» Research questions (k = 5) 2.524∗ (0.031) 2.509∗ (0.032)
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Table D2: Ordinary least squares regressions of the reproducibility score (0, 25, ..., 100)
on co-determined covariates. PC-1 indicates the �rst principal component from a princi-
pal component analysis of the covariates associated with code complexity and documentation
quality, respectively. Variables marked with † are dichotomous; see Table B1 in Appendix B for
details. The bottom panel reports F (df1, df2)-statistics, with df1 being de�ned as the number
of coe�cients k and df2 = 150, for Wald tests for joint statistical signi�cance of groups of co-
variates. n = 906, clustered for 151 research teams, in both models. Adj. R2 is 0.052 and 0.092
for models (3a) and (4a), respectively. p-values are reported in parentheses; ∗ p < 0.05.

Model (3a) Model (4a)

Research Quality:
» Peer Evaluation (0–10) 0.779 (0.508) 0.510 (0.665)
» Outlier Result† −23.848∗ (0.008) −20.272∗ (0.015)

Code Complexity:
» PC-1 −5.697∗ (0.003)
» Number of Software −10.132 (0.138)
» Number of Script Files −0.240 (0.406)
» Size of Software (in kb) −0.001 (0.698)
» Actual CPU Time (in minutes) 0.002 (0.419)
» Lack of Master File† 3.748 (0.561)
» Help from Veri�cator† 10.170 (0.080)

Documentation Quality:
» PC-1 5.407∗ (0.018)
» Readme File† 2.301 (0.946)
» Size of Readme File (in kb) 0.226 (0.867)
» Software Requirements† −9.294 (0.452)
» Runtime† 1.812 (0.853)
» Computer Speci�cation† 11.850 (0.189)
» Instructions to Veri�cators† 34.279 (0.213)
» Mapping Output/Results† 17.150 (0.067)

Constant 70.622∗ (0.000) 39.848∗ (0.048)

Wald Tests:
» Overall model 5.200∗ (0.001) 2.684∗ (0.001)
» Code complexity (k = 6) 1.933 (0.079)
» Documentation quality (k = 7) 2.204∗ (0.037)
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Table D3: Logit regressions of the reproducibility indicator on co-determined covari-
ates, controlling for the variation in pre-determined variables. PC-1 indicates the �rst
principal component from a principal component analysis of the covariates associated with
code complexity and documentation quality, respectively. Both models control for the �rst
principal components of academic quality and coding skills and indicator variables for teams
of two, teams involving a female team mate, location, software, and research question �xed
e�ects. Variables marked with † are dichotomous; see Table B1 in Appendix B for details. The
bottom panel reports χ2(df)-statistics, with df being de�ned as the number of coe�cients
(k), for Wald tests for joint statistical signi�cance of groups of covariates. n = 906, clustered
for 151 research teams, in both models. McFadden’s Pseudo R2 is 0.104 and 0.142 for models
(3b) and (4b), respectively. p-values are reported in parentheses; ∗ p < 0.05.

Model (3b) Model (4b)

Research Quality:
» Peer Evaluation (0–10) 0.006 (0.710) 0.004 (0.807)
» Outlier Result† −0.245∗ (0.008) −0.210∗ (0.013)

Code Complexity:
» PC-1 −0.043 (0.126)
» Number of Software −0.220∗ (0.040)
» Number of Script Files 0.005 (0.199)
» Size of Software (in kb) 0.000 (0.182)
» Actual CPU Time (in minutes) 0.000 (0.814)
» Lack of Master File† 0.076 (0.317)
» Help from Veri�cator† 0.094 (0.244)

Documentation Quality:
» PC-1 0.050 (0.061)
» Readme File† 0.113 (0.758)
» Size of Readme File (in kb) 0.000 (0.985)
» Software Requirements† −0.077 (0.707)
» Runtime† −0.003 (0.975)
» Computer Speci�cation† 0.154 (0.287)
» Instructions to Veri�cators† 0.269 (0.235)
» Mapping Output/Results† 0.136 (0.083)

Wald Tests:
» Overall model 45.887∗ (0.001) 78.766∗ (0.000)
» Code complexity (k = 6) 8.228 (0.222)
» Documentation quality (k = 7) 10.263 (0.174)
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Table D4: Ordinary least squares regressions of the reproducibility score (0, 25, ...,
100) on co-determined covariates, controlling for the variation in pre-determined
variables. PC-1 indicates the �rst principal component from a principal component analysis
of the covariates associated with code complexity and documentation quality, respectively.
Both models control for the �rst principal components of academic quality and coding skills
and indicator variables for teams of two, teams involving a female team mate, location, soft-
ware, and research question �xed e�ects. Variables marked with † are dichotomous; see
Table B1 in Appendix B for details. The bottom panel reports F (df1, df2)-statistics, with df1
being de�ned as the number of coe�cients k and df2 = 150, for Wald tests for joint statistical
signi�cance of groups of covariates. n = 906, clustered for 151 research teams, in both mod-
els. Adj. R2 is 0.144 and 0.194 for models (3c) and (4c), respectively. p-values are reported in
parentheses; ∗ p < 0.05.

Model (3c) Model (4c)

Research Quality:
» Peer Evaluation (0–10) 0.752 (0.579) 0.466 (0.733)
» Outlier Result† −23.300∗ (0.005) −19.418∗ (0.009)

Code Complexity:
» PC-1 −4.827∗ (0.023)
» Number of Software −23.350∗ (0.027)
» Number of Script Files 0.189 (0.565)
» Size of Software (in kb) −0.002 (0.641)
» Actual CPU Time (in minutes) 0.002 (0.454)
» Lack of Master File† 5.030 (0.469)
» Help from Veri�cator† 15.149∗ (0.015)

Documentation Quality:
» PC-1 5.770∗ (0.025)
» Readme File† 8.419 (0.786)
» Size of Readme File (in kb) 0.723 (0.597)
» Software Requirements† −12.640 (0.292)
» Runtime† −3.431 (0.739)
» Computer Speci�cation† 15.799 (0.133)
» Instructions to Veri�cators† 36.737 (0.088)
» Mapping Output/Results† 18.399∗ (0.027)

Constant 68.535∗ (0.000) 23.068 (0.619)

Wald Tests:
» Overall model 4.557∗ (0.002) 2.881∗ (0.001)
» Code complexity (k = 6) 2.349∗ (0.034)
» Documentation quality (k = 7) 2.697∗ (0.012)
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E. Robustness Tests: Individual Level

Below, we present auxiliary analyses for the results of the pre-determined cross-sectional deter-
minants of reproducibility with a focus on whether full reproducibility rates are sensitive to the
variation in team composition. In particular, we present two sets of additional analyses: (i) Ta-
ble E1 reports regression estimates of models (1) and (2) on a dataset expanded to the individual-
level (300 individuals × 6 hypotheses = 1,800 observations), with standard errors clustered on
the research team level (see Table 5 in the main text for the team-level estimates); (ii) Table E2
tabulates the estimates for the same regression models on the sample of single-authored papers
(36 authors × 6 hypothesis = 216 observations). Note that we do not estimate models (3) and
(4) on the expanded dataset since all variables entering these models are measured on the team
level. Notably, the results turn out to be qualitatively robust for all but one independent variable:
seniority. In both analyses, the indicator for holding an associate or full professorship turns out
to be signi�cantly negative, with a marginal e�ect of −16.1 and −34.0 percentage points in (i)
and (ii), respectively.

In addition, we examine (on the team-level) whether the team composition (i.e., “junior-junior,”
“junior-senior,“ or “senior-senior”) systematically correlates with reproducibility. We re-estimate
models (1) and (2) but replace the indicator for “team-of-two” by three dummies for the team com-
position (with single-authored papers constituting the base category). The results are reported
in Table E3. Notably, none of the three dichotomous team composition variables turns out to be
statistically signi�cant, and the three pairwise comparisons (Wald tests; not reported) between
the coe�cient estimates are insigni�cant.
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Table E1: Logit regressions of the reproducibility indicator on pre-determined covari-
ates on the individual level. Estimates are reported in terms of marginal e�ects. PC-1 in-
dicates the �rst principal component from a principal component analysis of the covariates
associated with academic quality and coding skills, respectively. Variables marked with † are
dichotomous; see Table B1 in Appendix B for details. The bottom panel reportsχ2(df)-statistics,
with df being de�ned as the number of coe�cients (k), for Wald tests for joint statistical sig-
ni�cance of groups of covariates. n = 1, 800, clustered for 168 research teams, in both models.
McFadden’s Pseudo R2 is 0.047 and 0.066 for models (1I) and (2I), respectively. p-values are
reported in parentheses; ∗ p < 0.05.

Model (1i) Model (2i)

Academic Quality:
» PC-1 −0.015 (0.308)
» Seniority† −0.161∗ (0.023)
» Top Publication† 0.073 (0.343)
» Citations (in logs) 0.003 (0.807)
» Expertise (0–10) 0.014 (0.387)

Coding Skills:
» PC-1 0.075∗ (0.015)
» Parallel Comp.† 0.094 (0.383)
» Loops/Matrix Operations† 0.303∗ (0.001)
» Large Data† −0.030 (0.594)
» Coding Skills† −0.011 (0.880)

Coauthor:
» Team of Two† 0.049 (0.530) 0.021 (0.789)

Gender:
» Female† −0.059 (0.304) −0.037 (0.525)

Location:
» North America† 0.013 (0.872) 0.012 (0.882)
» Asia-Paci�c† −0.135 (0.195) −0.143 (0.154)
» Other Continent† 0.116 (0.297) 0.159 (0.146)

Software:
» Matlab† −0.106 (0.355) −0.106 (0.324)
» Python† 0.012 (0.904) 0.006 (0.951)
» R† −0.065 (0.466) −0.068 (0.435)
» SAS† 0.085 (0.357) 0.116 (0.204)
» Stata† −0.117 (0.135) −0.116 (0.137)

Research Questions:
» RQ2† −0.007 (0.852) −0.007 (0.852)
» RQ3† 0.100∗ (0.003) 0.100∗ (0.003)
» RQ4† 0.017 (0.650) 0.017 (0.650)
» RQ5† 0.097∗ (0.011) 0.097∗ (0.011)
» RQ6† 0.020 (0.578) 0.020 (0.578)

Wald Tests:
» Overall model 35.795∗ (0.005) 54.020∗ (0.000)
» Academic quality (k = 4) 6.329 (0.176)
» Coding skills (k = 4) 13.786∗ (0.008)
» Location (k = 3) 3.328 (0.344) 4.791 (0.188)
» Software (k = 5) 6.055 (0.301) 7.004 (0.220)
» Research questions (k = 5) 14.409∗ (0.013) 14.411∗ (0.013)

14



Table E2: Logit regressions of the reproducibility indicator on pre-determined covari-
ates on the subsample of teams involving only one researcher. Estimates are reported in
terms of marginal e�ects. PC-1 indicates the �rst principal component from a principal compo-
nent analysis of the covariates associated with academic quality and coding skills, respectively.
Variables marked with † are dichotomous; see Table B1 in Appendix B for details. The bot-
tom panel reports χ2(df)-statistics, with df being de�ned as the number of coe�cients (k), for
Wald tests for joint statistical signi�cance of groups of covariates. n = 216, clustered for 36
researchers, in both models. McFadden’s Pseudo R2 is 0.140 and 0.231 for models (1S) and (2S),
respectively. p-values are reported in parentheses; ∗ p < 0.05.

Model (1s) Model (2s)

Academic Quality:
» PC-1 −0.057 (0.433)
» Seniority† −0.340∗ (0.046)
» Top Publication† 0.245 (0.324)
» Citations (in logs) −0.006 (0.915)
» Expertise (0-10) 0.014 (0.786)

Coding Skills:
» PC-1 0.133∗ (0.014)
» Parallel Comp.† 0.232 (0.238)
» Loops† 0.456∗ (0.006)
» Large Data† −0.064 (0.701)
» Coding Skills† −0.203 (0.329)

Gender:
» Female† 0.035 (0.852) 0.013 (0.947)

Location:
» North America† 0.077 (0.692) −0.025 (0.866)
» Asia-Paci�c† 0.067 (0.692) 0.036 (0.836)
» Other Continent† 0.022 (0.913) 0.114 (0.602)

Software:
» Matlab† 0.192 (0.485) −0.015 (0.958)
» Python† −0.081 (0.720) −0.209 (0.446)
» R† −0.170 (0.543) −0.277 (0.249)
» SAS† 0.148 (0.471) 0.132 (0.488)
» Stata† −0.115 (0.573) −0.289 (0.188)

Research Questions:
» RQ2† 0.000 (1.000) 0.000 (1.000)
» RQ3† 0.110 (0.243) 0.111 (0.241)
» RQ4† −0.028 (0.659) −0.027 (0.660)
» RQ5† 0.138∗ (0.047) 0.139∗ (0.048)
» RQ6† 0.000 (1.000) 0.000 (1.000)

Wald Tests:
» Overall model 39.247∗ (0.001) 205.661∗ (0.000)
» Academic quality (k = 4) 8.917 (0.063)
» Coding skills (k = 4) 23.733∗ (0.000)
» Location (k = 3) 0.237 (0.971) 0.526 (0.913)
» Software (k = 5) 6.513 (0.259) 12.776∗ (0.026)
» Research questions (k = 5) 7.862 (0.164) 7.325 (0.198)
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Table E3: Logit regressions of the reproducibility indicator on pre-determined covari-
ates, replacing the “team-of-two” indicator by indicators “junior/junior,” “junior/se-
nior,” and “senior/senior.” Estimates are reported in terms of marginal e�ects. PC-1 indicates
the �rst principal component from a principal component analysis of the covariates associated
with academic quality and coding skills, respectively. Variables marked with † are dichotomous;
see Table B1 in Appendix B for details. The bottom panel reports χ2(df)-statistics, with df be-
ing de�ned as the number of coe�cients (k), for Wald tests for joint statistical signi�cance of
groups of covariates. n = 216, clustered for 36 researchers, in both models. McFadden’s Pseudo
R2 is 0.140 and 0.231 for models (1S) and (2S), respectively. p-values are reported in parentheses;
∗ p < 0.05.

(1t) (2t)

Academic Quality:
» PC-1 0.000 (0.994)
» Seniority† −0.211 (0.152)
» Top Publication† 0.064 (0.482)
» Citations (in logs) −0.001 (0.959)
» Expertise (0–10) 0.008 (0.718)

Coding Skills:
» PC-1 0.095∗ (0.001)
» Parallel Comp.† 0.108 (0.311)
» Loops/Matrix Operations† 0.334∗ (0.000)
» Large Data† 0.000 (1.000)
» Coding Skills† −0.011 (0.876)

Team Composition:
» Junior-Junior† 0.085 (0.319) 0.018 (0.837)
» Junior-Senior† 0.016 (0.907) 0.113 (0.437)
» Senior-Senior† −0.100 (0.458) 0.040 (0.797)

Gender:
» Female† −0.058 (0.410) −0.051 (0.474)

Location:
» North America† −0.011 (0.894) −0.018 (0.822)
» Asia-Paci�c† −0.151 (0.127) −0.159 (0.106)
» Other Continent† 0.044 (0.721) 0.105 (0.403)

Software:
» Matlab† −0.060 (0.580) −0.062 (0.553)
» Python† −0.009 (0.921) −0.007 (0.944)
» R† −0.054 (0.541) −0.076 (0.375)
» SAS† 0.132 (0.127) 0.148 (0.090)
» Stata† −0.114 (0.137) −0.119 (0.114)

Research Questions:
» RQ2† −0.006 (0.862) −0.006 (0.862)
» RQ3† 0.101∗ (0.003) 0.101∗ (0.003)
» RQ4† 0.012 (0.732) 0.012 (0.732)
» RQ5† 0.101∗ (0.006) 0.101∗ (0.005)
» RQ6† 0.018 (0.613) 0.018 (0.613)

Wald χ2 33.938 38.599
p > χ2 0.019 0.040
Pseudo R2 0.064 0.080
No. of Clusters 168 168
No. of Observations 1008 1008
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F. Robustness Tests: Outlier Results

Below we present a supplementary analysis with respect to the relationship between full repro-
ducibility and outlier results in #�ncap (panel (a) in Figure F1) as well as a robustness perspective
on the estimated coe�cient of “outlier result” in Table 6 in the main text (panel (b) in Figure F1).
Panel (a) in Figure F1 displays the frequency of full reproducibility scores for each decile of the re-
sults provided by all teams for a given hypothesis in #�ncap. The inverted u-shaped relationship
indicates that results lying in the left and right tails of the distribution are, on average, associated
with lower reproducibility rates. Panel (b) in Figure F1 highlights that the estimated e�ect of
“outlier result” in our multivariate regression setting (Table 6) is robust to various thresholds to
de�ne the “outlier results” indicator variable.

Figure F1: Reproducibility of outlier results. (a) Reproducibility rates and 95% con�dence intervals
(CI) as a function of the deciles of the distribution of all teams’ e�ect size estimates and the two-way
quadratic prediction (and corresponding 95% CI). x-axis labels indicate the upper bound of the interval of
percentiles that are aggregated (e.g., x = 20 corresponds to the interval (10, 20]. n ∈ [93, 111] for each
bar. (b) Coe�cient estimates (in terms of marginal e�ects at means) for varying thresholds of the “outlier
result” indicator variable in regression models (3). x-axis labels correspond to %-thresholds on both tails
(e.g., x = 10 implies that the outlier dummy in the regression model takes value one for the 10% smallest
and the 10% largest e�ect size estimates per hypothesis, zero otherwise). n = 1, 008 in each regression
model.
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