
1

Climate Attention and the Cross-Section of EUR Corporate Bond Returns

Ricardo HENRIQUEZ1

KEDGE Business School

Philippe BERTRAND2
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This paper examines whether attention to climate change is reflected in the pricing of Euro-
denominated corporate bonds. To this end, we construct a climate media index using the volume
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climate beta anomaly,” where portfolios with low climate exposure are associated with higher
returns. These relationships remain robust after controlling for conventional risk factors, bond
characteristics, and different model specifications. The results indicate that climate regulatory
shocks are priced, however, physical shocks are not. Further, a return decomposition analysis
highlights that the discount rate climate beta is the dominant factor in the bond market.
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1. Introduction

Understanding the effects of climate on asset prices has become of particular interest to sus-
tainable investors. However, identifying, measuring, and disclosing climate-related information
remains a challenge.1 With regard to climate risks, there is a high degree of uncertainty as to
how these risks are reflected in asset prices. Some studies have used news articles as a way to
explore investors’ attention, sentiment or concerns about climate change, risk perception, and
environmental regulations (Engle et al., 2020; Ardia et al., 2020; Faccini et al., 2021; Campiglio
et al., 2022; Seltzer et al., 2020). Yet, little is known about the implications of climate change
on the corporate bond market, inasmuch as the body of literature on the cross-section of corpo-
rate bonds returns is still in its infancy (Bai et al., 2016, 2019; Bali et al., 2020), particularly in
the European market (Pham and Huynh, 2020; Pieterse-Bloem and Mahieu, 2013; Castagnetti
and Rossi, 2013).2 However, evidence in this paper supports the view that individual corpo-
rate bond returns are influenced by unanticipated changes in climate attention, and that climate
shocks have greater effects, particularly for longer duration and lower rated bonds. Contrary
to general assumptions, there is heterogeneity in the market regarding the climate resilience
of bonds within carbon-intensive industries (Battiston et al., 2021), and the environmental per-
formance within issuer-level (Berg et al., 2019; Gibson Brandon et al., 2021) and bond-level
characteristics.

To study the effects of climate media attention, we introduce the Climate Change Media
Attention Index (CCATT ) constructed using data from the Media and Climate Change Obser-
vatory, monitoring 126 sources (among newspapers, radio and TV) in 58 countries3. The data
is assembled by accessing archives through the Nexis Uni, Proquest and Factiva databases. We
consider the aggregated monthly volume of published newspapers articles (MeCCOt) and the
month-over-month changes (∆MeCCOt). Two potential concerns are that the aggregate index
(volume or changes) is not unexpected and has source aggregation. In order to help alleviate

1. The IFRS’s International Sustainability Standards Board (ISSB) and the Task Force on Climate-related Fi-
nancial Disclosures (TCFD) have joined forces in requiring companies to assess their climate resilience as a first
step in quantifying the impact of environmental factors on financial reporting. Yet, there are no data providers mea-
suring consistent exposures of climate change, at firm-level, let alone at the bond-level. MSCI’s Climate-Value-
at-Risk Scores, Trucost’s Physical Risk Scores, and Refinitiv’s Climate Opportunities have just a few firm-years
observations and scarce historical data.

2. Researchers have shown particular interest on the pricing differential between green and traditional bonds
(Zerbib, 2019; Flammer, 2021), on the growing demand and supply (Maltais and Nykvist, 2020), and the impacts
(Tolliver et al., 2020). Nevertheless, the implications of the overall corporate bond market often remain unexplored
from a sustainable standpoint.

3. The database is publicly available at: https://scholar.colorado.edu/concern/datasets/nz806067t

https://scholar.colorado.edu/concern/datasets/nz806067t
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both of these problems, we construct CCATT as a measure of unexpectedness and impact (in-
novations) derived from the residuals of an AR(1) process controlling for each media source
(Ardia et al., 2020; Engle et al., 2020).4 We find that exposure to climate attention carry a
statistically significant negative price of risk. Previous studies provide strong arguments as to
why the exposure to climate change should reflect poor performance (Engle et al., 2020; Duan
et al., 2020; Cornell and Damodaran, 2020), concluding that the higher demand for assets less
exposed to climate increases their price and lowers their average return. However, incthis study,
we show that there is a ‘low-climate beta anomaly’ since portfolios with lower climate betas
(e.g. returns’ sensitivity to climate news show higher positive returns. This can be implemented
as a strategy for investors in order to quantify and minimize the risk associated in climate atten-
tion without forcing investors to give up on their returns.

Media attention towards climate change can affect bond prices as it measures investors’
awareness and correlates with the materialization of physical and regulatory risks. When at-
tention increases, sustainable investors may increase their demand for particular bonds driving
up prices (Huynh and Xia, 2021). As well as, unexpected rises in media attention may lead
investors to update their preferences on particular industries, issuers, ratings, and maturities
(Pástor et al., 2022). Besides that attention is a necessary condition for generating investor sen-
timent (La Bruslerie, 2017; Ramos et al., 2020),5 if investors are genuinely concerned about
climate risks, higher attention may negatively affect bond returns, conversely, if investors are
reluctant about such climate risks, the impact is expected to be marginal.

It is important to disentangle the physical risks associated with climate change (e.g. extreme
weather events) from regulatory risks (e.g. changes in laws and policies to reduce carbon emis-
sions) associated with climate change to fully comprehend the potential impacts on the bond
market. We focus primarily on realized climate events, either physical or regulatory, because
they provide tangible information to investors about the consequences to climate change. Fur-
thermore, climate change can affect the pricing of bonds by influencing cash flows and discount
rates (Ardia et al., 2020). Our analysis shows that regulatory climate risks primarily affects
bonds via the discount rate channel.

4. In section B, we provide the construction methodology for CCATT . Alternative climate change news indices
are found in the literature. Although climate betas can also be estimated from these alternative indices, in this study,
we mainly focus on estimating climate beta relative to CCATT . The divergence between these indices constitutes
an overall measure of climate change uncertainty.

5. Ramos et al. (2020) separate in more detail issues of attention, limits in attention, and salience of information.
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Regarding climate news, Engle et al. (2020) and Bessec and Fouquau (2020) are two sem-
inal studies focused on climate sentiment; both studies apply textual analysis to articles from
the Wall Street Journal (WSJ). Our index differentiates from theirs in two ways. First, instead
of one media source, we use 45 European and 11 North American newspapers. This allows
for greater news coverage focused on the European landscape. Second, we focus exclusively
in news discussing climate change, based on the criteria provided by the Media and Climate
Change Observatory (MeCCO) database.6 Our index is also related to Ardia et al. (2020).
They create the Media Climate Change Concern index (MCCC) from 8 US media newspapers
and identify 40 climate-related topics that explain positively (negatively) the cross-section of
green (brown) stock returns. Pástor et al. (2022) make use of the MCCC index to estimate
investors’ memory of climate news over time. Other studies follow this line of research, for
example Faccini et al. (2021) construct four climate news indices using topics related to inter-
national climate summits, global warming, natural disasters, and US climate policies, and Apel
et al. (2021) focus solely on transition risks, using topics related to three drivers of transition
risks: environmental and emission standards, decrease of production costs for renewable energy
and shifts in consumer preferences. Our index is also closely associated with Brøgger and Kro-
nies (2020) as they estimate investor’s attention using the volume of Google searches on Climate

Change. We further compare our results with climate and political uncertainty measures from
Baker et al. (2016) and Gavriilidis (2021). These two uncertainty indices count the number of
newspaper articles having climate and uncertainty terms.7 Table 1 summarizes different climate
change indices that are considered in this study.

The studies of Huynh and Xia (2020) and Duan et al. (2020) are among the first to take an
interest in the effects of climate news on US corporate bond returns. Huynh and Xia (2020)
apply Engle et al. (2020)’s WSJ index, and integrate ESG scores from MSCI/Sustainalytics;
while Duan et al. (2020) use carbon emissions from S&P Trucost, and incidents from RepRisk.
According to the authors’ estimates of the climate change news beta, a higher level of exposure
to climate change translates into poorer future bond returns. These findings are related to how
the demand for bonds with climate change hedging properties has an impact on asset pricing.
When investors are concerned about climate risks, they are willing to pay higher prices for
bonds issued by companies with better environmental performance.

6. Barkemeyer et al. (2018) broaden the search criteria beyond climate to include social and environmental
issues, such as poverty, HIV/AIDS, malaria discrimination, labor rights, and cleaner technologies. Exploring these
topics constitutes an interesting avenue for further research.

7. Uncertainty indices are available online at: https://www.policyuncertainty.com

https://www.policyuncertainty.com
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Table 1: Climate Change News indices: Description.

Indices Authors Sources Frequency Period

Attention
Climate salience Brøgger and Kronies (2020) Google Trends. Monthly 2005/01 - 2017/12

Sentiment
WSJ Climate Change
News Index Engle et al. (2020) Wall Street Journal. Monthly 1984/01 - 2018/05

CH Negative Climate Engle et al. (2020)
Crimson Hexagon: WSJ, NY Times,
Washington Post, Reuters, BBC,
CNN, and Yahoo News.

Monthly 2006/06 - 2018/05

Media Climate Change
Concerns (MCCC) Ardia et al. (2020)

DowJones Factiva, ProQuest,
and LexisNexis. Daily 2003/01 - 2018/06

Overall index Faccini et al. (2021) Reuters. Monthly/Daily 2000/01 - 2019/11

Transition Risk Index
(TRI) Apel et al. (2021)

Dow Jones Newswires, Reuters,
NY Times, The Washington Post,
BBC, WSJ, MSN, and CNN.

Monthly/Weekly 2000/01 - 2020/12

Uncertainty

European Policy Economic
Uncertainty Index (EPU) Baker et al. (2016)

Le Monde, Le Figaro, Handelsblatt,
Frankfurter Allgemeine Zeitung, Corriere
Della Sera, La Stampa, El Mundo, El Pais,
The Times of London, Financial Times.

Monthly 1987/01 - 2022/02

Climate Policy
Uncertainty Index (CPU) Gavriilidis (2021)

Boston Globe, Chicago Tribune, LA
Times, Miami Herald, NY Times,
Tampa Bay Times, USA Today and WSJ.

Monthly 2000/01 - 2021/12

Unlike carbon risks,8 climate risks are harder to estimate because of their intricate nature
and broader scope. For example, the materialization of climate risks can be either physical or
regulatory. Physical risks include natural disasters, such as hurricanes, droughts, and extreme
weather; and regulatory risks include laws and requirements that can arguably affect the future
claims of a company (Sautner et al., 2021; Ilhan et al., 2021). Therefore, investors can also act
against the uncertain impact of climate risks by minimizing the (relative or absolute) exposure
to assets that do not perform well when physical and/or regulatory risks materialize and by re-
quiring a risk premium from holding those assets. Our objective remains to identify climate risk
exposures after the materialization of such events and explain the mispricing between carbon
risks and climate risks. We explain this mispricing by testing if bonds with different sensitivities
have different average returns and carbon intensities.

Over the sample period, the average monthly excess return on corporate bonds is 2.7%, with
a standard deviation of 1.46. The representative corporate bond has a climate change news beta

8. Investors can manage carbon risks by using a fundamental or market-based approach (Görgen et al., 2020;
Roncalli et al., 2021; Huij et al., 2021). The fundamental approach accounts for current emissions and sets targets
to minimize risks. The market-based approach uses carbon data to assess impact at the asset-level, which can be
aggregated at the portfolio-level. However, a portfolio that excludes carbon-intensive industries may be vulnera-
ble to brown companies outperforming green companies without adjusting for industry exposure (Roncalli et al.,
2021).
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of -0.071 and a standard deviation of 1.14. The coefficients are also economically significant.
For example, in column (4) of Table 12, the coefficient estimates on βCC of -0.048 indicates
that a 1-standard-deviation increase in the climate change news beta is associated with a drop
of 5.47 bps (=-0.048 x 1.14) in the next month’s bond excess return, which is equivalent to a
decrease of 24.2% relative to the sample mean of excess returns. However, these estimates vary
depending on the model specifications and especially after the Paris Agreement, also during
periods of climate heightened attention, where these estimates increase. We can also interpret
this estimate in terms of the dollar cost of debt financing by assuming the issuance of a new
bond with the same characteristics as the average bond in our sample, but with a higher βCC .
Given that an average bond trades at e 105.48 for a notional amount of 778 (million, e), a
decrease in excess bond returns by 5.47 bps means that the new bond is expected to be issued
at a higher price with estimated saving of e 4.26 million in the cost of debt financing for a
representative firm in the sample.

The paper is structured as follows. The introduction provides an overview of current climate
change indices, and presents the motivations to construct a broader climate change attention
index for the European corporate bond market. Section 2 and 3 present the data and the method-
ology. In section 4, we examine the empirical results relying on univariate sorts, bivariate sorts,
and regression estimates. Section 5 concludes.

2. Data

Our study requires data from several sources. We start by describing bond-level and firm-level
data. Then, we discuss the climate and media coverage data, and the construction of the Climate
Media Attention Index (CCATT ). Summary statistics are reported in Table 2, and definitions of
the variables can be found in Table 5.

A. Corporate Bond Data

Bond-level data. We use data from the Markit IBOXX EURO Corporate Index from Jan-
uary 2004 to July 2022, which includes historically 4,548 bonds. The index selects investment
grade bonds with a credit rating BBB or better, time to maturity of at least 1 year, and mini-
mum amount outstanding ofe500 millions.9 After filtering out putable/sinking/callable/floating

9. Please refer to Markit (2021) for detailed rules and index calculations of EUR Corporate indices https://
ihsmarkit.com/products/indices.html.

https://www.markit.com/Company/Files/DownloadFiles?CMSID=910be37be7154e13bbb18aa81e801e90
https://ihsmarkit.com/products/indices.html
https://ihsmarkit.com/products/indices.html
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bonds and financials, we are left with 3,881 bonds, representing 179,271 month-bond observa-
tions. We use quoted month-end prices from Markit estimates from bid-ask quotes, as a rea-
sonable approximation to transaction prices (Biais et al., 2006). Additionally, Markit provides
information about the bond issue, including the underwriter, bond yield, offering price, offering
date, maturity, and other bond characteristics. Markit credit ratings are the linearized average
of the three rating agencies, from Fitch Ratings, S&P Global Ratings, and Moody’s Investor
Service. Markit maintains historical data prior to the inception of the index, which allows us to
calibrate rolling windows estimations that require at least 36 months of data. Continuous vari-
ables are winsorized cross-sectionally at the 1st and 99th percentiles to control for outliers.10 As
shown in Table 2, bonds in our sample have an monthly return of 0.226% (or 2.7% annualized),
average coupon of 2.83, average size of e 788 million, and an average modified duration of
5.21. Appendix C provides additional statistics over industries, credit ratings and duration.

Insert Table 2 about here.

Firm-level data. We merge environmental, social, and governance (ESG) scores from differ-
ent providers using the issuer’s international securities identification number (ISIN). The ESG
scores are provided at different frequencies: ASSET4 and MSCI ESG Ratings are provided on
a monthly basis, while Trucost ESG scores and emissions data are provided on a yearly basis.
We merge these scores in the same way, either at a monthly or a yearly basis, depending on the
data frequency. To calculate the carbon emission intensity (CEI), we use the method suggested
by Duan et al. (2020) and divide the total emissions from Scope 1 and 2 (in metric tons) by
the company’s total revenue (in e million). This gives us the CEI in metric tons per e million
revenue. To account for differences in carbon-intensities at the industry-level, we standardize
using the 12 Fama-French industry sectors.

(1) CEI =
Scope 1 (tCO2e) + Scope 2 (tCO2e)

revenue (e mil)

With no surprises, public issuers have larger coverage of ESG and carbon emissions data than
private issuers. We identify those bonds that are issued by a private entity but we do not exclude
them in the full sample analysis.11 Additionally, we include firm fundamentals from S&P, such

10. To ensure the accuracy of our results, we also recalculate our findings while including potential outliers in
our data. Although some slight variations may be observed, these do not alter the overall significance or direction
of our results.

11. Identifying the parent issuer is not trivial because the relationship is not always straightforward. In the
simplest case where the issuer is a public company, we retrieve the issuer’s ISIN and use it to retrieve company
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as the price-book value, debt-equity ratio, and total equity. Table 3 provides the cross-sectional
correlations between these variables.

B. Climate Data

Climate disasters. First, to obtain natural disasters, we use the dataset provided by the Center
for Research on the Epidemiology of Disasters (CRED).12 This dataset contains over 15,000
extreme weather events such as, droughts, floods, extreme temperatures, avalanches, landslides,
storms, fires, and hurricanes throughout our sample period. The dataset includes disaster cate-
gories by location, date and, the total number of people affected by the event, and the estimated
economic cost of the event. Following S. Baker et al. (2020), we filter the sample and select
those shocks that cause either 100 deaths or damages more than 0.1% of the GDP at the country-
level. We aggregate by month the number of disasters that occur in the European Union.

Climate regulations. Second, we are able to get two sources that collect information about
climate regulations. The first is provided by the Grantham Research Institute,13 and the second
is provided by the United Nations Principles for Responsible Investment (UNPRI).14 UNPRI
collects data from regulation databases worldwide. It provides the year of implementation,
whether the measure is voluntary or mandatory, and the concerned parties. To have a timely
assessment, we checked the provided sources to look for the month when the regulation was
signed. For both databases, we select European regulations.

Media Coverage. The newspaper coverage dataset is published by Media and Climate
Change Observatory (MeCCO).15 Data is assembled by accessing archives through the Lexis
Nexis, Proquest and Factiva databases. They monitor 126 sources (across newspapers, radio
and TV medias) from 58 countries across 7 different regions. MeCCO selects articles related

financials and ESG scores. If the bond issuer is not a public company, we check if the ultimate parent is public.
There are cases where the ultimate parent is not public. The ultimate parent may be a private company with a
controlling interest in a public company. In this case, we get the ISIN from an immediate parent and traverse
the ownership chain until we hit a public company. And then, there is a case where a public borrower may not
have a parent/child relationship with private debt issuers, which is typical for debt issued through special purpose
vehicles. In this case, we check if the borrower is a public company.

12. See http://www.emdat.be/database. CRED database provides a list of large-scale disasters with the aim of
helping researchers, policymakers, and aid workers better respond to future events.

13. See https://climate-laws.org/methodology-legislation for the Grantham Research Institute database.

14. See https://www.unpri.org/policy/regulation-database for the UNPRI database.

15. The database is publicly available at: https://scholar.colorado.edu/concern/datasets/nz806067t

http://www.emdat.be/database.
https://climate-laws.org/methodology-legislation
https://www.unpri.org/policy/regulation-database
https://scholar.colorado.edu/concern/datasets/nz806067t
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Figure 1: Aggregate media coverage of climate change or global warming articles in Europe, from Jan-
uary 2004 through June 2021.

to Climate Change OR Global Warming.16 We focus mainly on European and North American
regions. From 2004 to July 2022, we select the 45 European media sources to create the main
index. Additionally, the combined index is complemented with 11 North American newspapers
(Hawley et al., 2021). Figure 1 plots the coverage of the European and combined indices. Dur-
ing the sample period, the vertical red dotted line shows global meetings such as the Conference
of the Parties (COP). Table 6 gives the list of the newspapers.

Climate Change Media Attention Index. The construction of the Climate Change media
Attention index (CCATT ) takes inspiration from previous methodologies, Gavriilidis (2021),
Brøgger and Kronies (2020), Baker et al. (2016), Ardia et al. (2020), and Engle et al. (2020).
Formally, the index is computed as follows.

Newspaper s publishes ns,t articles discussing topics about climate change & global warming

in month t = 1, . . . , T . We define MeCCOt as the aggregate sum of n across all the newspapers

16. Contributors check and eliminate duplicates manually. For German speaking sources, Klimawandel OR
Globale Erwärmung is used. For Spanish speaking sources, Calentamiento Global OR Cambio Climático is used.
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in the sample S in month t (volume)

(2) MeCCOt =
S∑

s=1

ns,t

and the month-over-month variation, ∆MeCCOt (changes).

Barkemeyer et al. (2018) show that time-series media coverage presents a deterministic trend,
low signal-to-noise ratio, and in some newspapers, seasonal patterns. Thus, to correct hetero-
geneity across sources, we standardize media coverage by newspaper source, following Baker
and Wurgler (2012), Ardia et al. (2020), and Da et al. (2011). First, in month t, we demean
MeCCOt,s by its 36-month (rolling-window) average and divide by its 36-month (rolling-
window) standard deviation. Then, to construct CCt, we aggregate the resulting source-specific
data scaling by scaling the number of sources available, St,

(3) CCt = h(
1

St

S∑
s=1

ns,t − ns,t

σs,t

)

where ns,t and σs,t are the mean and standard deviation computed from t−36 to t, and h(·) is an
increasing concave function that simulates saturation and boredom effects caused by a decline
in media attention (Barkemeyer et al., 2018; Ardia et al., 2020).17

This construction ensures the index in month t the data available is up to month t (and has
no forward-looking bias) contrary to selecting the standard deviation and average of the source
sample. Doing this gives more importance to within newspaper variation rather than variation
between newspapers. Note that the length of the rolling-window makes the interpretation of the
CCt relative to its window values. This normalization accounts for a possible evolution in the
media’s news coverage. As previously discussed, we consider AR(1) innovations to extract the
unexpected variation in newspapers.18 Unexpected change in climate change media attention is
defined as

(4) CCATT ≡ CCt − E[CCt|It−1],

17. We replace h(·) for the square root function. The logarithmic transformation and 24 rolling window are
tested for robustness, yielding similar results.

18. Ardia et al. (2020) argue that the relationship between climate concerns and returns for green and brown
firms becomes clearer when there is a distinction between “expected” and ”unexpected” news. This, and most
climate change indices in Table 1 estimate a first-order auto-regressive model and interpret the prediction error as
the unexpected changes in climate change attention, sentiment, or concerns.
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where It−1 is the information set available at time t− 1.

Validation of the index. Figure 1 displays the evolution of the aggregated MECCOt index
(level, from Jan. 2004 to June 2021) with European newspapers and combined with American
newspapers. The index spikes at major climate events. When looking over 18-year time hori-
zon, four peaks are particularly large: the 2007 IPCC report, the 2009 Copenhagen UN Climate
Change Conference, the 2015 Paris Agreement, and the 2019 EU Green taxonomy. Moreover,
the index tends to be higher post-Paris Agreement. In comparison, American newspapers do
not spike as much during the 2019 EU Green Taxonomy. This discrepancy could be attributed
to differences in coverage from the newspapers used to build an aggregated index, raising ques-
tions about American coverage of European climate issues. A change in the media landscape
justifies the need for a normalization approach.

3. Empirical Methodology

A. Bond Measures

We now outline the measures for the construction of the risk factors. Markit IBOXX EUR
indices are market-value-weighted. The amount outstanding of a bond is only adjusted within
the rebalancing process at the end-of-month. All calculations are based on the adjusted amount
outstanding that reflects the outstanding bond notional at the last rebalancing. The bond prices
relate to the nominal value of 100.

Returns. The calculation is based on market-value end-of-month prices. We use Bessem-
binder et al. (2008) methodology to calculate returns:

(5) ri,t =
Pi,t + AIi,t + Ci,t

Pi,t−1 + AIi,t−1

− 1

where Pi,t is the price of bond i at the end-of-month t, Ai,t is the accrued interest, and Ci,t is
the coupon payment, if any. The excess return is defined as the difference between the bond
return and the risk-free rate, rf,t, which is based on 1M Euribor.19 Monthly excess returns are
calculated as:

(6) Ri,t = ri,t − rf,t

19. Euribor rates are downloaded from Datastream.
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Credit Risk Measure. Credit ratings are utilized to create the risk factor components since
they synthesize information on the issuer’s financial condition, operating performance, risk-
management strategies, and specific bond characteristics like coupon rate, seniority, and option
features. As such, they are a standard choice for measuring the credit risk of corporate bonds.
Historical ratings are assigned at the bond level. Investment grade is defined as BBB- or higher
by Fitch Ratings and S&P Global Ratings and Baa3 or higher by Moody’s Investor Service.
Markit calculates Markit IBOXX ratings by taking the average of the three credit ratings.

Illiquidity Risk Measure. Illiquid bonds refer to bonds that cannot be sold or exchanged
without substantial loss of value (for instance, high transaction costs or low trading volumes
(below one millione/month), pushing prices away from the true midpoint. Studies focusing
on illiquidity tend to look from different dimensions: width, depth, immediacy, or resiliency.
(De Jong and Driessen, 2012; Amihud, 2002; Roll, 1984; Bao et al., 2011). We consider the
bid-ask spread as our indicator (ILLIQ), which is a typical measure of the width component of
liquidity (Zerbib, 2019).20

Downside Risk Measure. To minimize losses, investors are concerned with the protection
against events that can be a source of default risk. Downside risk represent the potential decline
in value if market conditions change, the Value-at-Risk at 5% (VaR, DOWNSIDE) has been
commonly used to quantify risk. As a proxy, we take the second lowest monthly return obser-
vation over the past 36 months. The measure is multiplied by –1 so that a higher downside risk
represents higher expected returns (Alessandrini et al., 2021; Bai et al., 2019; Huynh and Xia,
2020).

B. Risk Factors

This section describes the risk factor construction, designed to be representative in explaining
the cross-section of bond returns.

Bond Market Factor. We compute bond market excess return (MKTBond) as the value-
weighted average returns of all corporate bonds in our sample minus the one-month EURIBOR.

20. Usually, US studies that rely on TRACE use transaction data, and calculate illiquidity using the number and
volume of monthly transactions (Bao et al., 2011; De Jong and Driessen, 2012; Amihud, 2002). Since transaction
data is not available in Europe (Dick-Nielsen, 2009), we develop our analysis using quoted bid and ask prices.
However, as the AMF (2019) warns, this measure should be taken with caution.
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Fama and French (1993)’s Factors. The term factor (TERM) is the return spread between
monthly long-term IBOXX Eurozone Government bond return (IBBEU007C) and the one-
month EURIBOR. The default factor (DEF) is the return spread between the return on a market
portfolio of long-term corporate bonds (IBBEU003E) and the long-term IBOXX Government
bond return. 21

Bai et al. (2019)’s Factors. Credit ratings play a key role in creating the components of
the common corporate bond risk factors. Liquidity risk factor (LRF) is constructed by inde-
pendently sorting corporate bonds into 2× 3 portfolios based on illiquidity (ILLIQ) and credit
rating (AAA/AA=1, A=2, and BBB=3). Downside risk factor (DRF) is constructed by inde-
pendently sorting corporate bonds into 2 × 3 portfolios based on the 5% Value-at-Risk (VaR)
and credit rating. DRF is the average return spread between the highest VaR portfolio minus the
lowest VaR portfolio within each rating portfolio. Reversal (REV) is the average return spread
between the short-term loser and short-term winner over credit rating. Credit risk factor CRF is
the average obtained from forming DRF, LRF, and REV, where:

(7) CRF =
1

3
(CRFV aR + CRFILLIQ + CRFREV )

Risk Factors and the Climate Change Beta.

It may be worthwhile to compare different factor models to measure the information gain related
to the climate beta. Thus, when estimating the climate beta (βCC), we use four different factor
models. For each bond, we estimate the time series regressions of excess returns over a 36-
month moving window, with a minimum of 12-month observations.

(8) Ri,t = αi + βCC
i · CCt +

m∑
k=1

βk
i · Fk,t + ϵi

where αi is the intercept, βCC
i is the climate sensitivity of bond i which captures the covariance

between returns and the climate change index, F is the value of factor k, βk
i is the sensitivity to

factor k, and the ϵi is the error term.22 The four factor models are:

21. These risk premiums are, therefore, calculated based on excess returns. For alternatives calculations of risk
premiums using excess yields, see Aussenegg et al. (2015), Castagnetti and Rossi (2013), Chen et al. (1986), and
Cochrane and Piazzesi (2005).

22. We use heteroskedasticity and autocorrelation consistent (HAC) Newey and West (1987) standard errors with
a lag equal to 4(T/100)a, where T is the number of periods in the sample and a = 2

9 (i.e., the Bartlett kernel).
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(i) Market- model (CAPM): Following Bekaert and De Santis (2021), we estimate the mar-
ket model on the excess bond market return (MKT).

(ii) 2-bond-factor model (Macroeconomic): Following Fama and French (1993), we esti-
mate the returns with the default spread factor (DEF), and the term spread factor (TERM).

(iii) 5-bond-factor model (Corporate Bond): Following the model introduced in Bai et
al. (2019), we estimate a 5-factor model, including the excess bond market return (MKT), the
downside risk factor (DRF), the credit risk factor (CRF), the bond liquidity risk factor (LRF),
and the return reversal factor (REV).23

(iv) 7-bond-factor model. We combine models (i), (ii) and (iii) to account for broader
sources of risks emanating from the market, macroeconomic, and common corporate bond fac-
tors.

4. Empirical Results

In this section, we document the empirical analysis. Our implementation of climate media on
corporate bonds follows closely the papers of Huynh and Xia (2020), Engle et al. (2020), Seltzer
et al. (2020), and Duan et al. (2020). We first examine the relation between the climate betas,
βCC and bond returns through cross-sectional regressions. Specifically, each month, we sort
bonds into quintiles based on their betas, estimated in the first pass of the Fama and MacBeth
(1973) procedure (equation 8). We then examine the returns and other characteristics of these
portfolios. We double sort on climate change betas and other bond-level characteristics to better
understand the dynamics on climate sensitivity. To compare our results from Duan et al. (2020),
we include portfolio sorts based on CEI.

A. Univariate Portfolio Analysis

This analysis consists in examining the relationship between βCC and corporate bond returns
through univariate portfolio sorts. For each portfolio sort, we perform a general analysis on ex-
cess returns, alphas from the factor models, and average portfolio characteristics. The analysis
applies over the sample period from January 2004 to July. 2022. For each bond, with at least 12

23. As a direct application of Bai et al. (2019), Fama and French (1993), Castagnetti and Rossi (2013), and
Alessandrini et al. (2021), the bond risk factors are constructed in a similar fashion. Please refer to Appendix B
and 5 for more information on the construction methodology.
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monthly return observations, we calculate climate betas through time-series regressions of ex-
cess returns on a constant, bond factors and βCC as shown in equation 8. Then each month t, we
sort all bonds with available month t returns and the corresponding climate beta into portfolio
quintile. Quintile 1 contains bonds with the lowest βCC values, while quintile 5 contains bonds
with the highest βCC values. In addition to providing the next-month average excess return for
every quintile, we also include the risk-adjusted returns (alphas) produced from the four dif-
ferent factor models to understand if there is a monotonic relationship with returns, even after
controlling for other factors. We regress portfolio excess returns on the bond market factors
(i),(ii), (iii), and (iv). Alphas are named accordingly, the 1-factor alpha, 2-factor bond alpha,
4-factor bond alpha, and the 7-factor bond alpha.

Insert Table 7 about here.

Since we are interested in the pricing magnitude of climate attention, we start by forming portfo-
lios based on absolute values of βCC . Table 7 reports the results of quintiles formed on absolute
climate betas |βCC |. As the average |βCC | grows from 0.02 for the lowest quintile to 0.51 for
highest quintile 5, the average |βCC | is 0.19. We observe that next-month average bond excess
returns which grow from 0.07 to 0.14. The difference between high |βCC | and low |βCC | with
an average next-month excess return difference of 0.07. Although, statistically insignificant.

Factor bond alphas show the opposite pattern with decreasing alphas. The 1-factor alphas
decrease from an average of 0.04 for the lowest |βCC | quintile to -0.04 for the highest |βCC |
quintile, with a statistical significant difference of -0.04. The 7-factor alphas show similar
results with a difference of -0.07 in terms of returns difference. We further examine average
bond characteristics of |βCC |-sorted portfolios. We compute averages for illiquidity, downside,
rating, and duration for each |βCC | quintile and observe that some relations might also explain
next-month excess bond returns and some of these variables. Illiquidity goes from an average
of 0.47 to 0.68, and duration grows from an average of 5.7 years to 7.56 years. Downside also
shows increasing risks from 0.16 o 0.22. Credit rating increases, with average credit ratings
going from 2.4 for the lowest |βCC | quintile to 2.53 for highest |βCC | quintile.

Insert Table 8 about here.

In Table 8, we redo this exercise sorting on CEI. This table is comparable to Duan et al. (2020)’s
results based on the US corporate bond returns. Since carbon emissions intrinsically vary across
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industries, we form portfolios within each of the 12 Fama-French industries to control for the
industry effect and to calculate the average alphas across industries. As the average CEIgrows
from 33.1 for the lowest quintile to 693.3 for highest quintile 5, the average CEI is 360.66.
However, contrary the US market, sorting on carbon emissions intensity does not show no
statistical nor economical difference between next-month’s average excess returns and alphas.

B. Bivariate Portfolio Analysis

Insert Table 9 about here.

This section continues the analysis by examining the relationship between βCC and corporate
bond returns through bivariate portfolio sorts. We sort bonds monthly according to |βCC | and
CEI. Table 9 presents the value-weighted bivariate portfolio results between |βCC | and CEI.
Quintile 1 contains bonds with the lowest |βCC |, and quintile 5 consists of bonds with the
highest |βCC | in columns. CEI quintiles are in rows. For each quintile, one month ahead
average excess returns and average 7-factor bond alpha are computed. The last row displays the
difference across CEI for a given |βCC | quintile. The last column displays the difference across
|βCC | for a given CEI quintile. The results are intriguing. The difference for High-Low |βCC | is
positve for average returns but negative for 7-factor alphas. Meaning that after adjusting returns
for factors exposures has negative returns. For the CEI quintiles, contrary to previous results,
there is no particular relationship between returns or alphas. Only low-|βCC | show consistent
positive alphas.

C. Characteristic-sorted Portfolios

We continue by examining the role played by climate change attention in driving the cross-
sectional differences in expected bond returns. Gebhardt et al. (2005) attempt to explain the
cross-section of corporate bond returns sorting various bond characteristics. We adjust for bond
characteristics to judge how significant is the relation between climate change beta and future
bond returns while controlling for duration and credit ratings. Each month, we sort all bonds
independently into 3 ratings portfolios (1 is high quality (AAA-AA), 3 is low quality (BBB))
and 3 duration portfolios (1 is low duration, 3 is high duration). Thus, 9 portfolios are created
at the intersection of rating and duration portfolios. Each of these rating-duration portfolios
are then divided into three portfolios based on either pre-ranking absolute climate betas. Doing
this portfolio sorting is intended to examine variation in climate betas independent of return
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variation from ratings and duration. Table 10 provides the intercepts of the 7-factor alphas from
the model (iv) by ex-ante |βCC |, and 11 reports the ex-posts climate betas.

Insert Table 10 about here.

In Table 10 each row provides the average alpha of low (1), medium (2), and high (3) cli-
mate beta portfolios, and the average difference on a zero-investment portfolio that is long high
climate beta portfolio and short low climate beta portfolio. There are nine zero-investment port-
folios, one for each rating-duration portfolio. Nine out of nine zero-investment portfolios earn
negative returns ranging from -0.32% a month to -0.04% a month. Overall, the evidence sug-
gests that there is a significant negative relationship between average corporate bond returns and
climate betas that is independent of characteristics. This sorting procedure generates sufficient
variation in ex-post climate betas suggesting pre-ranking betas are good proxies of post-ranking
betas. The goal of this exercise is to determine whether there is cross-sectional variation in
average bond returns related to climate betas unrelated to the variation in characteristics.

Insert Table 11 about here.

In Table 11 results show that high pre-ranking climate beta portfolios have high post-ranking
default betas. There is a monotonic increase in post-ranking betas the 9 portfolio groups as
we move from low to high pre-ranking climate beta portfolio. This suggests that pre-formation
climate betas are reasonably good predictors of post- formation climate betas. According to ex-
pectations, longer duration bonds and worse credit ratings show higher ex-post absolute climate
risk exposures.

Of more interest to us are the intercepts of these portfolios. If the characteristics model
involving ratings and duration is correct, i.e., average bond returns are determined by variation
in characteristics rather than betas (in this case |βCC |) then the expected bond returns should
be constant across the various pre-ranking climate beta portfolios. However, since the ex-post
climate betas increase from the low climate beta portfolio to the high climate beta portfolio,
the intercept on the low climate beta portfolio should be positive and the intercept on the high
climate beta portfolio should be negative. Consequently, the zero-investment portfolio that is
long high climate beta and short low climate beta should also have a negative intercept. There
is a monotonic decrease in all the intercepts as we move from low to high pre-ranking climate
beta portfolios. The zero-investment portfolio is negative and statistically significant in 7 of
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the 9 groups). We use the Gibbons et al. (1989) (GRS) statistic to test the null hypothesis that
the 7-model produces regression intercepts on the 9 characteristics-based portfolios that are all
equal to zero.24 The results in Table 10 show that the GRS-statistic is 45.6 with a p-value of
0.001 which suggests that the null of zero intercepts can be rejected for the 9 characteristics-
based bond portfolios. This, in turn, suggests that the 7-factor model is not fairly well specified
in explaining the returns of characteristics-based bond portfolios, as we have just shown that
variation in returns due to climate betas still exists within these portfolios.

D. Estimated risk premia

This section estimates risk premia using the two-stage procedure. The first stage uses time-
series regressions of excess firm-level bond returns on bond factors to estimate betas (estimates
from equation 8). The second stage uses cross-sectional regressions of excess returns on the
estimated betas to obtain the price of risk (the λs from equation 9). For each bond i in each
month t, panel regressions of one-month ahead excess returns (Ri,t+i) are regressed on the
monthly βCC . Xi,t represents a vector of bond-level control variables (i.e., credit ratings, ILLIQ,
DOWN, credit ratings, size, and time to maturity), and firm-level control variables (i.e., price-
book value, debt-equity ratio, and log(total equity)). β̂k can be either from model (i), (ii), (iii),
or (iv).

(9) Ri,t+1 = λ0,t + λCC
1,t β̂

CC
i,t +

m∑
k=1

λk,tβ̂
k
i,t + γ′

i,tXi,t + ϵi,t

Insert Table 12 about here.

Table 12 reports results panel regressions using individual bonds as asset tests between Jan-
uary 2004 to July 2022.25 The average slope coefficients (λs) are the estimated risks premiums.

24. The GRS-statistic is given by:

[(T −N −K)/N ][1 + µ′Ω−1µ]−1α′Σ−1α

where T is the number of time-series observations, N is the number of assets, portfolios, or intercepts included
in the test, K is the number of factor portfolios in the regression, α is the (N×1) column vector of regression
intercepts, Σ is the maximum likelihood estimator of the (N×N) variance-covariance matrix of the residuals from
the N time- series factor regressions, µ is the (K×1) column vector of average factor portfolio excess returns, and
Ω is the maximum likelihood estimator of the (K×K) variance-covariance matrix of the factor portfolio excess
returns. The statistic has a F(N,T-N-K) distribution under the null hypothesis that the intercepts are zero assuming
normality of all variables (Gibbons et al., 1989).

25. Portfolios have traditionally been used to test asset pricing models in order to mitigate inherent errors-in-
variable (EIV) bias. However, in some cases portfolios can omit relevant characteristics related to the performance
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The univariate regression in column (1) results reveal a negative and statistically significant re-
lationship between βCC and future bond returns (at the 5% level). This relationship remains
significant after adding bonds betas and characteristics in regressions (2), (3) and (4). Regres-
sion specification (2) tests the cross-sectional predictive power of βCC , while controlling for
other systematic risk measures, and shows a significantly negative relation, the coefficient is
-0.040 (t-stat. = -1.748). Regression specification (3) in Table 12 shows that after we control
for bond characteristics, namely downside (VaR 5%), illiquidity (bid-ask spread), credit rating,
and lag return, the average slope coefficient remains negative and significant, the coefficient is
-0.032 (t-stat. = -1.548). In other words, controlling for bond characteristics does not affect
the significance of climate exposure in the corporate bond market. When controlling for bond
characteristics and bond systematic betas in regression (4), the coefficient is -0.048 (t-stat. =
-2.129).

Important to note is that in this second stage, we use fixed-effect panel regressions to account
for a better estimation of standard errors. Using panel regressions controls for bond and issuer
characteristics, industry, and time fixed effects. These fixed effects account for unobserved firm
and issuer heterogeneity, macroeconomic trends, and time-invariant factors (Ferson, 2019). We
conduct alternative estimations using Fama and MacBeth (1973) regressions demeaning the
variables by firm and bond, both approaches yield similar results C.

E. Expected Returns

Table 13 reports the results using the regressions using different factor models. The month-
ahead corporate bond excess returns on λCC shows negative estimates across the three models.
All λCC coefficients show statistical significance at least at the 10% level, indicating a negative
relation between the climate change media beta and future bond returns. Columns 1 and 2 report
the results of regressions using model (i). Columns 3 and 4 report the results of regressions
using model (ii). Columns 5 and 6 present the results of the main model (iii). All the model
have bond- and firm-level control variables. In columns 1 and 3, and 5, we add firm, industry,
year, and month fixed effects. Columns 2, 4, and 6 include bond, industry, year, and month
fixed effects.

Insert Table 13 about here.

of individual assets (Amihud et al., 1992). We report in the appendix, a sensitivity analysis for the EIV problem
Shanken (1992) and Jegadeesh et al. (2019)
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The coefficients of λCC show economic significance. For example, in column 1 of Table 13,
the coefficient estimate on λCC of -0.047 indicates that a one-standard-deviation increase in the
climate change media beta is associated with a drop of 5.35 bps (= -0.047 × 1.14) in the next
month’s bond excess return, which is equivalent to a decrease of 26.61% relative to the sample
mean of excess returns.

As a comparison, the macroeconomic term risk factor (λTERM ) coefficient of -0.168 shows
four times stronger effect that λCC . Following on the significance of additional bond factors,
the bond market factor (λMKT ) is the strongest factor that captures common return variation in
corporate bonds, and shows a clear trade-off of higher risks with returns.26

F. Credit, Duration and Industry Adjusted-Returns

Given the conditional effect that both duration and credit ratings play in determining bond re-
turns. As well as that some industries are more susceptible to climate risks (regulatory and
physical), we re-estimate model (4) from Table 12 adjusting the returns for duration, credit and
industries. Bond returns are adjusted for credit ratings by subtracting the average returns by
credit rating: AAA/AA, A, or BBB (Cred-adj, Ri,t). Bond returns are adjusted for duration by
subtracting the average return of one of the 3 terciles portfolios formed on duration (Dur-adj,
Ri,t). Bonds are adjusted by duration/credit (Dur-Cred-adj, Ri,t) by subtracting the average re-
turn from the 3x3 independently sorted portfolios on duration and credit rating. Bond returns are
adjusted for industry by subtracting the average return of one of the 12 Fama-French Industries
to which the bond belongs (Ind-adj Ri,t).

The results hold after adjustments showing a negative effect of βCC on future bonds returns.
Returns adjusted for credit produce similar exposures with a negative coefficient of -0.044, and
-0.67 (t-statistic of -2.034 and -2.737). Adjusting returns for duration and credit show highly
statistical negative results of -0.058 and -0.063 (t-statistic of -5.893 and -5.805).

G. Environmental Profile

Now looking at the environmental performance at the issuer-level, we are unable to identify sig-
nificant differences in λCC for ESG scores. This can be explained by several factors. The most
salient one is that average ESG scores are not good proxies for bond-level climate exposures,

26. In the Online Appendix, we conduct a series of robustness checks in which we specify different models for
the conditional mean of CCATT , we use windows of different estimation periods to form the βCC portfolios.
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since they include other dimensions besides climate. We do not observe significant differences
between firms that are above or below median ESG scores for each industry. Additionally, there
is no pricing for top polluter (high-CEI) which go in hand with the previous results from the
univariate and bivariate sorts on CEI.

According to Bolton and Kacperczyk (2020), Pástor et al. (2022), and Ilhan et al. (2021),
most of the environmental performance of the firms can be attributed to industries. Investors
implement exclusionary screening based on direct emissions intensity in a few industries as a
result, the asymmetry should be apparent when comparing environmental performance across
industries rather than within industries.

H. Climate Change Shocks

Seltzer et al. (2020) discuss the implications of the December 2015 Paris Agreement on bond
returns, affecting negatively firms that are in top polluting industries or have poor environmen-
tal performance in general. To test for changes around the Paris Agreement, along with other
climate change shocks, we adapt the estimations using a paired sample, following Seltzer et
al. (2020) specifications. Whether the shocks are regulatory (Paris Agreement, Grantham Re-
search Institute, UNPRI, and COP) or natural (CRED), we codify the variables as dummies
representing the month when the shocks materialize.

(10) Ri,t+1 = β1(TopCCi × Shockt) + β2TopCCi +Xi + κt + εi,t

On July 2015, we match bonds with similar characteristics (time to maturity, credit rating and
industry) to identify and match for every treated bond, and a control bond with similar charac-
teristics.2728 Table 16 reports the effects of the Paris Agreement.

Insert Table 16 about here.

We augment the model to test the effects of climate change shocks before and after the Paris
Agreement on a triple-interaction specification. Table 17 reports the effects from the climate

27. Seltzer et al. (2020) use one-to-one Mahalanobis matching with replacement, adjusting for continuous co-
variates with a caliper 0.4. We obtain 424 pairs.

28. Other studies in the green bond literature usually use similar matching techniques to compare against coun-
terfactual bonds. For instance, Zerbib (2019), M. Baker et al. (2018), and Flammer (2021) match the nearest
neighbors within a given range of characteristics.
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change shocks.

Insert Table 17 about here.

In times of a regulatory shock after the Paris Agreements, bonds exposed to the CC index
(above the median) have even lower bond returns. For example, during UNPRI’s regulation
shocks, bonds with a above median climate beta have −0.036 + −0.368 lower returns. The
COP, and natural shocks, do not provide significant results.

I. Uncertainty Shocks

Huynh and Xia (2020) and Engle et al. (2020) suggest that the effect of the climate change
media beta on future bond returns changes over time and is more pronounced during times of
high climate change attention. In the same fashion, we test βCC towards uncertainty measures
in Table 18. We test the effects of high uncertainty in interaction with high climate attention.

Insert Table 18 about here.

HighCC is a dummy variable representing the month when the number of media is higher than
the historical median (2004-2022). In the first column, the Climate Policy uncertainty index
(CPU) by Gavriilidis (2021)29 is coded as dummy variable, which is either one in case of high
uncertainty and zero otherwise. The second column test against the European policy-related
economic uncertainty index (EPU) by Baker et al. (2016),30 coded in the same way. The third
column test against the volatility index on the Euro Stoxx 50 (V2TX)31, coded in the same
way. While uncertainty shocks have an aggregated impact on bond returns, the triple interac-
tion shows that only climate policy uncertainty, after the Paris Agreement, is priced negatively.
Interestingly, periods of high economic uncertainty and volatility have a positive premium on
more exposed bonds.

29. See: https://www.policyuncertainty.com/climate uncertainty.html

30. See: https//www.policyuncertainty.com/europe monthly.html

31. See: https://qontigo.com/index/v2tx/

https://www.policyuncertainty.com/climate_uncertainty.html
https//www.policyuncertainty.com/europe_monthly.html
https://qontigo.com/index/v2tx/
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J. Bond Return Decomposition: Cash-flows and Discount rate news

To refine the connection between bond returns and climate sensitivity, we use the return de-
composition framework of Campbell (1991) and Vuolteenaho (2002), more recently applied to
ESG news reactions in (Derrien et al., 2021). We decompose bond returns into cash-flows news
and expected-returns news in order to identify and compare the sources of climate sensitivity
that contribute to the risk premium in the bond market. This is because the climate risk could
manifest in financial assets through uncertainty in cash flows or discount rates. More precisely,
we apply the return decomposition to individual bond returns in accordance with the methodol-
ogy of Bali et al. (2021), which extracts the residual cash flow news as the difference between
unexpected returns and discount rate news. Specifically, we use return on assets (EBIT/Assets)
as a proxy for firm-level cash flows and Tobin’s Q as a proxy for firm’s overall growth oppor-
tunities. Expected-returns news indicate changes in expectations about the firm’s discount rate.
Cash-flow news indicates changes in expectations about future cash-flows. Following the pro-
cedure proposed in Callen and Segal (2010) and Bali et al. (2019), bond returns are decomposed
to extract these two elements. Specifically, we calculate unexpected returns and discount rate
news, and then back out residual cash flow news as the difference between unexpected returns
and discount rate news. The results show that discount rate climate beta is the main driver of
the premium in the bond market. Our results are consistent with Bali et al. (2019) and Ardia
et al. (2020), we find that the discount rate channels is predominantly significant, and cash-
flows channel is insignificant. These results confirm the main finding that the investor channel
anticipate increased constraints on bonds with higher climate exposures by adjusting discount
rates.

Insert Table 19 about here.

Table 19 reports univariate portfolios of corporate sorted by discount rate climate beta (βCC
DR)

and cash flows climate beta (βCC
CF ). These are calculated using (i), as follows:

(11) eDR,t = αi,t + βCC
CFCCATT

t + βMKT
t MKTt + εt

(12) eCF,t = αi,t + βCC
DRCCATT

t + βMKT
t MKTt + εt

Table 19 shows that the discount rate beta (βCC
DR) is has a significant premium in the bond market,

whereas the cash flow uncertainty beta (βCC
CF ) has weak predictive power for future bond returns.
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Specifically, the value-weighted average return and alpha spreads between high-βCC
DR and low-

βCC
DR quintiles are economically and statistically significant, ranging from -0.25% to -0.37% per

month.

K. Concurrent Climate Change indices

In this study, we do not argue about the optimal construction of a climate change index, but
simply assess the ability replicate investors’ attention to climate change using media coverage.
We verify our assumptions by comparing our findings with alternative climate change media
indices, that rely often, on more complex estimation techniques. To do so, we redo the exercise
proposed in Alekseev et al. (2021), and examine a wide range of measures, previously described
in table 1. Given that the period of observation differs from index to index, we estimate the
results in period subsamples, which depend on the availability of the indices. Figure 2 plots the
estimated βCC by industry.

Insert Table 2 about here.

5. Discussion & Conclusion

Carbon risks are different from climate risks. It is likely that some carbon emissions and in-
tensity are connected with climate risks, however, climate beta include information that is not
priced in by the market or that is not specifically related to carbon risk. The climate beta offers
a market-related measure of climate risk that builds on carbon emissions and the E pillar of
ESG, while being more influenced by investors’ expectations other than by their carbon emis-
sions. We also notice that the climate beta of the Energy sector depends on carbon intensity,
the lower CEI tercile has a considerably lower climate beta than the top two terciles. Climate
beta increases with an increase in CEI, which illustrates again the intricated relationship be-
tween environmental, carbon and climate risks. While employing the absolute value of |βCC |,
for which portfolios with low |βCC | minimize climate exposure, we have shown that being ex-
posed to climate change does might dampen returns Fabozzi et al. (2019), Zerbib (2020), Pástor
et al. (2020), and Cornell and Damodaran (2020).

Despite being statistically significant, the estimates of the price of climate change are small
in magnitude (0.048% per month, or approximately 0.57% per annum, Table 12). Given that
climate change is ’inherently unpredictable’ by definition, even if the materialization of such
risk becomes recurrent, a Peso problem offers a potential explanation for the low returns on high
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|βCC |. The cross-sectional estimates of the negative price of risk of |βCC | oppose a risk-based
story. Increased attention to climate change has a significant negative effect on the risk premia
(λCC), steeper after the Paris Agreement, and other climate regulations. When regressing on
climate change shocks (physical and regulatory), we find that the latter affects mainly bond
returns.

Our results have some implications for how environmental profiles relate to market partici-
pants’ assessments of their corporate bonds. The results suggest that credit rating analysts and
bond investors are concerned with issuers’ environmental scores due to the anticipation regu-
latory costs De Angelis et al. (2022). Thus, if bond investors expect issuers to be penalized
for poor environmental performance, they are more likely to price those costs. When assessing
climate risks for the fixed income, ESG scores include other dimensions besides climate risks,
diluting the estimations on two levels, at the issuer level (one ESG score for multiple bonds)
and sustainability level (e.g .divergence between the ESG providers, (Berg et al., 2019)). Be-
sides ESG, carbon intensity and absolute emissions are not enough in accounting climate risks.
While the inclusion of Scope 3 can enhance the estimation of carbon risks, alternative market
metrics regarding climate change are still needed. This study presented a potential option.

Natural disasters, according to Manela and Moreira (2017), do not account for variation in risk
premiums, and Hong (2019) find that increasing risks of droughts caused by global warming
are not efficiently discounted by prices. Krueger et al. (2020) find similar conjectures while
surveying institutional investors about these risks, in which physical risk tends to be left behind
(or in other words, not all bonds and issuers are affected by physical risks, which depend mainly
on location.) Furthermore, Gostlow (2021) finds that investors struggle to price a material risks.
Our findings are consistent with previous ones in that bond prices only reflect the effects of
regulatory shock, not the direct effects of climate change.

Since bondholders are located globally, we reemphasize the importance of a news index to
consider both US and European newspapers. According to the European Central Bank (ECB,
2017), investors located outside the euro area (rest of the world) were the second largest group
of owners, owning 29.6% of the total market. European insurance companies and pension funds
held 14.1% and non-Money Market Funds held 12.0%, still investors, while investing in Europe,
abide by European regulations.

We propose a simple index construction to proxy climate change attention (CCATT ). This cli-
mate change news attention index is able to capture unexpected changes in investors’ attention

https://ec.europa.eu/info/sites/default/files/171120-corporate-bonds-analytical-report_en.pdf
https://ec.europa.eu/info/sites/default/files/171120-corporate-bonds-analytical-report_en.pdf


5 DISCUSSION & CONCLUSION 26

about the climate. To test this index on their implications on future bonds returns, we propose
regressing individual bond returns on CCATT after controlling for Fama and French (1993) and
Bai et al. (2019) bond factors, firm-level and bond-level controls to get the exposures. We re-
gard the coefficients of βCC as our bond-level exposure to climate change news risk. Given the
fact that corporate bonds are a complex asset class, we execute different specifications based on
these bond characteristics. Overall, the results highlight the importance of differentiated anal-
yses to assess the pricing of climate aspects in corporate bonds. Models should differentiate
between bond characteristics that describe bonds’ duration, credit rating, and sector, besides
additional systematic bond risk factors. Due to the inherent nature of our measure, any climate
risk deemed relevant for publication in newspapers is reflected. We show in related analyses
that returns between low and high climate beta bonds differ significantly in the months when
climate shocks materialize, depending on the type of climate risk, physical or regulatory. How-
ever, we find that while regulatory climate risks are explained, natural climate shocks are not.
Our results indicate that during months of high climate uncertainty, bonds with high exposure
to climate change underperform.

Investors can use our framework to identify covariances between assets and climate change
attention, in order to hedge future climate risks. New climate regulations create winners and
losers from regulatory risks. Since βCC refers mainly to regulatory risks, less exposed bonds
might increase the probabilities of success in the case of stricter regulations. As it is straightfor-
ward, and easily replicated, academics can use our approach to replicate and construct investors’
climate change attention proxies. Last but not the least, regulators and policymakers have the
burden of care to identify firms that are highly exposed to climate risks and to reward those
that present opportunities for a sustainable economy. Results show that exposure to regulatory
climate risks, especially in high emission-intensive sectors, is reflected in climate change betas,
but not all industries are correctly identified. Regulators should review and improve climate
laws and policies to better target overlooked industries.
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A. Appendix
Table 2: Descriptive statistics.

Table 2 reports the number of bond-month observations, the cross-sectional mean, standard
deviation, and percentiles of the bond-level variables. The table summarizes monthly excess
returns, annual yield, and bond characteristics including credit rating (AAA-AA=1, A=2, and
BBB=3), coupon, years to maturity (log, years), notional (size, e million), illiquidity (bid ask
spread), and downside risk (5% VaR). Downside risk is the 5% VaR of corporate bond return,
defined as the second lowest monthly return observation over the past 36 months. Downside is
multiplied by –1 so that a higher number indicates higher downside risk. The sample period is
from January 2004 to July 2022. Table 5 provides the variable definitions.

Cross-sectional statistics over the sample period of January 2004 – June 2022

Percentiles

Variable N Mean SD 5th 25th 50th 75th 95th

Monthly Return 178271 0.226 1.460 -2.029 -0.254 .187 0.803 2.510
Annual Yield 178271 1.531 1.714 -0.081 0.320 0.979 2.195 4.964
ILLIQ (bid ask spread) 178271 0.513 0.398 0.151 0.281 0.422 0.618 1.178
DOWNSIDE (5%, VaR) 178271 0.011 0.010 0.001 0.005 0.009 0.014 0.028
Rating 178271 2.46 1 1 2 3 3 3
Coupon 178271 2.83 1.85 0.50 1.37 2.37 4.37 6.125
Notional Amount (million, e) 178271 788 340 500 500 750 1000 1500
Modified Duration 165890 5.214 3.080 1.412 2.908 4.670 6.812 10.832
Years to Maturity (log, years) 178271 1.566 0.652 0.380 1.136 1.626 2.020 2.567

Table 3: Average cross-sectional correlations.
This table reports the time-series average of the cross-sectional correlations.The sample period
is from January 2004 to July 2022. Table 5 provides the variable definitions.

Monthly Return Annual yield ILLIQ DOWNSIDE Rating Coupon Not.Amount Mod.Duration

Monthly Return 1
Annual yield -0.053 1
ILLIQ 0.062 0.555 1
DOWNSIDE 0.017 0.406 0.417 1
Rating -0.005 0.055 -0.024 0.058 1
Coupon 0.057 0.524 0.244 0.344 0.021 1
Notional Amount 0.012 0.070 -0.054 0.043 -0.149 0.157 1
Modified Duration -0.004 0.246 0.618 0.308 -0.116 -0.148 -0.024 1
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Table 4: Descriptive statistics: Extra-financial data.
Table 4 reports the summary statistics of extra-financial data, the cross-sectional mean, standard
deviation, and percentiles of the issuer-level variables. The table summarizes Carbon Intensity
(CEI) and absolute emissions from Trucost. ESG and Environmental Scores from S&P, MSCI
and ASSET 4. The sample period is from January 2004 to July 2022. Table 5 provides the
variable definitions.

Cross-sectional statistics over the sample period of January 2004 – June 2022: Extra-financial data

Percentiles

Variable N Mean SD 5th 25th 50th 75th 95th

CEI (Scope 1, tons C02/emill) 127821 306.2 810.1 0 3.7 14.6 248.2 1497.4
CEI (Scope 2, tons C02/emill) 127821 53.2 126.9 0 7.9 19.7 42.9 230.0
CEI (Scope 3, tons C02/emill) 127821 587.8 1428.6 0 66.8 215.9 442.9 2598.1
Carbon Emissions (Scope 1, tons C02) 154620 10200 28200 0 6 292 2459 65400
Carbon Emissions (Scope 2, tons C02) 154620 1366 2558 0 14 343 1539 6000
Carbon Emissions (Scope 3, tons C02) 154620 30900 106000 0 80 3365 14400 125000
ESG Score (S&P) 134732 56.9 25.8 0.0 37.0 66.0 79.0 88.0
Environmental Score (S&P) 136170 60.9 27.9 0.0 47.0 68.0 83.0 94.0
ESG Score (MSCI) 84675 66.2 19.3 36.0 54.7 64.0 78.0 100.0
Environmental Score (MSCI) 84675 64.8 22.7 22.6 53.0 68.0 82.0 100.0
ESG Score (ASSET4) 127485 72.8 14.7 42.6 65.4 75.6 83.7 90.8
Environmental Score (ASSET4) 127485 74.2 18.2 36.1 66.1 79.0 86.4 95.4
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Table 5: Variable Definitions

Bond-level variables Definition

Return (Ri,t,%) Monthly bond return from Markit in excess of the monthly risk-
free rate, measured as a percentage. A bond’s monthly return
is calculated as in equation (1). The risk-free rate is proxied by
the one-month Euribor.

Cred-adj Ri,t Bond return are adjusted by subtracting from each bond return
the average bond return by rating to which the bond belongs
(AAA/AA, A, BBB).

Dur-adj Ri,t Returns are adjusted by subtracting from each return the aver-
age return by duration tercile to which the bond belongs.

Dur-Cred-adj Ri,t Bond return adjusted, through a 3 × 3 sort for rating and dura-
tion, by subtracting from each return the average return of the
rating- duration portfolio to which the bond belongs.

Ind-adj Ri,t Bond return net of the current month mean returns of the indus-
try to which the stock belongs, using Fama-French 12 indus-
tries.

Price Month-end bond bid prices from Markit.

Annual yield The annualized yield as a percentage of the price.

Coupon The interest rate assigned to a bond when it is issued.

Time to maturity (log) The natural logarithm of a bond’s time to maturity, measured in
years

ILLIQ (bid ask spread) The difference between the bid and ask quoted prices.

DOWNSIDE (VaR, 5%) The average of the second lowest monthly return observation
over the past 36 months (beyond the 5% VaR threshold), multi-
plied by –1 and measured as a percentage.

Markit Credit Rating Markit credit ratings are the average from three credit rating
agencies (Fitch, Moody’s and S&P Global). Investment grade
is defined as BBB- or higher from Fitch and S&P Global and
Baa3 or higher from Moody’s. (AAA/AA=1, A=2, BBB=3).
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Firm-level variables Definition

Fundamentals

Price-Book Value Price-to-book value (P/B) is the ratio of the market value of a
company’s shares (share price) over its book value of equity.
The book value of equity, in turn, is the value of a company’s
assets expressed on the balance sheet..

Debt-Equity Ratio All debt, senior and subordinated, as a multiple of equity

Log Total Equity Logarithm of total equity which is the value left in the company
after subtracting total liabilities from total assets.

ROA Return on Assets is the net profit as a percent of total assets.

Tobin’s Q The ratio of the market value of assets (market cap of equity
plus book value of debt) divided by the book value of assets.

Extra-financials

ESG ESG is the standardized average of MSCI, ASSET4 and S&P
Overall ESG scores.

ESG (Industry-adj.) ESG scores are the average scores standardized using the Fama-
French 12 industries.

Log CEI The Carbon Emissions Intensity is the natural logarithm of
Greenhouse gas (GHG) emissions from Scope 1 and 2 scaled
by total revenues (in emillions)

Log CEI (Industry-adj.) CEI is standardized at the industry-level using the Fama-French
12 sector classification.

Is ESG A dummy variable indicating that the bond is labeled as green
bond, sustainability-linked, transition-linked, social bonds. In-
cludes self-labeled and might not be certified by Climate Bond
Initiative.
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Factors Definition

MKT The bond market factor (MKT) is constructed as the average monthly excess
bond market return.

TERM TERM Spread is the return spread between monthly long-term Euro-zone
Sovereign bond returns and the 1 month Euribor rate of the previous month.

DEF DEFAULT Spread is the return spread between a composite index of Markit IG
(ex-financials) index (with an average tenor of 8.5 years) and maturity-matched
composite Euro-zone Sovereign bond returns.

DRF Downside Risk Factor (DRF) is the average return spread between the highest-
VaR portfolio minus the lowest-VaR portfolio within each rating portfolio.

LRF Liquidity Risk Factor (LRF) is the average return spread between the highest-
illiquidity portfolio minus the lowest-illiquidity portfolio within each rating
portfolio.

REV Reversal (REV) is the average return spread between the short-term loser and
short-term winner portfolios within each rating portfolio.

CRF Credit Risk Factor (CRF) is the average return spread between DRF, LRF, and
REV.
CRF = 1

3
(CRFV aR + CRFILLIQ + CRFREV )
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Table 6: Newspapers from MeCCO database.
This table 6 reports the European Newspaper and North American coverage of news articles
about Climate Change and Global Warming. The dataset is provided by the Media and Climate
Change Observatory (MeCCO) database. The sample period is from January 2004 to August
2022.

Newspaper Country Total Yearly Avg. Monthly

Avg. Std. Min Max

Berlingske Tidende Denmark 5859 334.8 27.8 20.3 4 202
Jyllandsposten Denmark 6712 383.5 31.8 19.0 6 165
Politiken Denmark 8342 476.7 39.5 21.1 6 184
Daily Mail and Mail on Sunday England 8585 490.6 40.7 29.6 7 167
Guardian and Observer England 45244 2585.4 214.4 149.9 40 981
Sun and News of the World or Sunday Sun England 9349 534.2 44.3 35.2 1 205
Telegraph and Telegraph on Sunday England 17933 1024.7 85.0 40.8 14 224
The Daily Mirror and Sunday Mirror England 8483 484.7 40.2 34.6 4 252
Times and The Sunday Times England 36540 2088.0 173.2 112.4 20 580
Helsingin Sanomat Finland 9349 534.2 44.3 29.3 4 202
Ilta-Sanomat Finland 2374 135.7 11.3 11.4 0 72
Agence France Presse France 30936 1767.8 146.6 111.2 15 735
Le Figaro France 5251 300.1 24.9 17.2 3 101
Le Monde France 7977 455.8 37.8 19.5 2 123
Die Tageszeitung Germany 7326 418.6 34.7 24.5 2 156
Süddeutsche Zeitung Germany 16680 953.1 79.1 48.5 1 278
Irish Times Ireland 12016 686.6 56.9 34.5 12 207
Corriere della Sera Italy 3546 202.6 16.8 14.7 0 80
La Repubblica Italy 3349 191.4 15.9 15.7 0 110
Associated Press North America 24256 1386.1 115.0 75.2 12 406
Globe & Mail North America 15489 885.1 73.4 41.6 18 236
Los Angeles Times North America 10772 615.5 51.1 23.7 8 119
National Post North America 17025 972.9 80.7 139.9 0 880
New York Times North America 30538 1745.0 144.7 120.8 21 537
The Canadian Press North America 32496 1856.9 154.0 128.0 15 1202
Toronto Star North America 14766 843.8 70.0 41.7 14 301
USA Today North America 3182 181.8 15.1 7.9 0 45
United Press International North America 8182 467.5 38.8 19.3 9 144
Wall Street Journal North America 3568 203.9 16.9 11.7 1 93
Washington Post North America 13095 748.3 62.1 34.0 8 164
Aftenposten Norway 5503 314.5 26.1 15.5 5 86
Dagbladet Norway 2873 164.2 13.6 9.9 2 70
VG Norway 2838 162.2 13.5 9.1 1 64
Correio da Manhã Portugal 1886 107.8 8.9 13.5 0 79
Izvestiya Russia 688 39.3 3.3 3.2 0 21
Komsomolskaya Pravda Russia 514 29.4 2.4 2.4 0 16
Nezavisimaya Gazeta Russia 1328 75.9 6.3 4.3 0 25
Rossiskaya Gazeta Russia 1683 96.2 8.0 5.5 0 32
El Mundo Spain 13076 747.2 62.0 44.5 7 218
El Paı́s Spain 13589 776.5 64.4 45.8 7 281
Expansión Spain 4561 260.6 21.6 18.8 1 137
La Vanguardia Spain 8269 472.5 39.2 25.7 5 144
Aftonbladet Sweden 2331 133.2 11.0 10.4 0 60
Dagens Nyheter Sweden 4888 279.3 23.2 16.2 2 91
Expressen Sweden 2251 128.6 10.7 12.1 0 76

Total European Newspapers 312129 17835.9 1479.2 763.2 306 4690
Total North American Newspapers 173369 9906.8 821.2 473.2 182 2639

Total Combined Newspapers 485498 27742.7 2300.9 1202.9 509 7329
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Table 7: Univariate on |βCC |.
This table presents the portfolios formed using the absolute value of βCC . We form quintile
portfolios of corporate bonds based on |βCC | which is defined as the bond-level exposure from
time-series regressions of excess bond returns on the climate attention index (CCATT ) control-
ling for the market factor (i):

Ri,t = αi + βCC
i · CCATT

t + βMKT
i,t ·MKTt + ϵi,t

We form portfolios within each of the 12 Fama-French industries to control for the industry
effects. Quintile 1 (Low) is the portfolio with the lowest |βCC | and Quintile 5 (High) is the
portfolio with the highest |βCC |. For each quintile, the table reports the average βCC , the next-
month average excess return, the 1-factor alpha from the market factor (i), the 2-factor from
macroeconomic factors (ii), the 4-factor alpha from common bond factors (iii) , and the 7-factor
alpha (iv) from the combined factors. The last row shows the monthly average returns of the
differences between High and Low. The 7-factor model with bond market factors includes the
excess bond market return (MKT), the default risk factor (DEF), the term risk factor (TERM),
the downside risk factor (DRF), the liquidity risk factor (LRF), the credit risk factor (CRF), and
the reversal risk factor (REV). Average returns and alphas are defined in monthly percentage
terms. Newey and West (1987) adjusted t-statistics are reported in parentheses. Numbers in
bold denote statistical significance at the 5% level or below. The sample period is from January
2006 to July 2022.

Average 1- Factor 2- Factor 3- Factor 7- Factor Average Portfolio Characteristics

Return Alpha Alpha Alpha Alpha |βCC | Average
CEI

Bid-Ask
Spread

Downside
(VaR 5%) Rating Duration

Low-|βCC | 0.07 0.04 0.03 0.06 0.03 0.02 168.7 0.47 0.16 2.4 5.7
1 (0.91) (8.82) (1.43) (3.25) (5.05)
2 0.07 0.03 0.02 0.05 0.02 0.06 154.6 0.49 0.17 2.4 5.69

(1) (8.1) (1.12) (2.88) (5.33)
3 0.07 0.03 0.02 0.05 0.02 0.12 154.4 0.53 0.18 2.4 6.05

(0.85) (6.49) (1.01) (2.62) (2.24)
4 0.07 0.02 0.01 0.05 -0.00 0.21 163.8 0.6 0.20 2.42 6.74

(0.77) (3.83) (0.55) (2.51) (-0.04)
High-|βCC | 0.14 -0.01 -0.01 0.04 -0.04 0.51 162.7 0.68 0.22 2.53 7.56

(1.21) (-0.59) (-0.31) (1.45) (-1.54)

High-Low 0.07 -0.04 -0.04 -0.02 -0.07
(1.32) (-3.57) (-2.39) (-1.48) (-2.51)
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Table 8: Univariate on Carbon Emission Intensity (CEI). We form quintile portfolios of corporate
bonds based on the firm-level carbon emissions intensity (CEI). CEI is defined as the firm-level
greenhouse gas emission in CO2 equivalents (Scope 1 + 2) divided by the total revenue of the
firm in millions of euros. We form portfolios within each of the 12 Fama-French industries
to control for the industry effects. Quintile 1 (Low) is the portfolio with the lowest CEI and
Quintile 5 (High) is the portfolio with the highest CEI. The table reports the average CEI, the
next-month average excess return, the 2-factor alpha (ii), the 5-factor alpha (iii), and the 7-factor
alpha (iv) for each quintile. The last row shows the monthly average returns of the differences
between high and low. The 7-factor model includes includes the excess bond market return
(MKT), the default risk factor (DEF), the term risk factor (TERM), the downside risk factor
(DRF), the liquidity risk factor (LRF), the credit risk factor (CRF), and the reversal risk factor
(REV). Average returns and alphas are defined in monthly percentage terms. Newey and West
(1987) adjusted t-statistics are reported in parentheses. Numbers in bold denote statistical sig-
nificance at the 5% level or below. The sample period is from January 2006 to July 2022.

Average 1 - Factor 2 - Factor 3 - Factor 7 - Factor Average Portfolio Characteristics

Return Alpha Alpha Alpha Alpha |βCC | Average
CEI

Bid-Ask
Spread

Downside
(VaR 5%) Rating Duration

Low-CEI 0.12 0.02 0.02 0.05 0.01 0.21 33.1 0.55 0.02 2.42 6.3
(1.64) (6.74) (0.72) (2.44) (0.25)

2 0.15 0.01 -0.01 0.05 -0.02 0.19 95.6 0.54 0.02 2.4 6.32
(1.9) (1.03) (-0.51) (2.4) (-1.33)

3 0.18 -0.00 -0.01 0.04 0.02 0.2 253.5 0.58 0.02 2.45 6.03
(2.06) (-0.04) (-0.25) (2.45) (1.85)

4 0.16 0.03 0.02 0.07 0.03 0.19 437.4 0.58 0.02 2.42 6.82
(1.96) (4.64) (0.85) (2.97) (3.45)

High-CEI 0.13 0.03 -0.01 0.06 0.03 0.20 693.3 0.63 0.02 2.45 6.38
(1.63) (3.69) (-0.18) (2.86) (2.33)

High-Low -0.01 0.01 -0.01 0.01 0.02
(-0.37) (0.58) (-1.37) (-0.73) (1.93)
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Table 9: Bivariate on climate beta and carbon emission intensity (|βCC | and CEI.)
We form double sort portfolios of corporate bonds based on the bond-level absolute value of
climate beta (|βCC |) and carbon emissions intensity (CEI) on a monthly basis. βCC is defined
as the bond-level exposure from time-series regressions of excess bond returns on using the the
climate attention index (CCATT ) controlling for the market factor (i):

Ri,t = αi + βCC
i · CCATT

t + βMKT
i,t ·MKTt+

Carbon Emissions Intensity (CEI) is defined as the firm-level greenhouse gas emissions (Scope
1 + 2, in tCO2) divided by the total revenue of the firm in millions of euros. We form port-
folios within each of the 12 Fama-French industries to control for industry effects. Quintile 1
(Low-|βCC |) is the portfolio with the lowest |βCC | and Quintile 5 (High-|βCC |) is the portfolio
with the highest |βCC |. Quintile 1 (Low-CEI) is the portfolio with the lowest carbon emission
intensity and Quintile 5 (High-CEI) is the portfolio with the highest carbon emission intensity.
Average returns and alphas are defined in monthly percentage terms. Newey and West (1987)
adjusted t-statistics are reported in parentheses. Numbers in bold denote statistical significance
at the 5% level or below. The sample period is from January 2006 to July 2022.

Low-|βCC | 2 3 4 High-|βCC | High-Low |βCC |
Panel A : Average Return

Low-CEI 0.11 0.11 0.1 0.11 0.19 0.08
(1.69) (1.72) (1.38) (1.42) (1.81) (4.02)

2 0.14 0.18 0.11 0.14 0.2 0.06
(1.78) (2.56) (1.49) (1.73) (1.84) (2.05)

3 0.12 0.16 0.17 0.16 0.3 0.18
(1.59) (1.92) (2.17) (1.61) (2.57) (5.55)

4 0.14 0.14 0.11 0.15 0.26 0.12
(1.84) (1.99) (1.24) (1.7) (2.33) (4.03)

High-CEI 0.09 0.13 0.11 0.12 0.20 0.11
(1.28) (1.82) (1.38) (1.31) (1.83) (3.21)

High-Low CEI -0.02 0.02 -0.01 -0.02 -0.01
(-1.96) (1.36) (-0.47) (-1.13) (-0.47)

Panel B : 7- Factor Alpha
Low-CEI 0.03 0.01 0.01 -0.01 -0.04 -0.07

(3.97) (1.67) (1.48) (-1.22) (-1.61) (-5)
2 0.04 0.02 -0.01 -0.01 -0.18 -0.22

(2.81) (1.16) (-0.84) (-0.45) (-2.14) (-5.42)
3 0.05 0.05 0.03 0.00 -0.04 -0.09

(3.78) (1.84) (1.01) (0.23) (-1.65) (-8.16)
4 0.04 0.05 0.04 0.04 -0.04 -0.08

(3.6) (4.96) (1.69) (2.04) (-1.55) (-6.71)
High-CEI 0.06 -0.02 0.04 0.01 -0.04 -0.10

(5.3) (-0.32) (3.09) (0.99) (-0.67) (-3.4)
High-Low CEI 0.03 -0.04 0.02 0.02 -0.02

(6.21) (-1.25) (3.68) (3.32) (-0.88)
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Table 10: Factors vs Characteristics. Monthly Excess Returns of Portfolios Sorted by Rating, Dura-
tion, and Climate Beta. Each month bonds are independently sorted into 3 ratings portfolios
(AAA/AA=1, A=2, and BBB=3) and 3 duration portfolios. 9 portfolios are created at the in-
tersection of the rating and duration portfolios. Within each of these portfolios, 3 portfolios are
created based on either pre-ranking climate beta (Panel A). The pre-ranking βCC are estimated
on a time-series regression of excess bond return on the the climate attention index (CCATT )
controlling for the market factor (i):

Ri,t = αi + βCC
i · CCATT

t + βMKT
i,t ·MKTt+

The time-series average monthly excess return (in percent) of each portfolio is reported along
with the difference in average return between the high beta and the low beta portfolio. The
t-statistic is a simple t-test of differences. There are 199 monthly observations.

Panel: 7-factor alphas

Characteristics Pre-ranking climate beta portfolio

Low-|βCC | 2 High-|βCC | H-L

Rating Duration

1 1 0.03 0.01 -0.02 -0.05
(2.69) (0.82) (0.71) (-1.98)

1 2 0.13 0.05 0.09 -0.04
(3.21) (5.17) (1.69) (0.71)

1 3 0.00 0.02 -0.1 -0.1
(0.09) (2.22) (-3.47) (4.49)

2 1 0.05 0.09 -0.03 -0.07
(2.69) (2.55) (-1.11) (3.74)

2 2 -0.01 0.04 -0.10 -0.09
(-0.22) (3.01) (-1.85) (2.36)

2 3 0.02 0.02 -0.03 -0.05
(2.18) (1.17) (-1.34) (3.11)

3 1 0.00 -0.02 -0.05 -0.05
(0.2) (-1.37) (-1.93) (2.58)

3 2 0.01 0.01 -0.04 -0.06
(0.46) (0.46) (-0.85) (1.43)

3 3 0.02 -0.03 -0.30 -0.32
(0.76) (-1.27) (-1.11) (2.17)

GRS Test F-stat: 45.6 p-value: 0.001
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Table 11: Factors vs Characteristics. Monthly Excess Returns of Portfolios Sorted by Rating, Dura-
tion, and Climate Beta. Each month bonds are independently sorted into 3 ratings portfolios
(AAA/AA=1, A=2, and BBB=3) and 3 duration portfolios. 9 portfolios are created at the in-
tersection of the rating and duration portfolios. Within each of these portfolios, 3 portfolios are
created based on either pre-ranking climate beta (Panel A). The pre-ranking βCC are estimated
on a time-series regression of excess bond return on the the climate attention index (CCATT )
controlling for the market factor (i):

Ri,t = αi + βCC
i · CCATT

t + βMKT
i,t ·MKTt+

The time-series average monthly excess return (in percent) of each portfolio is reported along
with the difference in average return between the high beta and the low beta portfolio. The
t-statistic is a simple t-test of differences. There are 199 monthly observations.

Panel: Ex-post climate beta

Characteristics Pre-ranking climate beta portfolio

Low-|βCC | 2 High-|βCC | H-L

Rating Duration

1 1 0.04 0.12 0.26 0.22

1 2 0.04 0.12 0.35 0.31

1 3 0.04 0.14 0.37 0.33

2 1 0.04 0.12 0.3 0.26

2 2 0.04 0.13 0.37 0.33

2 3 0.04 0.14 0.42 0.38

3 1 0.04 0.14 0.36 0.32

3 2 0.04 0.14 0.44 0.41

3 3 0.04 0.14 0.49 0.45
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Table 12: Panel Regressions: Expected Returns on Corporate Bonds.
Table 12 reports the results from the panel regressions of 1-month-ahead bond excess returns
(Ri,t+1) on βCC over the sample period from Jan. 2004 to July. 2022. The first stage uses
time-series regressions of excess bond returns on bond factors to estimate betas:

Ri,t = αi + βCCN
i · CCNt +

m∑
k=1

βk
i · Fk,t + ϵi

The second stage uses panel regressions of excess returns on the estimated betas to obtain
factor premia:

Ri,t+1 = λ0,t + λCCN
1,t β̂CCN

i,t +
m∑
k=1

λk,tβ̂
k
i,t + γ′i,tXi,t + ϵi,t

Column 1 reports the univariate regression with βCC estimated from the model (i). Column
2 reports the multivariate regression including βCC and controlling for the factor loadings
estimated from the model (iv). Column 3 reports the regression results with βCC controlling
for bond characteristics. Column 4 reports the regression results on βCC controlling for bond
betas and characteristics. T-statistics computed using clustered standard error at the bond-level
are presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%,
and 1% level, respectively. Table 5 provides the variable definitions.
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Dependent Variable: Future Excess Return (Ri,t+1)

Univariate Bond
Betas

Bond
Characteristics

All
Ctrls.

(1) (2) (3) (4)

λCC -0.041** -0.040* -0.032* -0.048**
(-2.316) (-1.745) (-1.748) (-2.129)

λMKT 0.185*** 0.227***
(10.505) (11.885)

λDEF -0.027* -0.028**
(-1.934) (-2.006)

λTERM -0.163*** -0.155***
(-5.412) (-5.203)

λDRF -0.001 0.002
(-0.211) (0.378)

λLRF 0.004 0.007
(0.498) (0.819)

λCRF 0.056*** 0.056***
(10.356) (9.896)

λREV -0.032*** -0.035***
(-3.116) (-3.472)

DOWN 1.095* 0.865
(1.944) (1.546)

ILLIQ 0.416*** 0.453***
(4.051) (5.545)

Rating 0.058*** 0.035**
(3.420) (2.152)

lag(Return) 0.003 -0.000
(0.784) (-0.046)

log(years to maturity) -0.067* -0.127***
(-1.815) (-4.060)

Size -1.035*** -1.073***
(-9.719) (-10.101)

Time FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
No. of obs. 174217 166791 170574 166763

Adj.R2 0.042 0.117 0.149 0.154
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Table 13: Panel Regressions: Bond Factors.
Table 13 reports the results from the fixed effects panel regressions of 1-month-ahead bond
excess returns (Ri,t+1) on βCC over the sample period from Jan. 2004 to July. 2022. The first
stage uses time-series regressions of excess bond returns on bond factors to estimate betas:

Ri,t = αi + βCC
i · CCt +

m∑
k=1

βk
i · Fk,t + ϵi

The second stage uses cross-sectional regressions of excess returns on the estimated betas to
obtain factor premia:

Ri,t+1 = λ0,t + λCC
1,t β̂

CC
i,t +

m∑
k=1

λk,tβ̂
k
i,t + γ′i,tXi,t + ϵi,t

Columns 1 and 2 report the regression results with βCC estimated from the model (i) using
the bond market factor (MKT ). Columns 3 and 4 report the regressions from model (ii)
using Fama and French (1993) risk factors. Columns 5 and 6 report the regression results
estimated from the model (iii) using Bai et al. (2019) risk factors. Columns 7 and 8 report
the regression results estimated from the combined model (iv). T-statistics (in parenthesis) are
computed using clustered standard errors at the bond and issuer level. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% level, respectively. Table 5 provides the variable
definitions.

Dependent Variable: Future Excess Return (Ri,t+1)

(1) (2) (3) (4) (5) (6) (7) (8)

λCC -0.047*** -0.066*** -0.041** -0.066*** -0.036 -0.072*** -0.040* -0.069***
(-2.701) (-3.436) (-2.281) (-3.378) (-1.544) (-3.093) (-1.745) (-3.012)

λMKT 0.109*** 0.075*** 0.185*** 0.122***
(8.159) (8.976) (10.505) (7.990)

λDEF 0.010 0.023*** -0.027* 0.009
(0.985) (2.684) (-1.934) (0.755)

λTERM -0.090*** 0.011 -0.163*** -0.120***
(-4.101) (0.613) (-5.412) (-4.746)

λDRF -0.010** -0.027*** -0.001 -0.007
(-2.073) (-6.847) (-0.211) (-1.451)

λLRF -0.013 -0.037*** 0.004 0.004
(-1.499) (-6.078) (0.498) (0.481)

λCRF 0.051*** 0.036*** 0.056*** 0.040***
(9.400) (6.719) (10.356) (7.581)

λREV -0.019* 0.012 -0.032*** -0.002
(-1.898) (1.145) (-3.116) (-0.215)

Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster Bond Yes No Yes No Yes No Yes No
Cluster Issuer No Yes No Yes No Yes No Yes
No. of Obs. 174217 174217 174217 174217 166791 166791 166791 166791

Adj. R2 0.141 0.140 0.140 0.139 0.137 0.136 0.138 0.137



A APPENDIX 47

Table 14: Regressions with Return Adjustments: Credit-adj, Industry-adj. and Duration-adj.
Table 14 reports the results from the fixed effect panel regressions of 1-month-ahead bond
adjusted-excess returns (Adj-Ri,t+1) on βCC over the sample period from Jan. 2004 to July.
2022. Adjusted-returns are calculated as the return differential between the bond and its match-
ing portfolio average return, using 3 credit portfolios (AAA/AA, A, and BBB), 12 industry
portfolio returns, 3 duration portfolio returns, and 3x3 credit, and duration portfolios returns.
Reported results are estimated from the model (iv) including CCATT using Fama and French
(1993) and Bai et al. (2019) risk factors, controlling for bond variables. Columns 1 and 2 report
the regression using credit-adjusted returns. Credit-adjusted returns are calculated by subtract-
ing from each bond return the average bond return mean returns by credit rating. Columns 3
and 4 report the regression using industry-adjusted returns. Industry-adjusted return are calcu-
lated by subtracting from each bond return the average bond return mean returns by industry
to which the issuer belongs, using the 12 Fama-French industries. Columns 5 and 6 report the
regression using duration-adjusted returns. Duration-adjusted return are calculated by subtract-
ing from each bond return the average bond return mean returns by duration tercile. Columns
7 and 8 report credit-duration-adjusted returns, through a 3 × 3 sort, for rating and duration, by
subtracting from each bond return the average bond return of the rating and duration portfolio
to which the bond belongs. t-statistics computed using clustered standard error at the bond and
issuer level are presented in parentheses. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively. Table 5 provides the variable definitions.

Cred-adj. Ri,t+1 Ind-adj. Ri,t+1 Dur-adj. Ri,t+1 Dur-Cred-adj. Ri,t+1

(1) (2) (3) (4) (5) (6) (7) (8)

λCC -0.044** -0.067*** -0.057*** -0.075*** 0.025 0.015 -0.058*** -0.063***
(-2.034) (-2.737) (-2.612) (-3.042) (1.303) (0.696) (-5.893) (-5.805)

λMKT 0.203*** 0.138*** 0.209*** 0.146*** 0.155*** 0.094*** -0.095*** -0.069***
(10.890) (7.896) (11.234) (8.294) (9.569) (6.020) (-10.130) (-8.810)

λDEF -0.024* 0.005 -0.024* 0.005 -0.019 -0.008 0.041*** 0.008
(-1.761) (0.431) (-1.796) (0.374) (-1.482) (-0.642) (4.868) (1.038)

λTERM -0.157*** -0.141*** -0.160*** -0.148*** -0.011 -0.019 0.096*** 0.074***
(-5.550) (-5.572) (-5.512) (-5.619) (-0.402) (-0.743) (5.699) (5.397)

λDRF 0.002 -0.008 -0.000 -0.010* 0.006 0.001 0.003 0.008***
(0.378) (-1.628) (-0.010) (-1.894) (1.445) (0.201) (1.246) (3.473)

λLRF 0.006 0.004 0.003 0.001 0.018** 0.016* 0.006 0.004
(0.723) (0.459) (0.361) (0.134) (2.269) (1.923) (1.356) (0.869)

λCRF 0.057*** 0.045*** 0.053*** 0.041*** 0.043*** 0.033*** -0.010*** -0.009***
(10.241) (7.391) (9.755) (6.997) (9.487) (6.697) (-3.546) (-3.195)

λREV -0.032*** 0.002 -0.032*** 0.003 -0.039*** -0.012 -0.002 -0.016***
(-3.214) (0.226) (-3.218) (0.289) (-4.433) (-1.173) (-0.376) (-3.231)

Bond Controls Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster Bond Yes No Yes No Yes No Yes No
Cluster Issuer No Yes No Yes No Yes No Yes
No. of Obs. 166763 161839 166763 161839 166763 161839 168732 163739

Adj-R2 0.124 0.142 0.218 0.239 0.110 0.211 0.175 0.182
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Table 15: Subsample Analysis: ESG, Environmental and Emissions Profile
Table 15 reports the results from the fixed effect panel regressions of 1-month-ahead bond
excess returns (Ri,t+1) on βCC over the sample period from Jan. 2006 to July. 2022. Columns
1 and 2present the results of the sub-sample analysis based on whether the company has an
average ESG score (S&P, MSCI, ASSET4) above the cross-sectional median. Columns 3
and 4 present the results of the sub-sample analysis according to whether the company has
an environmental score (S&P, MSCI, ASSET4) above the cross-sectional median. Columns
5 and 6 present the results of the sub-sample analysis according to whether the company’s
carbon emissions intensity (CEI, SP) is above the above the cross-sectional median. t-statistics
computed using clustered standard error at the issuer level are presented in parentheses. *, **,
and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Table 5
provides the variable definitions.

Dependent Variable: Future Excess Return (Ri,t+1)

Low
ESG

High
ESG

Low
ENV

High
ENV

Top
Polutter

Non-Top
Polluter

(1) (2) (3) (4) (5) (6)

λCC 0.006 -0.042 0.039 -0.056** 0.054 -0.100***
(0.141) (-1.290) (0.823) (-2.213) (1.297) (-3.385)

λMKT 0.141*** 0.084*** 0.106*** 0.116*** 0.161*** 0.069**
(4.186) (2.773) (3.071) (4.988) (4.560) (2.525)

λDEF -0.017 -0.031 -0.010 -0.038** -0.036 -0.014
(-0.703) (-1.403) (-0.345) (-2.170) (-1.299) (-0.635)

λTERM -0.108*** -0.041 -0.081* -0.073* -0.074* -0.093*
(-2.839) (-0.794) (-1.809) (-1.720) (-1.933) (-1.947)

λDRF -0.004 -0.013 -0.006 -0.011 0.004 -0.023***
(-0.538) (-1.226) (-0.708) (-1.150) (0.371) (-2.906)

λLRF -0.008 -0.006 -0.010 -0.010 0.011 -0.031**
(-0.658) (-0.339) (-0.621) (-0.580) (0.686) (-2.009)

λCRF 0.035*** 0.028** 0.021** 0.042*** 0.025** 0.036***
(3.983) (2.098) (2.365) (3.969) (2.260) (3.684)

λREV -0.022 0.020 -0.022 0.020 -0.025 0.036**
(-1.086) (1.209) (-1.104) (1.245) (-1.325) (2.414)

Bond Controls Yes Yes Yes Yes Yes Yes
Issuer Controls Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
No. of Obs. 49654 54765 46266 58153 54784 49635

Adj. R2 0.136 0.144 0.141 0.139 0.168 0.128
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Table 16: Effects of the Paris Agreement.
The table displays results from the following regression:

Rt+1,i = β1(TopCCi × Paris) + β2TopCCi +Xi,t + κt + εi,t

where Rt+1,i is the one-month ahead excess return. Paris is a dummy equal to one if the
observation occurs in December 2015 or later and TopCC is either a dummy equal to one if
bond i has an above-median climate beta (βCC) estimated on model (i). Odd columns compute
TopCC on the full sample. Even columns compute TopCC for each of the 12 Fama-French
Industries. Standard errors, clustered at the bond level, are shown in parentheses. ***, ** and
* indicate that the parameter estimate is significantly different from zero at the 1%, 5% and
10% level, respectively.

Dependent Variable: Future Excess Returns (Rt+1,i)

Full Sample At-Paris Matched Sample

(1) (2) (3) (4) (5) (6)

TopCC -0.004 -0.005 -0.064*** -0.060*** -0.146*** -0.115**
(-0.276) (-0.354) (-4.531) (-4.268) (-3.677) (-2.593)

TopCC × Paris -0.050*** -0.047*** -0.071*** -0.062*** -0.222*** -0.167***
(-3.032) (-2.834) (-4.148) (-3.607) (-4.082) (-3.113)

Industry FE No Yes No Yes No Yes
Time FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
No. of Obs. 175549 175549 71372 71372 7348 7447

Adj. R2 0.098 0.097 0.077 0.077 0.073 0.076
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Table 17: Climate Change Shocks
The table displays results from the following regression:

Rt+1,i = β1(TopCCi × Paris× Shockt) + β2TopCCi +Xi,t + κt + εi,t

where Rt+1,i is the one-month ahead excess return. Paris is a dummy equal to one if the
observation occurs in December 2015 or later. TopCC is either a dummy equal to one if bond
i has an above-median climate beta (βCC) for each of the 12 Fama-French Industries estimated
on model (i). Shock is either a dummy equal to one if there is a climate shock (regulatory or
physical) on month t. Standard errors, clustered at the bond level, are shown in parentheses.
***, ** and * indicate that the parameter estimate is significantly different from zero at the
1%, 5% and 10% level, respectively

Dependent Variable: Future Excess Returns (RI,t+1)

(1) (2) (3) (4)

TopCC × Paris× UNPRI -0.369***
(-2.891)

TopCC × Paris× EUReg -0.097**
(-2.468)

TopCC × Paris× COP 0.071
(0.774)

TopCC × Paris× CRED -0.040
(-1.066)

TopCC × Paris -0.036** -0.048*** -0.056*** -0.038**
(-2.427) (-3.178) (-3.812) (-2.436)

TopCC 0.020* 0.022* 0.015 0.008
(1.716) (1.794) (1.209) (0.652)

Ctrls/Betas Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
No. of Obs. 174217 174217 174217 174217

Adj. R2 0.135 0.144 0.142 0.104



A APPENDIX 51

Table 18: Controlling for European economic policy uncertainty, climate uncertainty, and volatility
This Table 18 displays results from the following triple-interactions on Ri,t+1where HighCC

is a dummy variable equals to 1 if CCATT is above than the median. EPU is a dummy equal to
one if Baker et al. (2016)’s the European Uncertainty Index (EPU). is higher than the median.
CPU is a dummy equal to one if Gavriilidis (2021)’s Climate Uncertainty Index (CPU) is
higher than the median. V2TX is a dummy equal to one if the index is above the historical
median. The table displays results from the following triple interaction :

ClimateBetai,t × UNCt ×HighCC
t

t-statistics computed using clustered standard error at the issuer level are presented in parenthe-
ses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
Table 5 provides the variable definitions.

Dependent Variable:
Future Excess Return (Ri,t+1)

(1) (2) (3)

βCC × EPU -0.010
(-1.150)

βCC × EPU ×HighCC 0.016*
(1.668)

βCC × CPU -0.128***
(-14.739)

βCC × CPU ×HighCC -0.086***
(-8.136)

βCC × V 2TX 0.026***
(2.903)

βCC × V 2TX ×HighCC 0.034***
(3.113)

Ctrls/Betas
Ctrls/Betas Yes Yes Yes
Time FE Yes Yes Yes
Industry FE Yes Yes Yes
No. of Obs. 174303 174303 174303

Adj. R2 0.096 0.102 0.096
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Table 19: Return Decomposition: Cash-flow and Discount rate.
This table reports univariate portfolios of corporate bonds sorted by discount rates and cash-
flows climate beta. We calculate unexpected returns, cashflow news (ϵCF and discount rates
news (ϵDR,) using the decomposition framework. We estimate climate betas associated to cash
flows (βCC

CF ) and discount rates (βCC
DR), over 36 month windows while controlling for the mar-

ket ((i)), as follows:

eDR,t = αi,t + βCC
CFCCATT

t + βMKT
t MKTt + ϵt

eCF,t = αi,t + βCC
DRCCATT

t + βMKT
t MKTt + ϵt

We calculate VAR using the return on assets (ROA) as a proxy for issuer-level cash flows,
and Tobin’s Q as a proxy for overall growth opportunity. We follow Callen and Segal (2010)
and run a VAR for each of the 12-Fama-French industries. This approach estimates VAR
parameters at the industry level, but the residuals at the firm-year level. The portfolios reports
the next-month average excess returns, the alphas from the models (i), (ii), (iii) , and (iv). The
last row shows the differences in monthly average returns and the differences in alphas with
respect to the factor models. Newey-West adjusted t-statistics are given in parentheses. Bold
numbers indicate significance at least at the 5% level. The sample period is from January 2004
to July 2022.

Sorted by βCC
DR Sorted by βCC

CF

Average 1 - Factor 2 - Factor 3 - Factor 7 - Factor Average 1 - Factor 2 - Factor 3 - Factor 7 - Factor
Return Alpha Alpha Alpha Alpha Return Alpha Alpha Alpha Alpha

Low-βCC
DR 0.83 0.26 0.27 0.61 0.14 Low-βCC

CF 0.13 0 0 0.03 -0.02
(0.91) (3.86) (1.18) (2.93) (1.83) (1.32) (-0.03) (0.11) (1.07) (-1.15)

2 1.15 0.07 0.41 0.72 0.05 2 0.07 0.03 0.03 0.05 0.03
(1.19) (0.9) (2.58) (4.17) (0.57) (1.01) (7.29) (1.49) (2.7) (5.82)

3 1.38 0.26 0.69 1.04 0.04 3 0.06 0.04 0.03 0.06 0.04
(1.24) (3.16) (2.72) (3.6) (0.24) (0.91) (9.04) (1.54) (3.42) (5.04)

4 1.21 0.16 0.39 0.66 0.24 4 0.07 0.03 0.01 0.05 0.01
(1.17) (1.99) (1.35) (2.18) (1.17) (0.83) (5.29) (0.64) (2.69) (1.15)

High-βCC
DR 1.35 0.01 -0.04 0.33 -0.23 High-βCC

CF 0.07 0.01 0 0.06 -0.01
(1.39) (0.2) (-0.21) (1.69) (-1.65) (0.68) (1.23) (-0.06) (2.65) (-0.84)

High-Low 0.52 -0.25 -0.31 -0.28 -0.37 High-Low -0.06 0.01 -0.01 0.04 0.01
(1.82) (-4.75) (-3.85) (-3.56) (-2.45) (-1.45) (0.65) (-0.25) (2.32) (0.28)
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Table 21: Correlation Table: Climate Indices

CCATT MECCO (lvl) MECCO (ch) CCBrogger CCFaccini CCOverall CCInt′lSummits CCApel CCEngle−WSJ CCEngle−CH CCGravriilidis

CCATT 1.00
MECCO (level) 0.43 1.00
MECCO (changes) 0.93 0.36 1.00
CCBrogger -0.07 -0.01 -0.10 1.00
CCFaccini 0.08 0.64 0.14 -0.03 1.00
CCOverall 0.54 0.63 0.42 0.10 0.10 1.00
CCInt′lSummits 0.57 0.75 0.47 0.04 0.25 0.82 1.00
CCApel -0.18 -0.29 -0.19 0.26 -0.05 -0.25 -0.31 1.00
CCEngle−WSJ 0.43 0.39 0.33 -0.05 0.17 0.43 0.39 -0.21 1.00
CCEngle−CH 0.68 0.45 0.65 -0.10 0.30 0.37 0.41 -0.15 0.49 1.00
CCGravriilidis 0.11 0.18 0.12 -0.06 0.05 0.22 0.17 -0.26 -0.12 0.05 1.00

Figure 2: Relative βCC over industry sectors
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Table 22: Summary Statistics: Climate Betas βCC .
This table 22 reports the summary statistics for the climate betas from the indices described in
1. The number of observations, mean, standard deviation, and percentiles (5, 25, 50, 75 and
95) are shown in columns. The sample period for each climate news index is from January
2004 to June 2021. Other CC indices with shorter periods are excluded.

βCC N Mean SD 5th 25th 50th 75th 95th

CCATT 126318 -0.071 1.139 -1.665 -0.345 -0.046 0.506 1.901
Brøgger and Kronies 75865 -0.073 2.708 -3.455 -0.741 -0.004 0.790 3.166
Apel (TRI) 117876 -0.037 2.623 -3.123 -0.559 -0.010 0.558 2.996
Faccini Global Summt 101486 -0.020 2.831 -3.450 -0.862 -0.042 0.748 3.457
Engle (WSJ) 70172 -0.054 2.540 -2.564 -0.631 -0.051 0.522 2.603
SVI Climate Change 126318 -0.074 2.548 -3.011 -0.773 0.018 0.663 2.686
SVI Climate Risk 126318 -0.061 2.509 -3.101 -0.663 0.008 0.691 2.707
Ardia Overall 83106 -0.071 2.984 -3.389 -0.632 0.003 0.715 3.135

B. Robustness Checks

Errors-in-Variables Adjustment

The estimation of climate betas as explanatory variables leads to an errors-in-variables (EIV)
problem, in which the explanatory variables are subject to measurement errors, biasing regres-
sion coefficients towards zero. This attenuation bias overestimates the true coefficient when it
is negative and underestimates it when it is positive. Standard OLS regressions (as performed in
Fama and MacBeth (1973) ) would underestimate the effect of the factor loadings, and the other
coefficients in the model can be biased to the extent that they are correlated with the poorly
measured variable. Typically to attenuate potential EIV bias, portfolios are widely employed
as test assets. However, since βCC is estimated at the bond-level, some estimation errors might
arise. Thus, an EIV-correction is needed when one or more of the independent variables are
measured with additive noise (Jegadeesh et al., 2019). We can analyze the sensitivity of the
estimates by assuming a certain degree reliability (i.e. confidence level) by assuming the ratio
of noise to total variance, as follows:

(13) reliability = 1− noise variance
total variance

That is, given the linear model y = X + u, for some variable xi in X , xi is observed with error,
xi = x∗

i + e, and the noise variance is the variance of e. The total variance is the variance of xi.
For an in-depth review of the different methods to correct for the errors-in-variable bias in the
empirical asset pricing literature, please refer to Collot and Hemauer (2021).
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C. Online Appendix

This section provides additional details on the composition of the sample index. Table 24 pro-
vides the description of returns by rating. Table 26 provides the description of returns by matu-
rity bucket.

While in Europe the bond market is dominated by the financial intermediaries, the bond mar-
ket in the United States is dominated by the non-financial corporate sector. The finance lit-
erature in general excludes the financial sector (banks, insurance companies, among others),
ADRs, REITs, and also as suggested by Fama and French (1993) ”units of beneficial interest

are excluded”. For example, banks have a much complex debt structure and financial assets
than corporations. Financials account for (40.81%) of the Overall Markit IBOXX EUR Corpo-
rates index benchmark. Due to their special characteristics, we exclude them from our analysis.
We address the analysis without Financials, including Real Estate companies.

For non-financials, using the Global Industry Classification Standard (GISCS) to classify is-
suers has its limitations. There is a high concentration among the Consumer Discretionary
sector representing 80% of the total sample, followed by Consumer Services (9%), Industrials
(3%). Other classifications have more granular industry sectors, for instance, the Fama-French
Industries link the existing 4-digit Standard Industrial Classification (SIC) to 12, 17, 30 or 49
industries. The Markit Market Sectors has either 7, 14, or 22 categories. With more categories,
each classification divides the sample into groups that are too small, and sometimes some indus-
tries may not have a bonds. To go along with similar academic studies, we use the Fama-French
classification system.
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Table 23: Top-10 issuer country.
Number of bond-month observations by issuer country domicile over the sample period from
Jan. 2006 to July. 2022.

Issuer Country Freq. Percent(%) Cum(%)

France 38,061 21.35 21.35
Netherlands 34,443 19.32 40.67
USA 23,254 13.04 53.71
UK 15,075 8.46 62.17
Germany 13,741 7.71 69.88
Italy 9,117 5.11 74.99
Luxembourg 7,723 4.33 79.33
Spain 7,093 3.98 83.3
Sweden 4,316 2.42 85.73
Australia 4,081 2.29 88.01

Top 10 156,904 88.01
Total 178,271

Table 24: Return statistics: Markit IBOXX ratings.
This table reports the number of bond-month observations, the cross-sectional mean, median,
standard deviation, and monthly return percentiles of corporate bonds. Tabulation on corporate
bonds into 4 credit categories based on Markit IBOXX ratings. Markit IBOXX ratings are the
average of the three rating agencies, from Fitch Ratings, S&P Global Ratings, and Moody’s
Investor Service Ratings are in conventional numerical scores, where 1 refers to an AAA rating,
2 refers to an AA, 3 refers to A, and 4 refers to a BBB rating. Higher numerical score means
higher credit risk. BBB (or better) are considered investment grade, worse than BBB are
labeled high yield, and hence not included in the index.

Bond return statistics over the sample period of January 2004 – June 2021

Percentiles

Markit IBOXX Rating N Perc.(%) Mean SD 5th 25th 50th 75th 95th

AAA 246 0.20 0.16 1.17 -1.71 -0.25 0.04 0.46 2.46
AA 10027 8.30 0.25 1.24 -1.61 -0.24 0.18 0.75 2.32
A 51446 42.60 0.28 1.24 -1.56 -0.17 0.20 0.77 2.34
BBB 58784 48.67 0.30 1.38 -1.75 -0.17 0.20 0.80 2.63
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Table 25: Return statistics: Maturity.
This table reports the number of bond-month observations, the cross-sectional mean, median,
standard deviation, and monthly return percentiles of corporate bonds. Tabulation on corporate
bonds into 5 different maturities (Corporates 1–3, 3–5, 5–7, 7–10, 10+). The sample period is
from January 2004 to June 2021.

Bond return statistics over the sample period of January 2004 – June 2021

Percentiles

Maturities N Perc.(%) Mean SD 5th 25th 50th 75th 95th

Corporates 1-3 Y 32301 26.74 0.15 0.56 -0.43 -0.02 0.10 0.29 0.89
Corporates 3-5 Y 32472 26.89 0.28 1.02 -1.02 -0.16 0.25 0.68 1.82
Corporates 5-7 Y 24765 20.50 0.33 1.37 -1.65 -0.39 0.36 1.01 2.49
Corporates 7-10 Y 19650 16.27 0.41 1.70 -2.28 -0.59 0.48 1.36 3.26
Corporates 10+ Y 11299 9.36 0.42 2.26 -3.55 -1.07 0.46 1.84 4.65

Table 26: Return statistics: Maturity-Credit.
This table reports the number of bond-month observations, the cross-sectional mean, median,
standard deviation, and monthly return percentiles of corporate bonds. Tabulation on corporate
bonds into 5 different maturities (Corporates 1–3, 3–5, 5–7, 7–10, 10+) and three credit ratings
(Corporates AAA-AA, A, and BBB). The categories represent different maturities in each of
the credit rating categories. Overall The sample period is from January 2004 to June 2021.

Bond return statistics over the sample period of January 2004 – June 2021

Percentiles

Maturities N Perc.(%) Mean SD 5th 25th 50th 75th 95th

Corporates AAA-AA 1-3Y 2261 1.87 0.10 0.41 -0.44 -0.04 0.07 0.24 0.71
Corporates A 1-3Y 13352 11.05 0.13 0.46 -0.38 -0.02 0.10 0.27 0.80
Corporates BBB 1-3 Y 16688 13.82 0.16 0.65 -0.46 -0.02 0.11 0.31 1.00
Corporates AAA-AA 3-5 Y 2343 1.94 0.20 0.78 -0.85 -0.17 0.19 0.57 1.37
Corporates A 3-5 Y 13381 11.08 0.25 0.88 -0.94 -0.16 0.23 0.62 1.60
Corporates BBB 3-5 Y 16748 13.87 0.31 1.14 -1.15 -0.16 0.27 0.74 2.07
Corporates AAA-AA 5-7 Y 2140 1.77 0.25 1.09 -1.39 -0.39 0.30 0.88 1.87
Corporates A 5-7 Y 10205 8.45 0.33 1.24 -1.44 -0.37 0.37 0.96 2.30
Corporates BBB 5-7 Y 12420 10.28 0.35 1.51 -1.97 -0.40 0.37 1.09 2.79
Corporates AAA-AA 7-10 Y 1978 1.64 0.34 1.49 -1.94 -0.56 0.38 1.22 2.78
Corporates A 7-10 Y 8963 7.42 0.41 1.60 -2.05 -0.58 0.51 1.32 3.07
Corporates BBB 7-10 Y 8709 7.21 0.42 1.84 -2.66 -0.61 0.48 1.46 3.58
Corporates AAA-AA 10+ 1547 1.28 0.38 2.10 -3.26 -1.12 0.48 1.68 4.08
Corporates A 10+ 5541 4.59 0.41 2.22 -3.41 -1.08 0.50 1.81 4.51
Corporates 10+ 4211 3.49 0.44 2.37 -3.89 -1.04 0.40 1.98 4.90



C ONLINE APPENDIX 59

Table 27: Univariate on βCC .
This table presents the portfolios formed using βCC . We form quintile portfolios of corporate
bonds based on βCC which is defined as the bond-level exposure from time-series regressions
of excess bond returns on the climate attention index (CCATT ) controlling for the market
factor (i):

Ri,t = αi + βCC
i · CCATT

t + βMKT
i,t ·MKTt + ϵi,t

We form portfolios within each of the 12 Fama-French industries to control for the industry
effects. Quintile 1 (Low) is the portfolio with the lowest βCC and Quintile 5 (High) is the
portfolio with the highest βCC . For each quintile, the table reports the average βCC , the next-
month average excess return, the 1-factor alpha from the market factor (i), the 2-factor from
macroeconomic factors (ii), the 4-factor alpha from common bond factors (iii) , and the 7-factor
alpha (iv) from the combined factors. The last row shows the monthly average returns of the
differences between High and Low. The 7-factor model with bond market factors includes the
excess bond market return (MKT), the default risk factor (DEF), the term risk factor (TERM),
the downside risk factor (DRF), the liquidity risk factor (LRF), the credit risk factor (CRF), and
the reversal risk factor (REV). Average returns and alphas are defined in monthly percentage
terms. Newey and West (1987) adjusted t-statistics are reported in parentheses. Numbers in
bold denote statistical significance at the 5% level or below. The sample period is from January
2006 to July 2022.

Average 1 - Factor 2 - Factor 3 - Factor 7 - Factor Average Portfolio Characteristics

Return Alpha Alpha Alpha Alpha
Average

CEI
βCC

Bid-Ask
Spread

Downside
(VaR 5%)

Rating Duration

Low-βCC 0.13 0.01 -0.02 -0.01 -0.09 184.93 -0.42 0.7 0.02 2.41 7.84
(1.12) (0.49) (-0.9) (-0.34) (-3.03)

2 0.09 0.03 0.04 0.05 0.01 153.08 -0.11 0.51 0.02 2.41 6.06
(1.12) (6.8) (1.88) (2.84) (1.4)

3 0.06 0.03 0.05 0.07 0.03 135.06 0.01 0.47 0.02 2.38 5.39
(0.85) (7.06) (2.82) (3.81) (5.42)

4 0.07 0.03 0.03 0.07 0.04 159.45 0.13 0.49 0.02 2.41 5.43
(1.02) (5.5) (1.98) (3.61) (5.03)

High-βCC 0.13 0.02 0.02 0.09 0.08 165.8 0.42 0.61 0.02 2.55 6.2
(1.44) (1.96) (0.73) (3.34) (4.48)

High-Low 0 0.01 0.04 0.1 0.17
(0.01) (0.51) (2.5) (5.03) (3.8)



Table 28: Bivariate on climate beta and carbon emission intensity. (βCC and CEI.)
We form double sort portfolios of corporate bonds based on the bond-level absolute value of
climate beta (βCC) and carbon emissions intensity (CEI) on a monthly basis. βCC is defined
as the bond-level exposure from time-series regressions of excess bond returns on using the
the climate attention index (CCATT ) controlling for the market factor:

Ri,t = αi + βCC
i · CCATT

t + βMKT
i,t ·MKTt + ϵi,t

The Carbon Emissions Intensity (CEI) is defined as the firm-level greenhouse gas emissions
(Scope 1 + 2, in tCO2) divided by the total revenue of the firm in millions of euros. We form
portfolios within each of the 12 Fama-French industries to control for industry effects. Quintile
1 (Low-βCC) is the portfolio with the lowest βCC and Quintile 5 (High-βCC) is the portfolio
with the highest βCC . Quintile 1 (Low-CEI) is the portfolio with the lowest carbon emission
intensity and Quintile 5 (High-CEI) is the portfolio with the highest carbon emission intensity.
Average returns and alphas are defined in monthly percentage terms. Newey and West (1987)
adjusted t-statistics are reported in parentheses. Numbers in bold denote statistical significance
at the 5% level or below. The sample period is from January 2006 to July 2022.

Quintiles Low-βCCN 2 3 4 High-βCCN Total

Low-CEI 0.01 0.05 0.06 0.04 0.07 0.06
(0.32) (2.15) (3.02) (1.75) (2.64) (6.7)

2 0.08 0.1 0.12 0.13 0.17 0.08
(1.32) (2.41) (2.61) (2.37) (2.25) (5.42)

3 0.05 0.04 0.06 0.05 0.01 -0.03
(1.57) (1.46) (2.24) (1.8) (0.5) (-4.19)

4 0.02 0.07 0.09 0.06 0.02 0
(0.67) (2.69) (3.98) (2.95) (0.92) (-0.14)

High-CEI 0.04 0.04 0.05 0.08 0.07 0.03
(1.36) (1.89) (2.58) (3.2) (3.35) (3.16)

Total 0.03 -0.01 -0.02 0.02 0
(4.72) (-3.46) (-6.1) (5.27) (-0.52)

This section provides more details on the composition of the sample index. To be included
in the index benchmark, only corporate debt denominated in EUR is eligible, regardless of risk
or origin country. Because of the Eurozone’s economic integration, investors may be tempted
to view corporate debt issued by European companies as undifferentiated. Within the same
currency, treating European and Global corporations as interchangeable is reasonable. Table 23
shows the top-10 countries with more issuers.

60



Table 29: Fama-MacBeth Cross-Sectional Regressions. This table reports the coefficients from the
Fama and MacBeth (1973) cross-sectional regressions of future corporate bond excess returns
on βCC with and without controls. The dependent variable is the corporate bond excess return
over the sample period from Jan.2004 to July 2022. The first stage uses time-series regressions
of excess bond returns on risk factors from model (iv) to estimate betas:

Ri,t = αi + βCC
i · CCATT

t +
m∑
k=1

βk
i · Fk,t + ϵi

The second stage uses cross-sectional regressions of excess returns on the estimated betas to
obtain the factor premia:

Ri,t+1 = λ0,t + λCC
1,t β̂

CC
i,t +

m∑
k=1

λk,tβ̂
k
i,t + γ′i,tXi,t + ϵi,t+1

Systematic risk betas include the default beta (βDEF ), term beta (βTERM ), credit beta
(βCRF ), credit beta (βDRF ), liquidity beta (βLRF ), and reversal beta (βREV ) from model
(iv). Control variables include bond characteristics: ILLIQ, years to maturity, credit rating,
DOWNSIDE, and one-month lagged returns). Credit ratings are numerical Markit IBOXX
ratings (from 1 to 3), a higher numerical score implies higher credit risk. Time-to-maturity is
defined in terms of years. ILLIQ is the monthly average bid-ask spread of the daily ask and
bid prices within each month. The last row reports the average adjusted R2 values and control
for the Fama-French 12 industry fixed effects in all specifications. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% level, respectively Newey and West (1987)
adjusted t-statistics are reported in parentheses. Table 5 provides the variable definitions.
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Univariate
Ctrl. Bond

Characteristics
Ctrl. Bond

Betas All Ctrls.

(1) (2) (3) (4)

λCC -0.038* -0.011* -0.023* -0.021**
(-1.82) (-1.817) (-2.624) (-2.463)

ILLIQ 0.165*** 0.139***
(-3.599) -3.482

Maturity 0.063 0.076
(-1.202) -1.552

Rating 0.027 0.013
(-1.309) -0.872

DOWN 0.366*** 0.283**
(-2.73) (-2.608)

Lag Return -1.824 -1.472
(-0.913) (-0.807)

λMKT 0.024*** 0.008**
(-3.977) (-2.154)

λDEF 0.017* 0.006
(-1.724) (-0.91)

λTERM 0.001 0.004
(-0.011) (-0.578)

λDRF 0.021*** 0.009***
(-4.007) (-2.94)

λLRF 0.022*** 0.006*
(-3.277) (-1.795)

λREV 0.001 -0.005
(-0.058) (-1.154)

λCRF -0.001 -0.002
(-1.023) (-1.545)

Industry. FE Yes Yes Yes Yes
Adj. R2 0.081 0.368 0.357 0.442
N 174333 127983 127990 127983
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Table 30: Climate Change News attention index using European, North American and Combined
newspapers.
This Table 30 presents the results from the panel regressions of one-month-ahead bond excess
returns (Ri,t+1) using European, North American and combined newspapers to construct the
Climate Change News attention betas. Columns 1 and 2 report the regression results from 45
European newspapers. Columns 3 and 4 report the regression results from 11 North Ameri-
can newspapers. Columns 5 and 6 report the regression results using the combined database.
Standard errors are clustered at the issuer level in all regressions. t-statistics are presented in
parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level,
respectively. Table 5 provides the variable definitions.

Variable Dependent Variable: Future Excess Returns (Ri,t+1)

EU US EU+US

1 2 3 4 5 6

βCCN -0.031* -0.027* -0.036*** -0.033*** -0.031** -0.026**
(-1.656) (-1.831) (-2.611) (-3.060) (-2.368) (-2.555)

βMKT -0.113*** -0.115*** -0.091** -0.096*** -0.112*** -0.112***
(-2.613) (-3.480) (-2.242) (-3.005) (-2.690) (-3.469)

βTERM -0.029 -0.031 -0.047 -0.043 -0.037 -0.037
(-0.867) (-1.272) (-1.254) (-1.515) (-1.090) (-1.459)

βDEF 0.047 0.022 0.069** 0.038 0.058** 0.032
(1.486) (0.804) (2.162) (1.482) (2.051) (1.298)

βDRF -0.096*** -0.107*** -0.069** -0.083*** -0.090*** -0.100***
(-2.803) (-4.087) (-2.001) (-3.152) (-2.710) (-3.892)

βLRF -0.103*** -0.128*** -0.081** -0.108*** -0.098*** -0.123***
(-2.675) (-4.359) (-2.020) (-3.553) (-2.602) (-4.254)

βREV -0.065 -0.057 -0.112** -0.105** -0.086 -0.077
(-0.868) (-0.870) (-1.969) (-2.026) (-1.250) (-1.248)

βCRF 0.058* 0.067** 0.051* 0.061** 0.055* 0.064**
(1.666) (2.557) (1.750) (2.377) (1.686) (2.583)

Bond controls Yes Yes Yes Yes Yes Yes
Issuer controls Yes Yes Yes Yes Yes Yes

Bond fixed effects No Yes No Yes No Yes
Issuer fixed effects Yes No Yes No Yes No
Industry fixed effects Yes Yes Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes Yes Yes

Adj. R2 0.142 0.136 0.142 0.136 0.142 0.136
No. of obs. 86616 86616 86616 86616 86616 86616
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Table 31: Return statistics: 12 Fama-French industries.
This table reports the number of bond-month observations, the cross-sectional mean, median,
standard deviation, and monthly return percentiles of corporate bonds. Tabulation on corporate
bonds into the 12 Fama-French industries. The sample period is from January 2004 to June
2021.

Bond return statistics over the sample period of January 2004 – June 2021

Percentiles

Industry Classification N Perc.(%) Mean SD 5th 25th 50th 75th 95th

Business Equipment 6131 3.65 0.25 1.62 -1.40 -0.19 0.15 0.69 2.32
Chemicals 5326 3.17 0.27 1.42 -1.33 -0.18 0.19 0.74 2.16
Consumer Durables 3299 1.96 0.22 1.85 -1.25 -0.17 0.13 0.62 2.18
Consumer NonDurables 8149 4.85 0.27 1.49 -1.50 -0.19 0.17 0.76 2.39
Energy 4076 2.42 0.30 1.76 -1.97 -0.17 0.23 0.91 2.82
Finance 65711 39.08 0.29 1.82 -1.61 -0.17 0.20 0.79 2.56
Healthcare 6829 4.06 0.27 1.59 -1.50 -0.19 0.14 0.72 2.47
Manufacturing 6182 3.68 0.29 1.95 -1.86 -0.21 0.22 0.88 2.74
Other 18002 10.71 0.29 1.94 -1.71 -0.21 0.21 0.91 2.70
Shops 6952 4.13 0.30 1.61 -1.57 -0.18 0.22 0.82 2.40
Telecommunication 16960 10.09 0.35 1.69 -1.76 -0.20 0.22 0.90 2.80
Utilities 20531 12.21 0.32 1.53 -1.61 -0.19 0.22 0.87 2.62
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Table 32: Rolling windows βCCNews estimation.
This table 32 shows the results from the panel regressions of one-month-ahead bond excess re-
turns (Ri,t+1) on using 24 and 36 months to estimate the climate change news betas. Columns
1 and 2 report the regression results using βCCNews,24, is estimated over a 24-month window
requiring at least 12 month-return observations. Columns 3 and 4 report the regression results
using βCCNews,24, which is estimated over a 36-month window requiring at least 12 valid ob-
servations. Standard errors are clustered at the issuer level in all regressions. t-statistics are
presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and
1% level, respectively. Table 5 provides the variable definitions.

Variable Dependent Variable: Future Excess Returns (Ri,t+1)

24 month 36 month

1 2 3 4

λCCN -0.023* -0.023** -0.031** -0.026**
(-1.851) (-2.194) (-2.368) (-2.555)

λMKT -0.107*** -0.104*** -0.112*** -0.112***
(-2.778) (-3.125) (-2.690) (-3.469)

λTERM -0.002 -0.003 -0.037 -0.037
(-0.059) (-0.101) (-1.090) (-1.459)

λDEF 0.081*** 0.057*** 0.058** 0.032
(3.912) (2.725) (2.051) (1.298)

λDRF -0.069** -0.081*** -0.090*** -0.100***
(-2.129) (-2.894) (-2.710) (-3.892)

λLRF -0.077** -0.105*** -0.098*** -0.123***
(-2.184) (-3.486) (-2.602) (-4.254)

λREV -0.057 -0.059 -0.086 -0.077
(-0.911) (-0.929) (-1.250) (-1.248)

λCRF 0.052* 0.056** 0.055* 0.064**
(1.824) (2.193) (1.686) (2.583)

Bond controls Yes Yes Yes Yes
Issuer controls Yes Yes Yes Yes

Bond fixed effects Yes No Yes No
Issuer fixed effects No Yes No Yes
Industry fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes

Adj. R2 0.143 0.136 0.142 0.136
No. of obs. 86558 86558 86616 86616
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