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Abstract

The time proximity of trades across stocks reveals the topological structure of the

equity market in the United States. In this article, we investigate how such cross-

stock trading behaviors, which we name as co-trading, shape the market structures

and affect stock price co-movements. By leveraging a co-trading-based pairwise

similarity measure, we propose a novel method to construct (dynamic) networks of

stocks. Our empirical studies use high-frequency limit order book data from 2017-

01-03 to 2019-12-09. By applying the spectral clustering algorithm on co-trading

networks, we uncover economically meaningful clusters of stocks. Beyond the static

Global Industry Classification Standard sectors, our data-driven clusters capture

the time evolution of the dependency among stocks. Furthermore, we demonstrate

statistically significant positive relations between low-latency co-trading and re-

turn covariance. With the aid of the co-trading network, we develop a robust

estimator for high-dimensional covariance matrix estimation, which yields superior

economic value on portfolio allocation. The mean-variance portfolios based on our

covariance estimates achieve both lower volatility and higher Sharpe ratios than
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standard benchmarks.

Keywords: Market microstructure; Co-occurrence analysis; Network; Machine

learning; Robust covariance estimation; Portfolio allocation
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1 Introduction

The pioneering work of Kyle (1985) posits the price formation at high-frequency level

as the interaction among market participants. In his model, market makers monitor

the aggregated order flows after informed and liquidity traders submit their orders, and

then set their fair prices. With the development and boom of high-frequency trading

(HFT) strategies, the interplay becomes more aggressive and sophisticated. Recent works

(Brunnermeier and Pedersen (2005); Van Kervel and Menkveld (2019); Hirschey (2021);

Yang and Zhu (2020)) find that HFT traders actively detect activities of other participants

in the market, and fiercely trade against them. Furthermore, these interactions can

span across different stocks (Hasbrouck and Seppi (2001); Bernhardt and Taub (2008);

Capponi and Cont (2020)). We investigate concurrent (almost instantaneous) trading

across multiple stocks, a phenomenon which we refer to as co-trading behavior, at a very

granular level by directly considering individual trades, and zooming-in around their local

neighborhoods.

In this paper, we propose a novel method that constructs co-trading networks, in order

to model the complex structures of co-trading activities in equity markets. Constructed

from limit order books, our co-trading network bridges the trading behaviors at a granu-

lar level with the dynamic topological structures of the market and price co-movements

among individual stocks. Moreover, by making use of the co-trading network, we de-

velop a robust estimator for high-dimensional covariance matrices, and demonstrate its

conspicuous economic value on portfolio allocation.
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The network construction starts with a pairwise similarity measure between stocks.

Inspired by the idea of trade co-occurrence originating from Lu, Reinert, and Cucuringu (2022),

we define the pairwise similarity as the normalized count of times that trades, for a given

pair of stocks, arrive concurrently. We name this measure as a co-trading score, since it

embeds the intuition that stocks frequently traded together are closely related. Concate-

nating co-trading scores between every pair of stocks, we obtain the co-trading matrix,

which serves as the representation of the proposed network of equity markets.

Utilizing the developed algorithms and tools for network analysis, we provide empir-

ical evidence that co-trading networks capture meaningful patterns of the market. By

visualizing the co-trading network, aggregated over the entire period of study, with in-

formation filtering (Rosario N Mantegna (1999)), we observe that stocks from the same

sector groups tend to have strong co-trading relations. It echos the empirical phenomena

driven by the existence of sector structures in the market, where stocks in the same sector

groups are likely to appear in the same portfolios and their prices tend to move together.

Additionally, we uncover clusters of stocks in the co-trading network. To detect these

communities, we apply spectral clustering on co-trading matrices to group stocks with

similar co-trading behaviors into clusters. For comparison purpose, we select the Global

Industry Classification Standard (GICS) as sector labels. Our empirical results show

substantial overlap between the data-driven clusters and GICS sectors, which confirms

that the co-trading networks accommodate the sector structures as expected. Moreover,

we leverage the uncovered networks to study the influence of both individual stocks and

sectors on the market. By using tools such as eigenvector centrality (Bonacich (1972),

Bonacich (1987)), we identify that large technology companies and financial institutions,

such as Microsoft, Apple JPMorgan, etc., present stronger co-trading relations with oth-

ers, thus have higher impact on the structure of the market. Despite the alignment with

GICS sectors, the co-trading network also contains information beyond sectorial struc-

ture. The data-driven clusters also group together closely related stocks from different

sectors.

Apart from the aforementioned static graph, the construction of co-trading matrices

is flexible at various frequency. It is informative to analyse the time evaluation of co-

trading networks and explore the dynamic of market structures. In this study, we focus on

network time series at daily level, while it can be easily generalized to intraday, monthly
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and so forth. Our empirical findings from daily co-trading networks indicates that the

co-trading relations across different sectors increase from 2017 to 2019. Using spectral

clustering, we detect clusters at a daily level and compare them with GICS sectors. By

plotting the similarity across time, we observe a downward tend with fluctuations. In

addition, we also compare the similarity among daily clusters. The variation in clusters

also increases as the spread of co-trading beyond sector groups. By applying the spectral

clustering algorithm for change-point detection based on the temporal similarity heatmap,

we uncover three distinct regimes over the period of study.

To exploit the association between co-trading behaviors and price co-movements, we

conduct network regression analysis. We build realized covariance matrices from intraday

returns as proxies for co-movements among stocks. By regressing covariance matrices

against co-trading networks on a daily basis, we reveal positive associations between the

two types of matrices. Furthermore, on 98.51% of the days in the study, the positive

regression coefficients are statistically significant. Further controlling for GICS sectors,

we conduct multiple regressions by adding a fixed sector network as an independent

variable. Even with the presence of sectors, the positive and significant relation still holds.

Therefore, the co-trading behaviors at the high-frequency level are positively correlated

with the return covariance, and have explainability power on price co-movements that

goes beyond the commonly adopted sectors.

With the aid of co-trading matrices, we propose a robust estimator for the high-

dimensional covariance matrix of stock returns at daily frequency. By assuming stock

returns follow a linear factor structure (Ross (1976)), we decompose the covariance ma-

trix as the sum of factor covariance and idiosyncratic covariance. Then, we impose a

block structure on the diagonal of the idiosyncratic covariance matrix, such that ele-

ments outside the blocks are set to zero. Our approach extends the work of Ait-Sahalia

and Xiu (2017), which use principle component analysis to derive latent factors and form

blocks using GICS sectors. However, the sector blocks remain static over time. As we

have shown, the market structures are time-varying, and thus static sector memberships

are not enough to capture the similarity of stocks at higher frequency. Therefore, we up-

date the diagonal block structure daily with data-driven clusters derived from co-trading

networks. To evaluate the performance, we construct mean-variance portfolios, subject

to various leverage constraints. Our covariance estimators, based on dynamic clusters,
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generally outperform the baselines, using fixed GICS sectors, by achieving lower volatility

and higher Sharpe ratios. Our best-performing portfolio achieves a Sharpe ratio of 1.40,

which is 0.43 higher than the corresponding baseline, and 0.57 higher than the market

over the same period.

The remainder of this paper is organized as follows. Section 2 outlines our contri-

butions to the existing literature. Section 3 introduces the definition of co-trading score

and the construction of co-trading networks. In Section 4, we begin our empirical stud-

ies with conducting exploratory analysis on a static co-trading network and detecting

clusters. Next, we study the dynamics of the daily co-trading matrices in Section 5.

Subsequently, we explore the relation between daily co-trading networks and covariance

matrices in Section 6 and propose a co-trading based covariance estimator in Section 7.

Finally, in Section 9, we conclude and discuss our limitations and potential research

directions.

2 Literature review

This study sits at the confluence of three strands of literature. Firstly, our research en-

riches the network analysis and the modeling of complex inter-dependency relations in

financial markets. Network analysis has been proven to be effective in studying inter-

dependency relations in complex systems. In particularly, there is a large literature on

networks in financial markets (Bardoscia et al. (2021); Marti et al. (2021)). Previous re-

search developed various methodology to build financial networks. In 1999, the influential

paper of Rosario N Mantegna (1999) first built a network from a distance measure based

on correlations of stock returns, filtered with a minimum spanning tree (MST). Since then,

many works followed by constructing networks with diverse distance/similarity measures,

such as Granger causality (Billio et al. (2012)), mutual information (Fiedor (2014)), co-

jumps of stock prices (Ding et al. (2021)), and so forth. Additionally, multiple methods

have been used to replace MST for information filtering, including random matrix theory

(Plerou et al. (2000)), Potts super-paramagnetic transitions (Kullmann, Kertesz, and R.

Mantegna (2000)), planar maximally filtered graph (Tumminello et al. (2005)), threshold-

filter method (W.-Q. Huang, Zhuang, and Yao (2009), Namaki et al. (2011)), etc.
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Concerning networks of financial markets, preceding studies uncovered the topolog-

ical structures of markets through community detection. For example, the pioneering

work of Rosario N Mantegna (1999) applied hierarchical clustering and discovered hier-

archical structure stock portfolios. Moreover, the networks can be constructed as a time

series (McDonald et al. (2005); Nie (2017)). Recent work by Bennett, Cucuringu, and

Reinert (2022) built lead-lag networks with different similarity measures, tested multiple

clustering algorithms and studied the time-varying lead-lag structures in the market.

To this field, our contribution is proposing an original similarity measure, directly

derived from very granular records of trades, with explicit interpretation as how frequently

two stocks are traded together, with the final goal of constructing networks. In addition,

we detect dynamic clusters and provide a comprehensive comparison with GICS sectors.

Secondly, this research contributes to the studies of market microstructure, especially

interplay among trading activities. In 1985, Kyle (1985) posits a famous two-period

model of high-frequency price formation by solving the equilibrium of the game between

liquidity takers and market makers. Further, various studies show that, high-frequencies

strategies can be more aggressive. Hirschey (2021) claims that high-frequency traders

(HFTs) can predict order flows form other market participants and trade in front of them.

Van Kervel and Menkveld (2019) provides empirical evidence that HFTs can detect the

trading activities of institutional traders, and adjust their own strategies to speculate.

Moreover, HFTs even actively explore the market by initiating small trades and watch

the response of others(Clark-Joseph (2013)). Researchers also propose theoretical models

Grossman and Miller (1988); Brunnermeier and Pedersen (2005); Yang and Zhu (2020))

for the interactions between HFTs and other traders.

The interactions can span across different stocks on the market. Bernhardt and

Taub (2008) states that the strategical interplay among speculators is often concur-

rent and across many stocks. There is vast literature on cross-impact (Pasquariello and

Vega (2015); Benzaquen et al. (2017); Schneider and Lillo (2019)), showing order flow of a

stocks can affect prices of other stocks. Recent work of Lu, Reinert, and Cucuringu (2022)

classifies trades of stocks by whether they concurrently arrive with other trades for the

same or different, or both same and different stocks, and investigate price impact using

order imbalance from different groups of trades. They discover that the time proximity

of trade arrivals explains stock returns.
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This study extends Lu, Reinert, and Cucuringu (2022) to the network setting by

considering interactions between the trades of every pair of stocks. Rather than studying

the price impact of order imbalance on one stock at a time, we construct co-trading

networks of all stocks together and explain the impact of trading interactions at market

microstructure level on macroscopic price co-movements.

Finally, our study adds to the growing body of financial econometrics literature on

robust estimation of high-dimensional covariance matrices of stock returns. An invertible

and well-behaved covariance matrix is essential for portfolio allocation with mean-variance

optimization (Markowitz (1952)). However, when the number of sampled timestamps is

small relative to the size of the panel of stocks, sample covariance matrices are singu-

lar or ill-conditioned. To overcome this issue, previous studies develop different streams

of regularized estimation methods, including thresholding (Bickel and Levina (2008b);

Bickel and Levina (2008a)), shrinkage (Ledoit and Wolf (2003); Ledoit and Wolf (2004);

Chen et al. (2010)), etc. These regularization techniques are based on structural assump-

tions; for example, thresholding estimators assume the covariance matrices are sparse.

In particular for stocks, a large literature of asset pricing studies revealed linear factor

structures of equity returns (Sharpe (1964); Ross (1976); Fama and French (1992); Fama

and French (1993); Fama and French (2015)). Based on factor models, the covariance

matrix of returns can be decomposed as sum of a low-rank factor component and a resid-

ual idiosyncratic component. Various lines of work have then imposed different types

of sparsity assumptions on the residual component which represents the covariance of

idiosyncratic risk of stocks. Fan, Liao, and H. Liu (2016) provides a through overview

of factor-based robust covariance estimation. By using observable and latent factors,

respectively, the works of Fan, Furger, and Xiu (2016) and Ait-Sahalia and Xiu (2017)

impose block structures on the idiosyncratic component, where stocks are sorted by their

GICS sector membership, thus forcing the residual covariance of stocks in different sec-

tors to be zero. Consequently, they conclude that incorporating clusters with economic

interpretation benefits the covariance estimation task.

Our method for robust estimation contributes to this body of literature, and can

be construed as a direct extension of the two aforementioned articles, by taking into

account very granular high-frequency data that encodes higher-order relationships on

the co-trading behaviour. Instead of employing static GICS sectors, we perform time-
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varying data-driven clustering. By capturing the dynamic dependency relations between

the universe of stocks, our proposed method outperforms baselines in portfolio allocation

tasks.

3 Construction of co-trading networks

In this section, we first propose pairwise co-trading scores to measure the similarity

between two stocks, using the co-occurrence of trades methodology, proposed by Lu,

Reinert, and Cucuringu (2022). We then leverage these scores to build affinity matrices

and construct co-trading networks.

3.1 Co-occurrence of trades

We first introduce notations and define co-occurrence of trades. Here, we define each

trade as a 4-tuple. Let xk = (τk, sk, dk, qk) denote the information of the kth trade, where

we capture the following trade statistics

• τk is the time when the trade occurs;

• sk indicates name of the stock for which the trade is executed;

• dk ∈ {buy, sell} indicates whether the trade is buyer- or seller- initiated;

• qk is the volume of the trade.

Then, for every trade xk, we define a δ-neighbourhood of trades which are close in time

N δ
xk

= {xa|a ̸= k and τa ∈ (τk − δ, τk + δ)},

where δ is a predefined threshold corresponding to time.

Following the definition of trade co-occurrence from Lu, Reinert, and Cucuringu (2022),

we say that trade xk co-occurs with xl at level δ, denoted by xk
δ∼ xl, if and only if

xl ∈ N δ
xk

. Figure 1 visualizes the definition, where xk co-occurs with xl and xm, but

does not co-occur with xn. Trade xn co-occurs with xm, and both trade xl and trade xm

co-occur with trade xk, but they do not co-occur with each other.
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Figure 1: Illustration of trade co-occurrence. This figure visualizes the idea of co-occurrence
of trades. With a pre-defined neighbourhood size δ, trade xl arrives within the δ-neighbourhood
of trade xk, and thus they co-occur. In contrast, trade xn locates outside xk’s δ-neighbourhood,
and thus the two trades do not co-occur. Trade xn co-occurs with xm, and both trade xl and
trade xm co-occur with trade xk, but they do not co-occur with each other.

The co-occurrence relation is symmetric, that is, given δ, if xk
δ∼ xl, then xl

δ∼ xk.

Notice that co-occurrence of trades is not a equivalence relation. When it is clear from

the context, we omit the level δ of the co-occurrence when referring to co-occurrence.

3.2 Pairwise co-trading score

Motivated by the intuition that stocks are more inter-dependent if they co-trade together

more often, we propose pairwise co-trading scores to measure the similarity between

stocks. For a pair of stocks, we calculate the similarity score by counting selected types

of co-occurred trades and normalize by the total number of trades of both stocks.

The formal definitions are as follows. For stock i on day t, the set of all trades, with

direction di∈ {buy, sell, all}, is denoted by

Si,di

t = {xa|τa ∈ [tstart, tend], sa = i, da = di},

where di = all denotes all trades without distinguishing between buy and sell. Then, if

given another set Sj,dj

t , we count the number of trades for stock j, which co-occur with

trades in Si,di

t , denoted as

Ldj→di

t,j→i =
∑

xk∈Si,di

t

|{xa ∈ N δ
xk
|sa = j, da = dj}|,

where | · | denotes the cardinality of a set.

The pairwise co-occurrence count index cδ,d
i,dj

t,i,j is a scaled count of the number of trades

for stock i with direction di, and trades for stock j with direction dj, which co-occur on

10



day t. Formally, it is defined as

cδ,d
i,dj

t,i,j :=
Ldi→dj

t,i→j + Ldj→di

t,j→i√
|Si,di

t |
√
|Sj,dj

t |
.

These pairwise co-occurrence indices have three useful properties. Firstly, they are

non-negative and higher values indicates stronger co-occurrence relations. Secondly, the

indices are scaled, so that they can be used to compare relations across pairs of stocks.

Thirdly, the indices are symmetric. Additionally, the indices are defined using sets of

trades which are filtered based on different conditions so that they are flexible and can

easily be generalized to a customized set of orders.

3.3 Co-trading matrices and networks

Using the pairwise co-occurrence measures, we build the corresponding daily N × N

co-occurrence matrix, denoted as Cδ,di,dj

t , having entries

(Cδ,di,dj

t )i,j = cδ,d
i,dj

t,i,j .

Built from daily matrices, co-occurrence matrices over a longer time period T , such as

months and years, are simply calculated by averaging the daily co-occurrence matrices;

C
δ,di,dj
{T} =

1

|T |
∑
t∈T

C
δ,di,dj
t .

Taking advantage of the symmetric co-occurrence matrices, we build co-occurrence

networks to represent complex structures in the stock market. We consider dynamic co-

trading networks of stocks, Gt = (Vt, Et), t ∈ T , where each vertex vi,t ∈ Vt represents a

certain stock at time t and a weighted edge ei,j(t) ∈ E denotes a type of co-occurrence

relation between two stocks at time t; the weight is the corresponding co-trading score. We

use the co-trading matrices as representations of each co-trading network. The empirical

study in the following sections focuses on the co-trading matrices without taking into

account the directions of trades. In line with Lu, Reinert, and Cucuringu (2022), we

choose δ = 500 milliseconds as the neighborhood size, in order to determine co-occurring

trades. Therefore, we omit the superscripts for brevity and only keep the subscript for
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time index, e.g. C2017−2019 stands for the co-trading network aggregated from 2017 to

2019.

4 Empirical network analysis

In this section, we construct co-trading networks from the empirical data. We provide

a visualization of the networks, and show that they reflect empirical phenomena which

have been observed in equity markets. Furthermore, we demonstrate that co-trading

networks capture inter-dependency of stocks and time-varying topological structures of

these markets.

4.1 Data

The empirical studies in this paper are based on 457 stocks in US equity markets from

2017-01-03 to 2019-12-09. We acquire limit order book data from the LOBSTER database

(R. Huang and Polak (2011)), which keeps track of submissions, cancellations and exe-

cutions of limit orders for stocks traded in NASDAQ. Each record has a timestamp with

precision up to 10−9 seconds and indicates the price, size and direction of the respective

order book event. A trade occurs when a market/marketable order arrives and consumes

existing limit orders, and thus can be inferred by order executions. Here we denote a

trade as ‘buy’ if the limit order denoted a willingness to sell, and as ‘sell’ if the limit order

denoted a willingness to buy. To derive trades, we filter out events other than executions.

Then we aggregate records with exactly the same timestamp and direction, as they are

likely to be caused by one large marketable order. The direction of a trade is opposite to

those of the executed limit orders it is matched against.

In addition, we obtain per-minute price data from LOBSTER and daily stock prices

from the Center for Research in Security Prices (CRSP) database. Apart from prices,

we label stock sectors using the Global Industry Classification Standard (GICS) drawn

from Compustat database. The GICS decomposition classifies stocks into 11 sectors of

varying sizes.
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Communication Services
Consumer Discretionary
Consumer Staples
Energy
Financials
Health Care
Industrials
Information Technology
Materials
Real Estate
Utilities

Figure 2: A co-trading network of the period from 2017-01-03 to 2019-12-09.
The figure presents the co-trading network of 457 stocks represented by the co-trading matrix,
without trading directions, of the entire period of study, that isC2017−2019. Each node represents
a stock, whose color indicates its GICS sector. For visualization, we use a maximum spanning
tree (Rosario N Mantegna (1999)) to filter out edges by maximizing sum of co-trading scores
while keeping a connected network with 456 edges.

4.2 An example of a co-trading network

To provide a general view of co-trading, we construct a network-based matrix C2017−2019,

capturing all co-trading relations of the entire period of study from 2017-01-03 to 2019-

12-09, without differentiating directions of trades.

To visualize the network, we follow Rosario N Mantegna (1999) to filter edges with a

minimum spanning tree (MST), because the co-trading matrix is dense. To be specific, a

MST of a graph with N nodes is a connected subgraph with only N − 1 edges such that

the sum of the negations of edge weights is minimized, which can be found by Kruskal’s

algorithm (Kruskal (1956)). Figure 2 shows the MST of the co-trading network based on

all trades of all stocks. The graph vertices represent individual stocks and their colors

indicate the GICS sectors. It is noteworthy that companies within the same sector groups

are often on the same branches, suggesting that stocks may frequently be co-traded in

sector baskets. This reconciles with the known fact that stocks in the same sector tend to

move together, due to common membership in the same index traded funds (Harford and

Kaul (2005)) and similar exposure to the same factors. Hence, this co-trading network

captures meaningful patterns of the cross-sectional structure of stocks.

Furthermore, the network visualization reveals a dense cluster at the center of the
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plot. The stocks close to the centroid co-trade with more stocks and are, on average,

more inter-related with the rest of the network. To further investigate the cluster, we

use eigenvector centrality (Bonacich (1972), Bonacich (1987)) to measure the influence

of each node on the network. For each stock i, we define the eigenvector centrality as the

ith element of the eigenvector corresponding to the dominant eigenvalue of the co-trading

matrix. The larger the centrality, the more “influential” the stock.

We list the 10 stocks with the highest eigenvector centrality in Table 1. Microsoft is

the most influential stock followed by Apple and JPMorgan Chase. Moreover, among the

top 10 stocks, 60% are technology companies, including Facebook, and 40% are financial

institutions. The co-trading matrix can not only model individual stocks, but it can also

model relations among sectors. Following Bennett, Cucuringu, and Reinert (2022), we

build a meta-flow network of sectors as follows. We group stocks by their sector labels,

use the sectors as nodes in the meta-flow network, and use the average co-trading scores

of stocks in each pair of sectors to be the sector co-trading scores, serving as edge weights

in the meta-flow network. Figure 3 pictures the fully connected sector network, where

the edge width indicates the strength of co-trading. The strongest co-trading relation

is between Information Technology and Communication Services. By comparing edge

widths, we can identify which sectors are more closely co-traded with a given sector.

For example, the Real Estate sector has a strong co-trading relation with the Financials

sector, while it does not show a strong relationship with the other sectors. Moreover,

we document centrality of each sector in Table 2, and find that Information Technology,

Financials and Communication Services are the most influential sectors, while Real Estate

and Utilities have the lowest eigenvalue centrality.

4.3 Temporal evolution of co-trading networks

In Figure 4, we plot networks corresponding to the month of January, for each of 2017,

2018 and 2019, with colours representing GICS sectors. After thresholding, we only

preserve 1% of edges, selected such that we keep the edges with the highest weight. The

co-trading structures in the US market change over the sample period. At the start of the

period, there are no strong co-trading relations across GICS sectors. However, towards

the end of the period, an increasing amount of edges connect stocks from different sectors,

thus providing supporting evidence for the importance of data-driven clustering that goes
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Table 1: Top 10 stocks by eigenvector centrality.
This table lists 10 stocks ranked by their eigenvector centrality, as well as their company names
and GICS sectors.

Ticker Centrality Company Sector

MSFT 0.12 Microsoft Corp. Information Technology
AAPL 0.11 Apple Inc. Information Technology
JPM 0.11 JPMorgan Chase & Co. Financials
BRK.B 0.10 Berkshire Hathaway Financials
TXN 0.10 Texas Instruments Information Technology
FB 0.09 Facebook, Inc. Communication Services
V 0.09 Visa Inc. Information Technology
AXP 0.09 American Express Co Financials
PYPL 0.09 PayPal Information Technology
CSCO 0.09 Cisco Systems Information Technology

Table 2: Centrality of sectors in the meta-flow network.
This table shows the eigenvector centrality of each GICS sector in the meta-flow network. The
‘Rank’ column reports the rank, in descending order, of each sector in terms of their centrality.

Centrality Rank

Information Technology 0.39 1
Financials 0.35 2
Communication Services 0.34 3
Industrials 0.33 4
Health Care 0.33 5
Consumer Staples 0.31 6
Consumer Discretionary 0.29 7
Materials 0.26 8
Energy 0.26 9
Utilities 0.20 10
Real Estate 0.19 11

beyond the usual sector-based decompositions.

5 Clustering analysis

So far, we have observed the presence of clusters, or communities, in the co-trading

network of stocks. In this section, we use an unsupervised clustering method to classify

every stock, with the aim to group similar stocks into the same cluster. Starting with

the network in Figure 2, we show that the co-trading matrix not only captures sector

structure, but also incorporates associations beyond sectors. Furthermore, we show that

the co-trading matrices contain information on the dynamic of market structures, by
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Figure 3: Meta-flow network of GICS sectors.
This figure illustrates the fully connected network of GICS sectors based on the co-trading
matrix C2017−2019. The edges are calculated by grouping stocks by their GICS sectors and
averaging the co-trading scores of sector groups.

studying the relations between generated clusters and GICS sectors, making pairwise

comparison between clusters derived from different co-trading matrices, and studying the

changes of clusters over time.

5.1 Methodology and evaluation metrics

Spectral clustering is a family of algorithms (Shi and Malik (2000), Ng, Jordan, and

Weiss (2002), Cucuringu, Davies, et al. (2019), Cucuringu, Li, et al. (2020)), built upon

spectral graph theory, to detect communities or clusters in networks. For details, Von

Luxburg (2007) provides a comprehensive survey on spectral methods and their theoret-

ical backgrounds. Given a co-trading matrix, we apply a spectral clustering algorithm,

outlined in Appendix A, to identify clusters in our universe of stocks. The number of

clusters is a hyper-parameter of this algorithm, which we need to determine beforehand.

Although the spectral clustering depends on random initialization, in Appendix B, we

show that the algorithm is robust in our empirical setting.
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Figure 4: Thresholded temporal Co-trading Networks.
These three networks are based on co-occurrence of all trades regardless of trading directions.
From left to right, are networks of 2017-01, 2018-01 and 2019-01. Colours stand for the GICS
sector each stock belongs to.

The Adjusted Rand index (ARI) (Hubert and Arabie (1985)) is our measure of simi-

larity between clusters. The valid range of ARI is [0, 1], where 1 is achieved if and only if

two clusters perfectly match. Notice that ARI can take negative values, which means the

two clusters are not similar at all. In general, a higher ARI indicates that two clusters

are more similar to each other, and vice versa. A value close to 0 indicates that points

are assigned into clusters randomly.

5.2 Clusters v.s. GICS

Analyzing the clusters, we discover that co-trading networks capture sectors in the US

stock market, which supports our observations in Section 4.2.

Figure 5 shows the commonality between GICS sectors and clusters detected in the

co-occurrence network corresponding to the matrix C2017−2019. By setting the number of

clusters to 11, which is also the number of GICS sectors after the classification change in

2018, we observe that the unsupervised clustering method can recover the sector groups

to a good standard. This is especially the case for companies in the Financial, Utilities,

Real Estate and Energy sectors, when there are hardly any mismatches. There are also

clear clusters for stocks in the sectors Materials, Health Care, Industrials and Consumer

Staples, with small amounts of disagreements. Comparatively, the structure of the Infor-

mation Technology sector is strikingly different, with one major cluster containing most

of the stocks and most of the other stocks well spread out across other clusters. Moreover,

the Consumer Discretionary sector stocks concentrate in two clusters, one of which also
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Figure 5: Clusters v.s. sectors.
This plot visualizes the overlap between the data-driven clusters, derived from C2017−2019 by
spectral clustering, and the GICS sectors. The horizontal axis indexes stocks grouped by data-
driven clusters, separated by vertical lines. The vertical axis indicates GICS sector labels. The
colored area of a sector is indicative of its size. The Financial stocks are well grouped in Cluster
1, while the Information Technology stocks are spread over multiple clusters, with a strong
presence in Cluster 8.

contains the entire sector of Communication Services.

5.3 Temporal evolution of clusters and market regime detection

In addition to the uncovered long-term agreement between data-driven clusters and GICS

sectors, we are also interested in assessing and quantifying the extent to which the cross-

sectional trading behaviors deviate from sectors within a short period of time. Therefore,

we also proceed with clustering stocks on a daily basis, and then compare the similarity

between clusters and sectors, via the same adjusted Rand index. Since the true number of

communities in the stock market is unknown, we consider multiple values for the number

of clusters, namely 11 (the same number as the number of GICS sectors), 15, 20 and 50.

Figure 6 shows the time series of ARIs between daily clusters and GICS sectors. For

a small number of clusters, we observe meaningful levels of similarity between the data-

driven clusters and economic sectors. In contrast, when the number is large as 50, the

similarities are constantly low. As empirical observations indicate that market partici-
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Figure 6: Adjusted Rand index between daily clusters and GICS sectors.
This figure sketches dynamics similarity between data-driven clusters and GICS sectors. For
every day, we derive data-driven clusters and calculate the adjusted Rand index with GICS,
with predefined numbers of clusters {11, 15, 20, 50}. We then plot the ARIs over time from
2017-01-03 to 2019-12-09, so that each line represents one choice of number of clusters.

Table 3: Statistics of daily ARI.
This table shows summary statistics of daily ARIs between dynamic clusters and fixed GICS
sectors plotted in Figure 6. For different number of clusters, the table reports the mean and
standard deviation of ARIs from 2017-01-03 to 2019-12-09, as well as the signal-to-noise ratio.

Clusters

11 15 20 50

Mean 0.41 0.43 0.40 0.21
Standard deviation 0.11 0.10 0.07 0.03
Signal-to-noise ratio 3.73 4.30 5.71 7.00
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pants tend to trade sectors, we conclude that the true number of clusters is relatively

small. Moreover, in Table 3 we summarize the mean and standard deviation of daily ARIs,

for each choice of cluster numbers, over the entire period, echoing our visual findings. In

addition, although the average ARI values of 11, 15 and 50 clusters are comparable, the

variation drops by 0.03 as the number of clusters increases from 15 to 20, which is more

conspicuous than the increase from 11 to 15. Based on the signal-to-noise ratio and taking

the ARI into account, we settle to further investigate the case of 20 clusters.

Focusing on the temporal ARI curve of 20 clusters, we highlight two empirical findings.

Firstly, at the daily frequency, co-trading behaviors align well with economic sectors, with

frequent fluctuations. Secondly, we observe a downward trend in similarities, hinting

that the sector structures become less prominent from 2017 to 2019. This reinforces the

observation from Figure 4 concerning the growth of strong co-trading relations across

GICS sectors. As expected, our co-trading networks embed dynamic structures in stock

markets beyond static economic sectors.

Figure 7: Similarity of daily clusters.
This heatmap shows the similarity between days. Every day, we group stocks into 20 clusters
by applying spectral clustering on the daily co-trading matrix. Then, for each pair of days, we
calculate the ARI between the clusters.

In addition to comparing daily clusters with the benchmark, we also measure the

similarity between clusters corresponding to every pair of days. Figure 7 shows a heatmap

of all such pairwise ARIs, based on 20 clusters. It is noteworthy that the colors along the

diagonal get darker from upper left to lower right corner, which indicates that the market

structures become unstable over time. Moreover, we distinguish three blocks along the

main diagonal. For a quantitative regime detection, we apply the spectral clustering
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method on the heatmap, and clearly identify three clusters of trading days, shown in

Figure 8.
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Figure 8: Regimes detected by spectral clustering.
This figure shows the clusters of days, derived by applying spectral clustering on the heatmap
of ARI in Figure 7 to classify days into three regimes. The horizontal axis indicates dates and
the vertical axis indicates which cluster each day belongs to.

6 Co-trading and covariance

In this section, we connect the co-trading behavior to co-movement in stock prices. A

direct measure of price co-movement is the covariance matrix. On every day t, we define

a realized covariance matrix, denoted as Σ̂R
t , as a proxy of the true covariance Σt, based

on logarithmic returns of stocks. We conduct a regression analysis and present significant

associations between co-trading and realized covariance matrices.

6.1 The realized covariance matrix

For each day t, we define the realized covariance matrix following the three steps below.

Since we only use intraday data, the index t is omitted in this part to avoid ambiguity.

Firstly, we split the normal trading period from 9:30 to 16:00 into equally spaced and

non-overlapping intervals of length ∆. We denote Int = {τ1, τ2, . . . , τm} as the set of

left end-points of each interval. Secondly, we define the logarithmic return of all stocks,

rτ ∈ RN , for each period, indexed by the left point of the interval τ , as

rτ = log(Pτ ) − log(Pτ−∆),
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where Pτ ∈ RN are mid prices at time τ . Finally, we build the realized covariance matrix

as

Σ̂R =
∑
τ∈Int

rτr
T
τ .

For the empirical study in the following sections, we construct daily realized covariance

matrices with sampling frequency of 5 minutes, that is ∆ = 5 min, in line with Andersen

et al. (2001); L. Y. Liu, Patton, and Sheppard (2015).

6.2 Network regression analysis

In order to assess significance of the relationships between co-trading and covariance

matrices, we perform a network regression on each day t

Σ̂R
t = γtCt + Et, (1)

where γt ∈ R is the regression coefficient, and Et ∈ RN×N is the residual matrix. As

there are cross-sectional autocorrelations among stocks, it is not appropriate to assume

independence in the residuals. Instead, to draw inference on the regression coefficients,

we use the quadratic assignment procedure (QAP) (Mantel (1967), Krackardt (1987),

Krackhardt (1988)), which simulates the distribution of test statistics by simultaneously

permuting pairs of row and column of the explanatory matrix at random. Table 4 reports

the regression coefficients. Positive relations between covariance and co-trading matrices

appear in all days over the sample period, with mean and median of daily regression

coefficients equal 5.10 and 4.48, respectively. Moreover, 98.51% of these positive relations

are statistically significant at the 5% significance level.

Table 4: Simple network regression.
This table reports the mean, median and standard deviation of daily network regression coef-
ficients in (1), as well as their p-values. The p-values are obtained using theQAP with 2000
simulations. We run one regression for each trading day from 2017-01-03 to 2019-12-09.

γt p-value

Mean 5.10 0.004
Median 4.48 0.000
Standard deviation 2.86 0.034
Percentage positive 100 -
Percentage significant 98.51 -
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In the next step, we assess whether co-trading networks explain cross-sectional vari-

ation in covariance beyond GICS sectors. To account for the sector structure in the

regression, we introduce a static network of GICS sectors, as follows

Si,j =

1, if stock i and stock j belong to the same cluster

0, otherwise.

Then, controlling for the sector network, we perform the following regression

Σ̂R
t = γC

t Ct + γS
t S + Et, (2)

where γC
t , γ

S
t ∈ R are regression coefficients. We conduct a QAP in a multiple regression

setting (MRQAP) using double semi-partialing (SDP), an approach proposed by Dekker,

Krackhardt, and Snijders (2007).

The regression coefficients for the both co-trading and sector networks are shown in

Table 5; they are highly significant, indicating that there is a relationship between the

co-trading networks and the realized covariance matrix. It is noteworthy that the con-

clusion holds even when accounting for sectors. The mean and median of daily γC
t are

3.61 and 3.04, with 99.73% of positive values. During the whole sample period, 89.81%

of the coefficients are statistically significant. As expected, sector networks are also pos-

itively correlated with price co-movements and significantly associated to the covariance

structure of the stocks. With GICS sectors included in regressions, the coefficients of

daily co-trading matrices are lower, since co-trading matrices evidently incorporate sec-

tor structures as well. Still, even then co-trading matrices explain some of the covariance

of stocks beyond GICS sectors.

7 High-dimensional covariance estimation and appli-

cation to portfolio allocation

The realized covariance matrices we study in Section 6 pertain to 457 stocks, but are

constructed from 78 samples (corresponding to 5 minute buckets) for each stock. The

estimations fall into a high-dimensional setting where the number of samples is smaller
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Table 5: Multiple network regression.
This table reports the mean, median and standard deviation of daily network regression co-
efficients in (2), as well as their p-values. We perform one regression for each trading day
from 2017-01-03 to 2019-12-09. For inference, we use MRQAP with SDP, in line with Dekker,
Krackhardt, and Snijders (2007) and simulate 2000 runs to calculate p-values.

γC
t p-value γS

t p-value

Mean 3.61 0.029 0.24 0.001
Median 3.04 0.000 0.20 0.000
Standard deviation 2.52 0.116 0.16 0.009
Percentage positive 99.73 - 99.86 -
Percentage significant 89.81 - 99.56 -

than the dimension of the covariance matrix, resulting in singular estimates. However, it

is important to have invertible and well-behaved estimates in practice, for tasks such as

mean-variance portfolio allocation.

Fortunately, we have proven significant associations between realized covariance and

co-trading matrices. With the aid of data-driven co-trading clusters, we develop a method

for robust estimation of high-dimensional covariance matrices. This approach is moti-

vated by the work of Ait-Sahalia and Xiu (2017), and can be construed as an extension

of it that considers higher-order interactions by leveraging very granular high-frequency

data.

7.1 Robust covariance matrix estimation

As in Section 6, we estimate covariance matrices on every day t, noting that the approach

easily generalizes to any length of time period. For simplicity, we omit the subscript t in

this subsection.

Assuming that the intraday logarithmic stock returns, rτ ∈ RN , at time τ , follow a

linear K-factor model, they can be decomposed as

rτ = βfτ + uτ ,

where fτ ∈ RK is a vector of latent factors, β ∈ RN×K is a static loading matrix, and

uτ ∈ RK is the idiosyncratic component assumed to be independent of fτ . Therefore, the
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covariance matrix of rτ can be decomposed as

Σ = βΣfβT + Σu, (3)

where Σf =
∑

τ∈Int fτ f
T
τ is the low-rank covariance matrix of factors evaluated on the

left endpoints of the intervals, and Σu =
∑

τ∈Int uτu
T
τ is the idiosyncratic covariance.

Ait-Sahalia and Xiu (2017) prove that, under additional assumptions, one can use the

eigenvalues and eigenvectors to approximate the factor and idiosyncratic covariance ma-

trices, and that the approximation errors are bounded. That is, one may write

βΣfβT ≈
K∑
k=1

λkvkv
T
k ,

Σu ≈
N∑

k=K+1

λkvkv
T
k ,

where λk is the k-th largest eigenvalue of Σ and vi denotes its corresponding eigenvector.

Thus, we can write the sample covariance matrix as

Σ̂R =
K∑
k=1

λ̂kv̂kv̂
T
k + Σ̂u, (4)

where λ̂k and v̂k are the k-th largest eigenvalue and eigenvector of the sample covariance

matrix, and Σ̂u =
∑N

k=K+1 λ̂kv̂kv̂
T
k is the approximation of the idiosyncratic covariance.

We propose a robust covariance estimator achieving positive definiteness by imposing

a block structure on the idiosyncratic part of the sample covariance matrix, Σ̂u, based on

the data-driven clusters derived from co-trading matrices. We first threshold the sample

covariance matrix to obtain a sparse matrix Γ̂u, whose element corresponding to the pair

of stocks i and j is

Γ̂u
i,j =

Σ̂u
i,j, if stock i and stock j belong to the same cluster

0, otherwise.

Our proposed covariance estimator, incorporating the co-trading clusters, is given by

Σ̂Cluster =
K∑
k=1

λ̂kv̂kv̂
T
k + Γ̂u.
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The estimator is positive definite if the size of every cluster is smaller than the rank

of the singular sample covariance matrix, which is usually the number of samples used

to calculate it. To be specific, with a sampling frequency of 5 minutes, the largest

cluster should contain no more than 78 stocks. In contrast to the paper Ait-Sahalia

and Xiu (2017), which uses GICS sectors as a fixed “cluster”, we can tune the number

of clusters to guarantee positive definiteness given any universe of stocks. Moreover,

thresholding with co-trading clusters embeds the dynamic of the dependency structure in

stock markets, which is reasonable for covariance estimation at daily or higher frequency.

7.2 Mean-variance portfolio construction

To demonstrate economic value of the proposed robust covariance estimates, we develop

a daily rebalanced mean-variance strategy, which opens positions at market open and

liquidates at market close, for each trading day over the period of study. Based upon the

assumption that E[Σ̂t|Σ̂t−1] = Σ̂t−1 ∈ RN×N , we derive mean-variance portfolio weights

wt ∈ RN , on day t, by solving the following constrained optimization

min
wt

wT
t Σ̂t−1wt

‘s.t. wT
t 1⃗ = 1

||wt||1 ≤ l,

(5)

where 1⃗ denotes the all-ones vector, and l ≥ 0 restricts the level of leverage. When l = 1,

leverage is not allowed and all weights are non-negative. In contrast, when l is ∞, short-

sell is unrestricted and the optimization leads to the global minimum variance portfolio

(GMV) (Jagannathan and Ma (2003); Bollerslev, Patton, and Quaedvlieg (2018)). Note

that it is possible for Σ̂t−1 to be numerically singular. To avoid this issue, we do not

trade on days with ill-behaved covariance estimates, and setting wt = 0⃗ if the condition

number of Σ̂t−1 is greater than 1 × 109. Finally, the daily portfolio return is calculated

as

rmv
t = wT

t rt,

where rt ∈ RN is a vector of stock logarithmic open-to-close returns.

The evaluation metrics of portfolio performance are annualized volatility and Sharpe
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ratio. The annualized volatility is calculated as

σmv = stdev(rmv
t ) ×

√
252,

where stdev(·) is the standard deviation function. The annualized Sharpe ratio (Sharpe (1994))

is defined as

srmv =
rmv × 252

σmv
,

where rmv denotes the average daily return of the portfolio. According to the definition,

a high Sharpe ratio indicates lower portfolio volatility adjusted by mean return.

7.3 Analysis of portfolio performance

In the following empirical portfolio analysis, we experiment with multiple values of the

parameters corresponding to the number of data-driven clusters, number of factors for

covariance estimation, and leverage constraints for optimization. For each set of parame-

ters, we construct daily portfolio, and perform a backtest over the period of study. Since

we calculate portfolio weights traded on day t from covariance estimates from day t− 1,

all of our tests are out-of-sample.

The annualized volatility of the portfolios is shown in Figure 9. We conclude that a

larger number of clusters, which imposes higher level of sparsity on the residual covariance

components, leads to more robust covariance estimation, and lower variation in portfolio

returns. With short-sell prohibited, the portfolio risks are similar. As leverage constraint

relax, the GICS portfolios with 11 fixed clusters and the portfolios corresponding to 15

co-trading clusters exhibit increasing annualized volatility. In contrast, when we consider

20 and 50 co-trading clusters, the annualized portfolio risks decrease, and stabilize at

around 8%, regardless of the number of factor.

Figure 9 thus indicates that portfolios using our method of robust covariance estima-

tion can lead to superior performance compared to portfolios built upon GICS sector-

based covariance estimates. For further comparison after adjusting for returns, we add

Sharpe ratios for selected portfolios in Table 6. In alignment with with our findings from

Figure 9, data-driven clusters outperform fixed GICS sectors for robust covariance matrix

estimation. However, increasing the number of clusters too much deteriorates the Sharpe

ratio. It is noteworthy that, with 50 clusters, the idiosyncratic covariance matrices are
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Figure 9: Annualized volatility of mean-variance portfolios.
These figures show the annualized volatility of mean-variance portfolios constructed by solving
(5) based on different covariance matrices estimates. The out-of-sample backtests span the
period from 2017-01-03 to 2019-12-09. Every sub-figure corresponds to one choice of latent factor
numbers while decomposing sample covariance matrices in (3). In each sub-figure, every curve
plots portfolio volatility, for a choice of blocks structure imposed on the residual covariance,
along leverage constraints.
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overly sparse and the covariance among stocks is underestimated. Thus the portfolio op-

timization tends to select stocks with lower volatility instead of diversifying, and results

in low level of returns. From the numbers of clusters considered here, the highest Sharpe

ratio of 1.40 is attained by the GMV for 20 clusters with 10 latent factors.

Table 6: Annualized Sharpe ratio of mean-variance portfolios.
This table documents the annualized Sharpe ratios of mean-variance portfolios constructed by
solving (5) based on different covariance matrices estimates. The out-of-sample backtests span
the period from 2017-01-03 to 2019-12-09. The ‘Factor’ column specifies the number of latent
factors while decomposing the sample covariance matrices. The ‘Leverage’ column indicates
leverage constraints in (5), where ∞ means that short-sell is unrestricted. We use 15, 20 and
50 clusters, together with GICS sectors as the baseline, while imposing diagonal block structure
on the residual covariance matrices.

Factor Leverage Cluster

GICS 15 20 50

1

1 0.01 0.13 0.09 -0.06
3 0.57 0.61 0.53 0.12
5 0.75 0.89 0.69 0.12
7 0.71 0.98 0.69 0.12

∞ 0.45 1.07 0.69 0.12

3

1 0.35 0.48 0.44 0.36
3 0.54 0.74 0.86 0.51
5 0.95 1.02 1.04 0.54
7 0.92 1.13 1.11 0.54

∞ 0.59 1.19 1.12 0.54

5

1 0.38 0.52 0.51 0.47
3 0.63 0.81 0.88 0.62
5 1.04 1.11 1.16 0.70
7 1.06 1.28 1.23 0.71

∞ 0.69 1.29 1.23 0.71

10

1 0.44 0.50 0.45 0.42
3 0.64 0.89 1.04 0.58
5 1.12 1.16 1.34 0.69
7 1.27 1.28 1.39 0.70

∞ 0.97 1.18 1.40 0.70

Zooming into the trajectory of portfolio gains, we sketch the cumulative returns of the

best GMV portfolios for the data-driven clusters we propose, along with the GICS sector

as a baseline, respectively, in Figure 10. Furthermore, we add the S&P 500 index (SPY

ETF) as a proxy for the market. Clearly, trading SPY from open to close every day is not

a profitable trading strategy. Apart from that, the portfolio derived from our method
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outperforms the GICS baseline and the market benchmark, by achieving comparable

profits while bearing much smaller fluctuations and shorter drawdown periods.
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Figure 10: Cumulative returns of portfolios.
This figure plots cumulative returns of four portfolios from 2017-01-03 to 2019-12-09. The
portfolios include (1) ‘GMV-cluster’: the global minimum variance portfolio based on robust
covariance matrices estimated using our method with 10 factors and 20 clusters; (2) ‘GMV-
cluster’: the GMV portfolio based on robust covariance matrices estimated using 10 factors and
GICS sectors; (3) ‘SPY (close to close)’: the SPDR S&P 500 ETF Trust which tracks the S&P
500 Index; (4) ‘SPY (open to close)’: the SPY ETF, following our strategy, with positions only
during normal trading hours.

8 Robustness

In this section, we briefly discuss the robustness of the spectral clustering algorithm.

Moreover, we also report on the results when calculating co-trading scores based on

traded volume instead of the number of trades. Details of robustness checks are provided

in the appendix.

8.1 Random initialization of spectral clustering algorithm

The spectral clustering method applies the K-means algorithm (MacQueen (1967)) on the

spectral domain of the co-trading matrices. An issue of K-means is that the clustering
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results may be sensitive to random initialization. In order to mitigate the sensitivity,

we adopt K-means++ (Arthur and Vassilvitskii (2006)) method for initialization. To

further empirically examine the robustness, we repeat the experiment of clustering on

daily co-trading networks in Section 5.3 for 100 times with different random seeds. Then

we compare the daily means of ARIs between clusters from each pair of experiments. Our

results ensure that the spectral clustering method we use is robust on finding clusters in

co-trading networks. Further details are in Appendix B.

8.2 Co-trading measured in volume

Instead of incorporating the number of transactions, we also explore the possibility of

defining co-trading in terms of trading volumes. Details are included in Appendix C.

By comparing ARI between corresponding clusters and GICS sectors, we observe the

same patterns as for volume measured co-trading matrices. According to the portfolio

performance, described in Section 7, the Sharpe ratios of GMV portfolios corresponding

to the volume measured co-trading matrices surpass the GICS benchmarks. Overall our

findings are robust under the volume measure in the sense that they show similar patterns.

Using count of trades appears to be more appropriate than volume in measuring co-

trading. This finding echos previous research (Chan and Lakonishok (1995); Chordia and

Subrahmanyam (2004)) which shows that, since institutions tend to split large orders

to high their liquidation purpose and reduce market impact, the number of transactions

outperforms the volume in measuring price impact. We confirm that using count of trades

better captures patterns in price co-movement.

9 Conclusion and future research directions

We introduce and construct co-trading networks to model the dependency structure of

stocks arising from the interplay of cross-stock trading among market participants, in

response of trade arrivals on the market. Using a spectral clustering algorithm, we un-

cover clusters which capture well temporally evolving structures within markets, con-

taining information beyond industry sectors. Our empirical studies, focusing on daily

co-trading during 2017-01-03 to 2019-12-09, reveal that cross-stock trading behaviors are

time-varying, and co-trading relations across different GICS sectors become apparent.
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These two observations indicate that solely relying on sectors is not sufficient for captur-

ing co-trading behavior, and they motivate the construction and analysis of time series

of co-trading networks built from very granular high-frequency data.

Taking a further step, we establish that strong co-trading relations can lead to a high

level of co-movements in stocks prices. We use realized covariance matrices to measure the

co-movements of prices. Through network regression analysis, we document a significant

positive relation between co-trading and covariance matrices. Even when adding a net-

work of sectors as a control variable in the regression, the conclusion remains valid. This

conclusion bridges the gap between cross-stock trading activities at the microstructure

level and the macroscopic covariance of stock returns.

Employing dynamic co-trading networks and data-driven clusters, we develop a robust

co-variance estimator for stock covariance, in a situation where the number of samples for

estimating the covariance is smaller than the number of stocks. Our method outputs well-

behaved estimates from sample covariance matrices, by incorporating contemporaneous

information of stock clusters. As a result, a mean-variance portfolio constructed with our

robust estimates achieves lower volatility and higher Sharpe ratios in comparison with

baseline methods and market returns.

Our concept of co-trading provides a general framework to investigate the interaction

of trade flow corresponding to different stocks; for example, one could take into account

the directions of trades, as defined in Section 3, when analyzing the co-trading behaviour.

It would also be worthwhile to further investigate how trades with same (resp., oppo-

site) directions contribute to the positive (resp., negative) components of covariance and

correlation of stocks. Additionally, in this study we assume that the co-trading score

is symmetric; however, asymmetric scores may also be of interest, and the pairwise re-

lationships could be modeled and clustered using methodology from the directed graph

clustering literature (Cucuringu, Li, et al. (2020)). Intuitively, shocks on companies with

large market cap can have impact on small cap stocks, but the converse is often not

true. With a simple adjustment to the current co-trading scores, this asymmetry could

be embedded into the network construction, allowing for the investigation of asymmetric

spillover effects. Furthermore, it would be interesting to leverage the co-trading network

time series for forecasting tasks concerning market structures, returns, and covariances,

possibly combined with models ranging from parsimonious to deep learning.
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A Spectral Clustering

In this section, we describe the spectral clustering algorithm used to cluster stocks based

on the co-trading matrices in Section 5.1.

We represent an undirected graph G = (V,E), where V = {v1, v2, ..., vN} is a collection

of N vertices which are data points and E is a set of edges, by its (weighted) adjacency

matrix A ∈ RN×N . The degree matrix of A, denoted as D, is the diagonal matrix with

entries

Dii =
N∑

j=1,j ̸=i

Aij.

The graph Laplacian L is defined as

L = D − A.

We use the degree matrix to normalize L, and the normalized version is

Lsym = D− 1
2LD− 1

2 ,

which contains which contains the information of graph connectivity. Then we perform

K-means clustering on the matrix of eigenvectors corresponding to the smallest K eigen-
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values of Lsym. Here, K is the pre-selected number of clusters. The procedures are

summarized in Algorithm 1.

Algorithm 1 Spectral Clustering

Input: An N ×N similarity matrix A, number of clusters K.
Output: Clusters C1, C2, ..., CK

1: procedure Spectral Clustering(A,K)
2: Compute normalized Laplacian Lsym

3: Compute the eigenvectors v1, v2, ..., vK corresponding to K smallest eigenvalues of
Lsym

4: Construct matrix Q ∈ RN×K with v1, v2, ..., vK as columns
5: Form matrix Q̃ ∈ RN×K by normalizing row vectors of Q to norm 1
6: Apply K-means clustering, with k-means++ (Arthur and Vassilvitskii (2006)) for

random initialization, to assign rows of Q̃ to clusters C1, C2, ..., CK

B Random Initialization

Figure 11 plots the average daily ARIs against time. We observe that the values of

average daily ARIs are high, for all numbers of clusters, with acceptable level of variation

over the entire period of study. Hence, our clustering analysis on co-trading matrices is

robust to random initialization.
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Figure 11: Robustness of applying spectral clustering on daily co-trading networks.
This figure plots the daily means of ARIs between each pair of clusters obtained by running the
spectral clustering method 100 times on the same co-trading matrix every day, with different
random initialization. Each line corresponds to a value of number of clusters, chosen from 11,
15, 20 and 50.
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C Volume Measure

In this section, we define co-trading in terms of volume of trades. As an analogue to

Section 3.2, we begin with define

V dj→di

t,j→i =
∑

xk∈Si,di

t

∑
xl∈{xa∈N δ

xk
|sa=j,da=dj}

ql,

where Si,di

t is the set of all filtered trades and ql is the size of trade xl.

Then, the pairwise volume co-trading score between stock i and stock j on day t, using

volumes of co-occurred trades for stock i and j with direction dj and di, respectively, is

defined as

cδ,d
i,dj

t,i,j :=
V di→dj

t,i→j + V dj→di

t,j→i√∑
xl∈Si,di

t

ql
√∑

xm∈Sj,dj

t

qm
.

Similarly, incorporating volumes, a pairwise co-occurrence count index is determined

by summing up volumes of co-occurred trades of a pair of stocks and normalizing with

their total volumes. In line with the article, we set δ is set to 500 milliseconds.

Finally, we concatenate the pairwise co-trading scores to be the co-trading matrix

in volume measure. We repeat the analysis and summarize the results in Table 7. The

volume measured co-trading matrices are robust, however, underperform those measured

in count of trades.

Table 7: Summary of analysis on volume based co-trading matrices.
This table reports the annualized Sharpe ratios of GMV portfolios constructed by solving (5)
based on different covariance matrices estimates. The out-of-sample backtests span the period
from 2017-01-03 to 2019-12-09. The ‘Factor’ column specifies the number of latent factors while
decomposing the sample covariance matrices. The ‘GICS’ and ‘Count-20’ columns indicate
GMV portfolios corresponding to GICS and clustering count based co-trading matrices with 20
clusters as benchmarks. For volume based co-trading matrices, we use 15, 20 and 50 clusters
while imposing diagonal block structure on the residual covariance matrices.

Factor Cluster

GICS Count-20 15 20 50

1 0.45 0.69 0.10 0.65 0.09
3 0.59 1.12 0.36 1.00 0.63
5 0.69 1.23 0.20 0.99 0.80
10 0.97 1.40 0.06 1.07 0.83
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