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Abstract

I study short-sale constraints in a market with asymmetric information. I offer

a novel approach endogenizing short-sale constraints by including an asset-borrowing

market in my model. Short-sellers have to borrow an asset and therefore reveal in-

formation to a lender. The lender trades on her own account in addition to charging

fees, which motivates the short-seller to hide the information and hinders short sales.

I contribute to the literature by modeling the mechanism behind short-selling in the

absence of explicit short-selling restrictions that are currently less relevant in practice.

The model has new implications for profit distribution and market efficiency.
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Securities lending and information transmission: a model of endogenous short-sale constraints

1 Introduction

In fact he often soothed himself

with the thought that in all these

years he had never gambled for

himself, but had always acted

strictly for others instead.

—Theodore Dreiser,

The Financier

In this paper, I aim to study how short-sale constraints can arise naturally without ex-

plicit short-sale bans. I offer a parsimonious model of endogenous short-sale constraint that

has implications for many other features of the financial markets – informational efficiency,

volatility, and the distribution of trading profits between the agents. Unlike the existing

literature about short-sale constraints, I assume that the agents are free to short-sell assets

on financial markets. Nevertheless, the short-sellers have to borrow the asset from a secu-

rity lender in order to open a short position. This assumption in my model is designed to

mimic the real borrowing practice on financial markets, where short-sellers borrow assets

from mutual funds via brokers.

I work in a setting with asymmetric information and the short-sellers reveal their signals

to the security lender through their borrowing decisions. In my model, the natural short-sale

constraint comes from two channels. The first channel is simple avoidance of fees. Security

lenders are assumed to have some market power, and they are in a position to set fees for

lending the securities. The second channel arises because of informed trading, and represents

the main novelty of this paper. The short-sellers are discouraged from borrowing too much

because borrowing requests signal low quality of the asset to the security lender. As a result,

short sales trigger sales on the part of the security lender and create additional downward

price pressure.

Compared to other papers modeling short-selling decisions, the setting in the present

paper is more realistic in the context of modern financial markets because the model explicitly

incorporates the mechanism behind short-selling as opposed to imposing exogenously a short-

selling ban which in practice becomes less relevant.1 The paper also answers a number of

important economic questions that have not been answered in previous literature on short-

1For example, in the US, there is a tendency to relax the short-sale restrictions. Historically, during the
period 1938-2004, US stocks were subject to so-called uptick rule which prohibited short-selling at a price
lower than the previous transaction price. During the period form 2004 to 2007, the uptick rule was abolished
and was only partially reinstated in 2010. The new short-sale restriction – so-called alternative uptick rule –
applies only to the stocks that lost their value by at least 10% compared to the previous-day closing price.
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selling and information diffusion. How exactly do security lenders profit from the lending

business? Do the security lenders change the game in terms of percolation of the information,

and how does the existence of third-party security lenders affect the decisions and trading

profits of the short-sellers? Which factors affect the commission rates on the asset-borrowing

market?

I offer an equilibrium model that allows answering all these questions in a coherent way.

The model inherits its main assumptions from Kyle (1985) and augments the Kyle model

with an additional agent – a security lender. I think of the security lender as of an institution

that holds a big inventory of the asset on behalf of their clients who are long-term investors.

The security lender is authorized by her clients rehypothecate the asset (e.g., temporarily

lend the asset to third parties).

Since the authorization to lend out the assets is a privilege, the security lender has a

certain bargaining power over the potential borrowers and can, therefore, charge a substantial

interest rate. This interest rate works as a short-sale constraint because it discourages the

informed investors from trading on negative signals.

Beyond that, there is another reason for informed agents to refrain from trading or mod-

erate the aggressiveness – an information-driven deterrant. When an informed trader sells

the asset short, she borrows this asset and by doing so reveals information to the security

lender. This may create an opportunity for the security lender to also trade on the negative

signal, thereby competing with the informed trader.

Moreover, even if the informed trader has a positive signal, and therefore buys the asset

without a need to explicitly reveal the signal to the security lender, the very fact that the

informed trader does not borrow the asset (and does not intend to sell it short), reveals that

the asset value might be higher than average, which is a positive signal for the security lender

and an opportunity to gain by establishing a long position. However, in the case of a positive

signal, the security lender is unable to judge about its magnitude, that is, to what extent the

asset fundamental value is higher than its unconditional mean. In other words, because of

the lender’s front-running2 behavior, the incentive for the informed agent to buy is reduced

because even in this case the informed agent share her profits with a front-running security

lender.

It is crucial that for the short-selling case the information-driven deterrent is stronger.

Not only the informed agent shares her profits with the front-runner, but there is also a direct

incentive for her to reduce the aggressiveness of short-selling because each marginal unit of

the asset borrowed triggers extra sales from the security lender. This does not happen in the

2I use the term “front-running” in a broad sense, to designate that the lender uses information about
trading decisions of another trader for her own profits. Some other authors also follow this approach, as I
point out in Section 1.1.
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positive case because in such case the lender is ignorant about the size of the buy order.

Overall, I have two ways in which the security lender can profit: receiving commission

and front-running. To achieve clarity, I model each of the two ways separately and then

bring them together. The variants of my model that include the possibility of front-running

contribute to the well-established strand of empirical literature dedicated to the signaling role

of short interest, see for example Boehmer, Huszar, and Jordan (2010) and Seneca (1967).

As the short interest represents a valuable piece of information, it is natural to assume that

the security lender can use it.

I present three variants of the model – with commission only, with front-running only,

and a hybrid of the two. In the first setting, the security lender is only allowed to charge

a proportional commission for lending the asset to those who want to sell it short, but not

make use of the private information. Additionally, I consider a generalization. I give the

security lender the freedom to set a variable commission rate. This option can be used in

order to either play a screening game with the informed traders or to create an incentive for

them to short-sell more. In the second setting, the profits of the security lender come from

front-running: trading on the private information contained in informed traders’ decisions.

In the third setting, the security lender benefits from both the commission and front-running.

The first setting is the most simple one. In this setting, the security lender chooses the

interest rate and faces a trade-off between the size of the interest rate and the amount of asset

borrowed from her by the market participants. If the security lender charges an interest rate

that is too low, then the expected commission revenues are also low because the commission

rate affects the expected revenues multiplicatively. On the other hand, if the interest rate

set by the security lender is too high, then the informed agents borrow the asset extremely

rarely and the expected borrowed quantity becomes very modest. As a result, the expected

commission revenues become modest as well. Thus, the other extreme is also suboptimal.

The second setting is a benchmark case. I set the commission rate to zero by assumption

in order to isolate the effects that arise due to the lender’s ability to front-run the informed

trader. In the third setting – a hybrid of commission and front-running – the security lender

faces the same trade-off as in the first setting, but on top of that, another force comes into

play. In this setting, the interest rate also affects the informational content of short interest.

A high interest rate discourages short-selling and thus hinders the information transmission

from the informed agent to the security lender. Therefore, in this hybrid case, the security

lender has an additional incentive to keep the commission low. Since the security lender aims

to maximize overall expected profits from the lending commission and from informed trading,

this additional force introduces a distortion into the original model (the first setting). Given

the same behavior of the informed trader (off-equilibrium), the security lender will have an
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incentive to lower the commission rate that she asks for lending the asset in order to encourage

more active short-selling and be able to observe the private signal more often. In addition,

the fact that the security lender herself trades on her own behalf, will in turn change the

informational content of the order flow. The overall demand for the asset will be driven also

by her choices.

This, in turn, must induce changes in the behavior of the market participants, and may

change the market depth, consequently the optimal trading strategy of the informed trader

will be adjusted again. This interplay of the incentives will lead to an equilibrium different

from the one without lender’s possibility to trade.

In the settings with front-running, in addition to an informed trader and a liquidity trader,

I introduce an uninformed borrower. The role of the uninformed borrower is to prevent the

security lender from knowing exactly what the informed agent is doing and being able to infer

the asset’s payoff precisely. Indeed, if the only agents borrowing the asset are the informed

traders, then in case of non-zero borrowing position, the security lender can precisely infer

value of the private signal. First, this implication would be rather extreme. Second, the

assumption of having an uninformed borrower is necessary to have an equilibrium in the

model.

Note that the uninformed borrowers in my model are distinct from liquidity traders. The

liquidity traders may want to sell the asset in order to raise cash, so they sell only out of

their portfolio and they do not need to borrow the asset. Instead, the uniformed borrowers

sell short for different reasons. They might be misinformed and seek to profit from this trade

or might want to hedge against the risk of a non-tradable endowment.

The contributions of this paper are as follows. First, I explain rationally possible sources

of short-sale constraints. Second, I study the implications of the possibility that the security

lender may learn about the quality of the asset from the quantity of the asset that the market

participants would like to borrow. Third, I find that the commission rates for asset borrowing

are likely to depend on whether the security lender has the right to trade on her own account

and on the aggressiveness of the uninformed borrowers. If the security lender is unable to

front-run or the uninformed borrowers are very active, this is likely to cause an increase in

borrowing commission rates.

1.1 Related literature

The present paper models the disincentives to short-sell due to information-retention con-

siderations, and thus contributes to two major strands of finance literature. The first strand

is the literature about short-sale constraints. This literature includes Jones and Lamont

(2002), Allen, Morris, and Postlewaite (1993), Danielsen and Sorescu (2001), Diamond and
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Verrecchia (1987), and Pankratov (2018). The present paper is similar to the last two papers

in this list; in the sequel of this section, I explain the distinctions.

The second strand is the literature about “predatory trading”, “front-running”, “back-

running”, “mimicking”, “spoofing”, etc. The common idea of this literature is that certain

traders (let’s call them “followers”) observe the trading decisions of other possibly informed

agents and trade using this information. This behavior allows the followers to earn profits

either by predicting the future direction of trades (see for example, Sannikov and Skrzypacz

(2016), Kervel and Menkveld (2019), and Barbon, Di Maggio, Franzoni, and Landier (2019)),

by knowing contemporaneous trading needs (e.g. Danthine and Moresi (1998)), or by predict-

ing asset fundamentals (see for example Huddart, Hughes, and Levine (2001), Yang and Zhu

(2020), and Mele and Sangiorgi (2020)). Another common feature is that the players whose

behavior is observed (let us call them “leaders”) are completely aware of being watched and

copied by the followers and take this into account. In my model, fundamentally informed

traders play the role of “leaders”, while the security lenders play the role of “followers”. The

key feature of my model is that the follower can only judge about the size of the leader’s

short position but is absolutely ignorant about the size of the leader’s long position. Sim-

ilarly to Danthine and Moresi (1998), I use the term “front-running” in a broad sense to

highlight the attempt of the security lender in possession of trade-related information to use

this information for her profits. This does not mean, however, that in my model, the asset

lenders predict anyone’s future trading needs.3

From the game-theoretic perspective the front-running game that I present here is similar

to the model of Huddart et al. (2001) with two key distinctions. First, the model is asym-

metric, and the security lender (“follower”) can judge the magnitude of the private signal

of the informed traders only in the negative case. Second, unlike Huddart et al. (2001), I

assume that the “follower” trades in the same auction simultaneously with the “leader”.

Among the papers about short-sale constraints, the present paper is most similar Diamond

and Verrecchia (1987), Pankratov (2018). Moreover, the present paper can be considered as

a generalization of Pankratov (2018). These two related papers analyze how short-selling

increases market efficiency, while short-sale constraints diminish it. The mechanism is intu-

itive: in the absence of short-sale constraints, informed agents with negative signal act on

their information and reveal it to the market through their trading decisions, while in the

presence of short-sale constraints such a revelation is hindered.

One of the first theoretical papers studying this effect is Diamond and Verrecchia (1987).

In this paper, the authors introduce an asset with an uncertain payoff. The asset payoff can

take only two values (“high” and “low”). Uninformed market participants (market makers)

3I use the designation “front-running” throughout the paper.
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infer asset payoff by observing the behavior of the informed ones. The price converges to the

true payoff as the market makers repeatedly observe the behavior of informed participants and

learn from them. The authors show that the short-sale constraints slow down the convergence

of the asset prices to the efficient values reflecting the true payoff.

In Pankratov (2018) I study a more realistic setting and propose a model similar to

the one considered in the present paper. In contrast to the present paper, in Pankratov

(2018), I still consider explicit short-sale bans, but I introduce a probability distribution of

the asset with many (at least three) possible outcomes. As a base case, I consider normal

distribution to mimic a more realistic probability distribution of the asset’s fundamental

value and make the model comparable with Kyle (1985). However, in order to generate

the main effects, it is enough to consider the case with three possible outcomes “bad”,

“medium”, and “good”. With this key assumption of a multinomial/normal distribution,

I show that the main prediction of Diamond and Verrecchia (1987) holds, but on top of

that, I can generate richer predictions. In particular, Pankratov (2018) explains rationally

the asymmetric volatility effect in the stock prices (the fact that volatility in the future is

inversely related to the return in the current period).4 In a nutshell, the explanation is rather

intuitive. I assume a short-sale prohibition that applies to some of the informed agents in

the model. Under this assumption, a constrained agent who knows that the asset is “bad”

cannot reveal this information because of the constraint. In other words, the constrained

agents behave the same way regardless of whether the asset is of “bad” or “medium” quality.

Thus, from the perspective of the market maker, it is harder to distinguish between “medium”

and “bad” than between “medium” and “good” outcomes. This eventually makes the left half

of the distribution more opaque from the market maker’s point of view, i.e. delays learning in

case of bad and neutral outcomes. This leads to higher volatility following negative returns.

Most of the implications of the model in Pankratov (2018) hold also in the present paper

as long as the asset lender sets a very high interest rate. If the rate is very high, this

deterrent works exactly as short-selling ban, the borrowing demand becomes uninformative,

and front-running becomes irrelevant.

2 Model structure

In this section, my goal is to merely set the stage – to explain how the agents interact among

themselves, the information structure, introduce the reference names for the agents in the

model, and stipulate main statistical assumptions.

4This phenomenon is also known as the “leverage” effect. This name comes from the first economic
explanation (Black, 1976), which eventually turned out to be insufficient.
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I model a market for a single asset, whose liquidation value is a continuously distributed

random variable, say, normally distributed one d ∼ N(0, σ2
d).

The model is composed of the following agents:

1. Informed trader “x” is a rational trader in a possession of private signal d – a pure

signal that coincides with the asset’s fundamental (liquidation) value.

2. Uninformed borrower “w” is a noise trader who trades for exogenous reasons. The

uninformed borrower “w” may even choose to sell short.

3. Lender is an institution (such as a mutual fund or an ETF) that holds massive inven-

tories of the asset and stands ready to lend them to short-sellers on short notice.

4. Liquidity trader “z” is an agent that trades for exogenous liquidity reasons. The liq-

uidity trader “z” never goes short.5

5. Market maker is a deep-pocketed risk-neutral agent who observes the overall demand

for the asset and sets the price to expected liquidation value given all available informa-

tion. This agent can be thought of as a perfectly competitive population of arbitrageurs

who trade only on public information.

The model is static i.e. there is only one round of trading. At time 0, no one has private

signals about the liquidation value. At time 1, the informed trader “x” knows the liquidation

value d from her private source of information. As a result of observing demand for lending

(a.k.a. short interest), the lender also has a superior insight about d. At time 2 all the

agents know precisely d.

In the model, the order size x is determined endogenously in equilibrium, while quantities

w and z are exogenous and continuously distributed: say, w ∼ N(0, σ2
w) and z ∼ N(0, σ2

z).

It is assumed that d, w, and z are mutually independent.

Actions in my model happen according to the following protocol:6

� First move (t = 1):

5Since the liquidity trader “z” buys and sells only for liquidity reasons, this trader never has an incentive
to borrow the asset. If this agent needs cash, there is no reason to borrow a risky asset because it is easier
to directly borrow cash.

6Please note that I chose a non-conventional notation. In particular by a decomposition of a real number
into “negative part” and “positive part” I mean the following:

x = x−︸︷︷︸
negative part:min(x,0)

+ x+︸︷︷︸
positive part:max(x,0)

,

as opposed to a more traditional notation x− = |min(x, 0)|. In my notation, the “negative part” is indeed
negative.
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– True value of the asset d is revealed to the informed trader “x”;

– The informed trader “x” borrows if necessary |x−| shares and submits an order

to buy (sell) x(d) shares;

– The uninformed borrower “w” borrows if necessary |w−| shares and submits an

order to buy (sell) w shares;

� Second move (t = 1):

– The lender observes x− + w−;

– The lender submits an front-running order to buy (sell) y [x− + w−] shares;

– The liquidity trader “z” submits an order to buy (sell) z shares;

� Clearing (t = 1):

– The market maker observes x(d) + w + y [x− + w−] + z;

– The market maker sets the price and executes all the orders;

� t = 2: The true value d is paid out.

The following diagram summarizes the model.

Figure 1: Full diagram of the model

i
Informed trader “x”
buys (sells) x shares

+ Lender + Market maker

Uninformed borrower “w”
buys (sells) w shares

Liquidity trader “z”
buys (sells) z shares

signal d

borrows if x < 0: x−

$ fee

x

u=x−+w− Y (u) s

borrows if w < 0: w−

$ fee

w

z

In the following sections, I dissect my model by segregating the phenomena that arise

because of commissions and because of front-running. In particular, in section 3 I isolate

implications of the commissions on the financial markets by eliminating the possibility of
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front-running. Conversely, in section 4 I isolate implications of the front-running on the

financial markets by eliminating the possibility of the lender charging a commission. Finally,

in section 5 I analyze both effects together.

In some of the settings, I exclude the uninformed borrower “w” from the model. In those

cases, I mention it explicitly.

3 Model without front-running: lender only charges

commission

If the informed trader “x” borrows the asset, she needs to pay a commission to the lender.

The commission rate r is set by the lender ex-ante. It may be either set exogenously or

determined by the lender in an optimal way. The commission revenues are proportional to

the quantity of the asset borrowed by the traders.

The informed trader “x” submits a market order whose size depends on the realization

of the private signal d and on the commission rate r. The order size is denoted as x = Xr(d).

The only signal that the informed trader “x” has is d, so the order size is a function of d.

This quantity is positive for buy orders and negative for sell orders. The amount borrowed

by the informed trader “x” is |Xr(d)
−|.

Therefore, the dollar value of the commission paid by the informed trader “x” is as

follows:

RInformed trader “x” = r|x−|. (1)

The dollar value of commission paid by the uninformed borrower “w” is given by

RUninformed borrower “w” = r|w−| (2)

The aggregate amount of commission raised by the lender is

RLender = r · |u|, (3)

where u is aggregated negative parts of the order flows:

u = x− + w− (4)

In the sequel, I explain how the trading behavior of the informed trader “x” depends on

the rate of commission rate r charged by the lender. In this section, I focus on a baseline
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model, in which the lender’s profits only from charging a commission. On average, she earns:

E (RLender) = E
(
r · |x− + w−|

)
. (5)

The following diagram (Figure 2) summarizes the interaction among the agents in the

simplified model presented in this section. The diagram emphasizes that the front-running

order “y(u)” of the lender is excluded from the model.

Figure 2: Diagram of the model of commission

i
Informed trader “x”
buys (sells) x shares

+ Lender + Market maker

Uninformed borrower “w”
buys (sells) w shares

Liquidity trader “z”
buys (sells) z shares

signal d

borrows if x < 0: x−

$ fee

x

u=x−+w− Y (u) s

borrows if w < 0: w−

$ fee

w

z

3.1 Market makers

The price is set by the market maker based on the information that she observes. At time 0,

the market maker’s information set is empty and she sets the price equal to the unconditional

expectation of the liquidation value:

p0 = E(d) = 0.

At time 1, the market maker observes the aggregate order flow from the informed trader

“x”, the liquidity trader “z”, and the uninformed borrower “w”: s = Xr(d) + w + z, and

sets the price accordingly:

p1 = E(d|s) =: Gr(s).

At date 2, the previously private information d is announced publicly and the price

becomes equal to the true value:

p2 = d.
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3.2 Behavior of the informed trader

In this subsection, I describe the forces driving the behavior of the informed trader “x”.

The informed trader “x” is assumed to know the market maker’s price-setting function –

Gr(·). The informed trader maximizes her expected profits that she earns by holding the

asset from time 1 to time 2.

Xr(d) = argmax
x

E

x · [d−Gr(x+ z + w)]︸ ︷︷ ︸
gross profits

+rx−︸ ︷︷ ︸
borrowing costs

∣∣∣∣∣∣d
 (6)

3.3 Choice of commission rate

If the lender has the discretion to set the commission rate r, then I assume that this decision

has to be made before the private signal d is revealed to the informed trader “x”. Irrespective

of whether setting the commission rate is in lender’s discretion, the value of r is non-random

from the informed trader’s perspective.

On the other hand, strategy of the informed trader xr(·) depends on the commission

rate in equilibrium, as I explain in detail. In equilibrium, the expected quantity of the asset

borrowed by the informed trader “x” is inversely related to the rate of commission r:

∂ E[|X−
r (d)|]

∂r
< 0.

There are two reasons for this inverse relationship. First, the bigger the rate of the

commission r the more rarely the order size of the informed trader “x” turns negative and

the informed trader eventually borrows the asset. Second, when the borrowing does happen,

the quantity of the asset borrowed is inversely related to the size of the commission rate r,

that is the commission tames the informed trader’s borrowing appetite.

In this section and in sections 4 and 5, the behavior of the uninformed borrower “w” is

entirely exogenous. In such a setting, an increase of commission rate r does not affect the

uninformed borrower’s borrowing appetite: ∂ E[|w−|]
∂r

= 0. Obviously, under this condition

the lender has an incentive to set an extremely high commission to rip-off the uninformed

borrower “w” by charging extremely high rate r.

In order to address this phenomenon in this section, I simply exclude the uninformed

borrower “w” from the model. Only under this condition, I can expect to find an optimal

commission rate r.7

The following diagram (figure 3) emphasizes that I exclude the uninformed borrower

“w” from the model in order to analyze the question of optimal commission rate r that a

7
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monopolistic lender chooses to set.

Figure 3: Diagram of the model of commission without the uninformed borrower “w”

i
Informed trader “x”
buys (sells) x shares

+ Lender + Market maker

Uninformed borrower “w”
buys (sells) w shares

Liquidity trader “z”
buys (sells) z shares

signal d

borrows if x < 0: x−

$ fee

x

u=x−+w− Y (u) s

borrows if w < 0: w−

$ fee

w

z

Once I exclude the uninformed borrower “w”, the lender faces a sensible trade-off be-

tween the quantity of the asset borrowed by the informed trader “x” and the size of the

commission per unit of the asset. If the lender is a monopolist, then she solves the trade-off

by maximizing

r · E[|X−
r (d)|], where

the first factor increases in r, while the second factor decreases in r.

If the lender sets the commission rate r too low, then the amount of borrowing remains

finite while the expected commission revenues tend to zero. Instead, if the commission rate

r is too high, then the expected borrowing volume (a.k.a. short interest) becomes extremely

low, and, again, the lender underearns in terms of expected commission revenues.8

For each given value of commission rate r, I employ an iterative numerical algorithm to

find the informed trader’s equilibrium trading strategy and the market maker’s equilibrium

price-setting strategy. In the numerical algorithm, I use discrete approximations of random

variables d and z as I describe in detail in Internet Appendix.

I show equilibrium trading strategies of the informed trader “x” and for various exoge-

nous commission rates in Figure 4.

Additionally, I show the expected profits of the the lender as a function of commission

rate in Figure 5.

8In this case, an excessive rate of the commission leads not only to the expected volume of trading
converging to zero but also to commission revenues tending to zero. This is because as r → ∞, the expected
volume of borrowing E [−Xr(d)

−] tends to zero faster than 1
r .
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Figure 4: Equilibrium trading strategies of the informed trader “x” for various exogenous
commission rates r
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Figure 4 demonstrates that the commission discourages the informed trader “x” from

short-selling.

The mechanism is rather straightforward. If the informed trader expects a price drop,

but if its magnitude does not exceed the commission rate, the informed trader “x” does not

short-sell. The higher the commission rate is, the more likely it is that the informed trader

“x” eventually abstains from short-selling and the wider the range of values d for which this

happens. In other words, the “non-trade region” widens as r increases.

Finally, I consider a monopolistic lender and analyze her optimal behavior in terms of

choosing the commission rate r that results in the highest possible expected commission

revenues. This problem parallels one of maximizing tax revenues by a government. To solve

this problem graphically I plot commission revenues as a function of r: r 7→ r · E(|X−
r (d)|),

see Figure 5.
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Figure 5: Expected profits of the lender as a function of commission rate r

0.00

0.02

0.04

0.06

0.08

0.0 0.5 1.0 1.5 2.0

r

ex
pe

ct
ed

.c
om

m
is

si
on

Figure 5 is a finance counterpart of Laffer curve – a tool that allows governments to

analyze a trade-off between the tax rate and the magnitude of economic activity and to

choose an economically efficient tax rate.

In Appendix A I additionally consider a more general setting. I analyze the possibility

that the commission rate can be dependent on the quantity borrowed. By setting a variable

commission rate, the lender can potentially discriminate between borrowers with different

realizations of private signal d. Having more flexibility in setting the rate schedule, the lender

could potentially extract higher rent from the informed trader “x”.

In economic literature, the concept of price discrimination has been shown to be an

important one and beneficial for those who can exercise their market power, especially in the

case of monopolistic or oligopolistic settings. Naturally, discrimination can potentially result

in higher expected earning of the lender.

The essence and potential advantages of discriminatory commission rate can be explained

as follows. The lender may choose to “twist” the commission rate schedule while keeping the

commission rate for average borrowed quantity unchanged. Suppose, she decides to charge

a higher commission rate for large quantities and lower the rate for small quantities. By

doing so, the lender would effectively play a screening game with potential borrowers. As a
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3.4 Case of exogenous commission rateSecurities lending and information transmission: a model of endogenous short-sale constraints

result, the expected rate for a borrower with a highly negative signal would increase while

the expected rate for a borrower with a moderately negative signal would decrease. Since the

borrowers with a highly negative signal tend to borrow more, this would result in a higher

average commission rate weighted by quantity so long as the behavior of potential borrowers

does not change. So, the effect on the expected commission revenue would be positive.

Nevertheless, the increasing schedule of commission rates creates an extra incentive to lower

the borrowing quantity, and thus has a negative effect on expected commission revenues.

If the positive effect dominates, the “twist” would allow the lender to boost commission

revenues by adopting a “progressive” commission rate: the higher the quantity, the higher

the rate. Conversely, if negative effect dominates, then the opposite of “twist” would benefit

the lender. In Appendix A I show that in my setting the lender optimally chooses to retain

a flat commission schedule. In the context of the analysis provided above, the reason for such

a choice is that the two effects approximately compensate each other. For each given value of

commission rate r, I employ an iterative numerical algorithm to find the informed trader’s

equilibrium trading strategy and the market maker’s equilibrium price-setting strategy. In

the numerical algorithm, I use discrete approximations of random variables d and z as I

describe in detail in Internet Appendix.

I show equilibrium trading strategies of the informed trader “x” and for various exoge-

nous commission rates in Figure 4.

3.4 Case of exogenous commission rate

Previously, in Figure 3 I excluded the uninformed borrower “w” in order to case a sensible

maximization problem for a monopolistic lender.

If the commission rate is given exogenously, dropping the uninformed borrower “w” is

no longer necessary. The model remains tractable and sensible in the presence of both the

uninformed borrower “w” and the liquidity trader “z”. Moreover, if the rate r is exogenous,

the uninformed borrower “w” is mathematically indistinguishable from the liquidity trader

“z”: the informed trader “x” does not directly interact with either of them, while from the

perspective of the market maker, they are indistinguishable by assumption.

As a result, the solution presented in Figure 4 can be also interpreted as a solution the

model descried in Figure 2, where both informed trader “x” and uninformed borrower

“w” are present. As uninformed borrower “w” is indistinguishable from liquidity trader

“z”, the presence of uninformed borrower “w” will be equivalent to just increasing Var(z):

the implication for the equilibrium trading strategies is a proportional scale-up of informed

trader’s trading strategies by the coefficient
√
Var(z + w)/Var(z) =

√
1 + σ2

w/σ
2
z .
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3.5 Market efficiency

In this section, I highlight how borrowing fees influence price efficiency. In particular, to

measure the price efficiency, I use the following measure: the accuracy of the forecast of d

given the equilibrium price p1. Quantitatively, I use conditional variance Var(d|p1), which is

depicted Figure 6.

The overall effect of the commissions is a decrease in the price efficiency: the higher the

commission rate r, the higher is the E(Var(d|p)) = V (d − p1). The overall effect of the

borrowing commissions is as expected, the commission discourages the informed trader “x”

from revealing the information. As a result, for a sizable commission (say, r = 2) the behavior

of the informed trader “x” for d = −1 and d = −2 is absolutely identical. The higher the

commission rate, the wider is the non-trading region, which makes the market opaque.

Paradoxically, it is specifically in the opaque area the conditional variance E(d|p1) is

relatively small. To explain this phenomenon, I consider a limiting case: r = +∞, equivalent

to the case of explicit short-sale ban. I assume that d ∼ N(0, 1). Equilibrium trading strategy

for d > d0 is positive and increasing. For d ≤ d0, X(d) = 0: no-trade region is (−∞, d0],

where d0 < 0.

Suppose, the market maker observes the s = X(d)+ z = ŝ≪ 0 – a highly negative order

flow. Under the assumption, the z is normal, the Bayesian updating rule makes the market

maker think that X(d) > 0 is virtually impossible.9 The market maker cannot judge what

exactly is the value of d within (−∞, d0]. Eventually, the conditional distribution d|s = ŝ

(or, equivalently, d|p1 = G(ŝ)) is approximately truncated normal with the support (−∞, d0].

The numerical computations show that d0 ≈ −1
4
. It is possible to show that the conditional

variance of the truncated standard normal between −∞ and −1
4
is roughly 0.31.10 This

means that Var(d|p1 = G(ŝ)) ≈ 0.31. Instead, with r = 0, the model boils down to the

standard Kyle model. In this case, the conditional distribution is as follows:

d|p1 ∼ N (p1, 0.5) .

Paradoxically, when the market maker observes an informative negative signal, the con-

ditional variance is higher 0.5 than in the case of uninformative negative signal 0.31. In other

words, an “uninformed” market maker faces less uncertainty than an “informed” one. In

case r = 0 highly negative order flow values ŝ can drive the expectation E(d|s = ŝ) to highly

negative values, thereby transmitting information to the market maker; nevertheless the un-

certainty about d still remains considerable: V (d|s = ŝ) = 1
2
. With r = +∞, instead, even

9The rate of decay of the normal distribution increases in the tails because the log of density is quadratic.

10A general formula is 1− β ϕ(β)
Φ(β) −

(
ϕ(β)
Φ(β)

)2
, where β is the right truncation threshold (left one is −∞).

17



3.5 Market efficiency Securities lending and information transmission: a model of endogenous short-sale constraints

extremely negative ŝ only drives the expectation E(d|s = ŝ) to the level E(d|d < d0) ≈ −0.96,

at most.

I already mentioned that the borrowing fees boost the average variance E(Var(d|p1)).
This effect is due to the fact that they particularly push up the conditional variance for p1

in the region between for values of p1 around 0.5. The reason is that in this case effect is

as follows. The market maker finds it probable that d may be within (0, 1), but it can also

be around zero or highly negative because negative values of d are not reflected in the order

flow s = X(d) + z as a result of high borrowing fees.

If the commission is finite, then Var(d|p1) also exhibits high values for p1 < E(d|d <

d0). This case corresponds to the possibility of short-selling. Short-selling with positive

commission sends a strong signal about highly negative d; therefore, if the market maker

suspects that there might have been a short sale but is not certain about it, this creates

high uncertainty about the d. Condition p1 slightly less then E(d|d < d0) precisely describes

this case. This effect is particularly strong for high commission rates (say r = 5) in terms

of the values of V (d|p1); however with high commission rates the p1 goes below E(d|d < d0)

extremely rarely.

Figure 6: Price discovery – conditional variance of the fundamental value Var(d|p1)
In the standard Kyle model (r = 0) Var(d|p1) = 1

2
σ2
d = 0.5.
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In addition, I measure to what extent the private signal d is impounded in the market price

p1 by computing E(p1|d) and visually assessing of how far it is from d. Figure 7 demonstrates
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that in the model with front-running and commission, the private signal d is reflected in price

to a lesser extent than in the standard Kyle model: E(p1|d) is farther from d than in the

standard Kyle model.

It is also noteworthy that E(p1|d = 0) is below zero. This effect is due to the non-trade

region. Because of the commission, the informed trader “x” abstains from trading or reduces

the magnitude of sell orders. This makes the case d = 0 more similar to d = −1
2
than to d = 1

2

from the perspective of the market maker. This effect is described in detail in Pankratov

(2018).

Figure 7: Expected price from the informed trader’s point of view E(p1|d) for r = 2.
In the standard Kyle model (red dotted line) E(p1|d) = 1

2
d.

Black dotted line represents depicts E(p1|d) = d – 45◦-line.

−2

0

2

−5.0 −2.5 0.0 2.5 5.0

d

ex
pe

ct
ed

.p
ric

e.
im

pa
ct

4 Model of front-running11

In this section, I introduce another way for the lender to take advantage of the informed

trader “x”. In particular, instead of charging a commission for lending the asset to the

informed trader “x”, the lender can learn about the fundamental value of the asset from

11As I mentioned in the introduction, I use the term “front-running” in a broad sense to highlight the
attempt of the security lender in possession of trade-related information to use this information for her
profits. This does not mean, however, that in my model, the asset lenders predict anyone’s future trading
needs.
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the quantity that the market participants borrow from the lender and use this information

for trading.

Note that in this model, borrowing happens before trading. For that reason, once the

lender learns some information about the fundamental value of the asset, she can take

advantage of this information by trading on her own account.

The signal, that the lender observes is given by:

U(d, w) = X−(d) + w− ≡ min(0, X(d)) + min(0, w). (7)

After the lender observes the size of the short position, she decides on the size and

direction of her proprietary trade:

Y (û) = argmax
y

{
E
[
Πlender

X,G (y, d, w, z)
∣∣u = û

]}
where (8)

Πlender

X,G (y, d, w, z) = y · [d−G(X(d) + y + z + w)] (9)

In the model of front-running on short-selling information, the market maker’s inference

is done in the following way. Once the market maker observes the aggregate order flow

from the informed trader “x”, the lender, the liquidity trader “z” and, the uninformed

borrower “w”, she updates her beliefs about the liquidation value of the asset d and sets the

price accordingly:

p1 = G(ŝ) ≡ E
(
d
∣∣X(d) + w + Y (X−(d) + w−) + z = ŝ

)
. (10)

Definition 4.1. Equilibrium with front-running is a triple of functions: X(·), Y (·), and G(·)
such that the following conditions are met:

1. X(·) is an optimal strategy of the informed trader “x”:

X
(
d̂
)
= argmax

x

x ·
(
d̂− E

[
G(x+ w + Y (x− + w−) + z)

])
︸ ︷︷ ︸

expected profit per unit of asset

 , where (11)

the informed trader “x” takes strategies Y (·) and G(·) as given.

2. Y (·) is an optimal strategy to take advantage of the information available to the

lender (signal u). In particular, this means that Y has to satisfy Eq. 8. The lender

takes strategies X(·) and G(·) as given.

3. The price setting rule that the market maker follows (G(·)) is consistent with the
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trading strategies of the informed trader “x” and the lender. In particular, this

means that G satisfies the Eq. 10. The market maker takes strategies X(·) and Y (·)
as given.

4.1 Case without uninformed borrowers (no equilibrium)

For a start, I consider a simplified case – without the uninformed borrower “w”. Excluding

the uninformed borrower “w” from the model considerably simplifies the inference process

conducted by the lender. In particular, the signal u, observed by the lender is given by,

u = X−(d) ≡ min(0, X(d)) ≤ 0, and therefore (12)

it becomes very easy for the lender to make inferences about d.

The following diagram (Figure 8) summarizes the variant of the model discussed in this

subsection, and highlights the fact that the uninformed borrower “w” is excluded from the

model, and therefore the lender’s signal depends solely on x.

Figure 8: Diagram of the model front-running without the uninformed borrower “w”

i
Informed trader “x”
buys (sells) x shares

+ Lender + Market maker

Uninformed borrower “w”
buys (sells) w shares

Liquidity trader “z”
buys (sells) z shares

signal d

borrows if x < 0: x−

$ fee

x

u=x−+w− Y (u) s

borrows if w < 0: w−

$ fee

w

z

I conduct numerical simulation of agents’ behavior in an attempt to find an equilibrium.

The technical details of the simulation are presented in Internet Appendix. The outcome of

the simulation is that the trading strategies of the agents diverge. The divergence suggests

that in the model where the lender can perfectly observe the size of negative orders of the

informed trader “x”, may not have an equilibrium.

Additionally, in Appendix B, I show that in a similar model but with perfect lender’s
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observability for both buy and sell orders, equilibrium does not exist. In the appendix, I

assume that instead of u = x−+w−, the lender observes u = x+w. This allows me to retain

the essence of the “leader-follower” essence of the model and at the same time eliminate the

asymmetry between d > 0 and d < 0. I show in the appendix, that the symmetric model

has a unique linear equilibrium as long as σw > 0. The equilibrium is known in closed form

and it is possible to show that it collapses as σw → 0.12 See the appendix for the details.

The absence of equilibrium in the linear version considered in the appendix suggests that the

same outcome in the non-linear model is absolutely expectable.

In the model with front-running without the uninformed borrower “w” equilibrium does

not seem to exist. In order for the model to have a finite equilibrium, the existence of the

noise in the volume borrowed is essential. For that reason, I provide a numeric solution of a

model with Var(w) > 0 in the next subsection.

4.2 Case with uninformed borrowers

As I have shown, equilibrium does not seem to exist in the setting without the uninformed

borrower “w”. For this reason, I consider the case Var(w) > 0. The following diagram

(Figure 9) summarizes the variant of the model discussed in this subsection, and highlights

the fact that the lender is not allowed to charge a commission for lending.

Figure 9: Diagram of the model front-running
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w
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This case poses a lot of challenges with respect to solving the model. The main reasons

12Aggressiveness of the informed trader “x” tends to zero, while aggressiveness of the lender tends to
infinity.
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are as follows:

1. The model is asymmetric and does not have linear equilibria.

2. The decisions made by the lender are made with the knowledge

U(d, w) ≡ X−(d) + w− = û,

therefore the objective function of the lender is a conditional expectation whose eval-

uation requires tedious computations.

3. Bayesian updating performed by the market maker requires numeric integration, and I

have to employ certain computational tricks to make this integration feasible and fast.

I summarize my numerical methodology in Appendix E with references to other details

provided in other appendices. In the body of the paper instead, I focus on the economic

implications and analysis of the model. Regarding technical details, in this section, I limit

myself to merely revealing that I look for approximate equilibria. In particular, it means that

I constrain each of the agents (the informed trader, the lender, and the market maker) to

follow strategies from certain families of functions: X ∈ X , Y ∈ Y , and G ∈ G.
I normalize parameters σd and σz to 1, and I vary σw. The equilibrium strategies of each

one of the players constitute univariate functions. I present them as plots in Figures 10, 11,

12, and 13.

Figure 10 demonstrates that the possibility of front-running indeed discourages the in-

formed trader “x” from short-selling. The aggressiveness of short-selling is always lower

relative to the aggressiveness of buying. The disincentive is more severe when the informed

trader’s choices are more exposed to the lender, that is when the uninformed borrower “w”

is less active (low σw). In particular, the disincentive to short-sell comes from the fact that

bigger short sales trigger bigger front-running sales that in turn create extra downward price

pressure. The informed trader “x” is aware of the additional price impact, as a result, she

internalizes this effect and rations the amount of short-selling.

The smaller is the activity of uninformed borrower “w”, the heavier is the burden of front-

running, and the higher is the disincentive to short-sell. As I send σw to 0, the informed

short-selling will also shrink to 0. The informed trader “x” is no longer able to borrow

without being exposed. Without the uninformed borrower “w” borrowing market becomes

a market for “lemons” (Akerlof, 1970).

For the case of purchases, the direction of the effect is the same: reduction in the random

activity of the uninformed borrower “w” drives down the purchasing activity in response

to good signal realizations. Nevertheless, in the positive case, the front-running the effect is
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Figure 10: Informed trader’s order size as a function of private signal
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Figure 11: Front-running: lender’s proprietary order size as a function of short interest
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Figure 12: Front-running: lender’s proprietary order size as a function of short interest:
zoomed on the area around u = 0

●

●

●
●
●●

−3

−2

−1

0

−0.3 −0.2 −0.1 0.0

u

y

sigma.w

●

●

●

●

●

●

0.03125

0.0625

0.125

0.25

0.5

1

25



4.2 Case with uninformed borrowersSecurities lending and information transmission: a model of endogenous short-sale constraints

Figure 13: Market maker’s price setting rule in equilibrium p1 = G(s), s = x+ w + y + z
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much weaker. There is no explicit disincentive to hide the purchasing order from the lender:

even though, absence of short-selling signals positive payoff to the lender, the decision of

the lender cannot possibly depend on the size of the informed trader’s buy order since the

order size is not observable by the lender, as implied by the structure of the lender’s signal

U(d, w) = X−(d) + w−.

Lowering σw causes the moderation of the informed trader’s buying aggressiveness simply

because the uninformed borrower “w” contributes to overall order flow

s = x+ w + Y (x− + w−) + z.

When σw shrinks, the signals sent by the informed trader “x” become less protected from

the market maker, and therefore the informed trader “x” decides to be more cautious. It

is remarkable that indeed in the positive region of d the effect is weaker: as opposed to the

negative case, the activity of the informed trader “x” does not tend to 0 as σw fades out.

Regarding the front-running, the activity itself, Figure 11 brings out the following stylized

phenomena. First, the response of the lender to the “negative short interest” u = x−+w− is

always a monotonically increasing function: the more agents short-sell, the more the lender

sells (or buys less). Note that the absence of short sales (u = 0) sends a positive signal to
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the lender.

The overall aggressiveness of front-running increases as Var(w) shrinks. In particular, this

means that in the case u ≪ 0, the lender sells more units of the asset in equilibrium. The

reasons for this are as follows. First, as the uninformed borrower “w” becomes less active, the

lender is better able to infer d from the negative short interest u in case the informed trader

“x” does borrow. Consequently, the lender is better able to mimic the informed trader “x”

without incurring losses due to inevitable copying of w−. Second, as the informed trader

“x” becomes increasingly cautious, the lender’s interpretation of u = x−+w− becomes more

responsive to compensate for informed trader’s cautiousness. In other words, even a small

move made by the informed trader “x” means a lot from the perspective of the lender.

Additionally, it is remarkable that small negative values of u (small short interest) trigger

purchases on the part of the lender. Even though the lender observes someone borrowing

the asset, this actually sends a positive signal to the lender. This happens because in this

case E(d|u) > 0.

The mechanism behind is the following. A small negative value u = û reveals one of the

3 possibilities:

1. x− = û < 0, w− = 0,

2. x− = 0, w− = û < 0,

3. x− < 0, w− < 0, x+ w = û, where

the first case eventually means that with a finite probability d is a small negative number;

the second case means that with finite probability d ranges in a set of values where x(d) ≥ 0

with a density proportional to the unconditional density of d : N(0, σ2
d); and the third case

is relatively unlikely and negligible. Overall, the first case tilts the expectation of d upwards,

while the second case tilts the expectation downwards but the effect coming from the second

case is stronger so long as |u| is small enough. The details of bayesian updating d|u are

portrayed in Appendix F and depicted in Figure 31 within the appendix. This feature

is consistent with the empirical finding of Boehmer et al. (2010) that small short interest

predicts price increase.

A less obvious feature is that the lender’s reaction to zero and small negative realizations

of u is inversely related to Var(w), i.e. the less active the uninformed borrower “w” is,

the more the lender buys in response to observing u = 0 or u = û → 0−. The mechanisms

mentioned above do not explain such a behavior. This behavior has more intricate mechanics

which is explained in Appendix D in detail.
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4.2.1 Profits/losses breakdown

In this section, I analyze the competition between the informed trader “x” and the lender.

The split of the profits between the two agents is affected by the aggressiveness of the unin-

formed borrower “w”.

First, as the aggressiveness of the uninformed borrower “w” shrinks, she submits smaller

order sizes, naturally, her losses also shrink. Even though liquidity trader’s trading decisions

do not change, her expected losses increase. The main reason is that she becomes the only

looser in the economy. Academically speaking, she faces more adverse selection when the

relative weight of the uninformed borrower “w” shrinks.

Overall, as the aggressiveness of the uninformed borrower “w” shrinks, the aggregate

losers’ activity moderates. Naturally, the net effect is that the aggregate losses in the economy

moderate as well. We are dealing with a zero-sum game. Thus, the two winners – the

informed trader “x” and the lender – share between them the prey from the two losers –

uninformed borrower “w” and liquidity trader “z”.

As the aggressiveness of the uninformed borrower “w” shrinks, the informed trader

“x” also becomes more cautious. Conversely, the lender becomes more informed and more

aggressive. As a result, a higher proportion of the expected profits is allocated to the lender.

Figure 14 illustrates the overall expected profits/losses13 in the economy, how the profits

are shared between the informed trader “x” and the lender (the upper part of the plot), and

how the losses are shared between the uninformed borrower “w” and the liquidity trader

“z” (the lower part of the plot).

4.3 Market efficiency

In this subsection, I analyze market efficiency. First, I plot the price discovery – to what

extent the market price allows to predict the fundamental value of the asset. Figure 15

reveals that in my model, the price is slightly less efficient than in the standard Kyle model

in negative cases and slightly more efficient in the positive cases. The magnitude of these

effects is directly related to the aggressiveness of uninformed borrower. The lower price

efficiency in the negative region comes from the noisier behavior of the lender. The decisions

of the uninformed borrower are copied by the lender only when w < 0. This makes prices

noisier when they are negative.

The deviations of the conditional variance from the benchmark of the standard Kyle model

are, in fact, quite paradoxical. It is important to point out that in a symmetric modification

of the model presented here, the conditional variance is constant. It is exactly the same in

13Since my model is a zero-sum game, overall expected profits are equal to overall expected losses
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Figure 14: Profit sharing between the informed trader “x” and the lender, loss sharing
between the uninformed borrower “w” and the liquidity trader “z”. The bars above zero
depict the breakdown of profits. The bars below zero depict the breakdown of losses.
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4.3 Market efficiency Securities lending and information transmission: a model of endogenous short-sale constraints

the standard Kyle model: Var(d|p1) = 1
2
σ2
d.

Like in a preceding subsection 4.1, I refer to the same model described in Appendix B.14

In the symmetric model, the noise created by the uninformed borrower “w”, is copied by the

lenderwith a linear coefficient. In Appendix B, I show that irrespective of the aggressiveness

of the uninformed borrower “w”, in equilibrium, the price is as informative as in the standard

Kyle model. Moreover, even if I set the lender’s aggressiveness parameter exogenously, the

level of price efficiency stays at the same level. Thus, the level of price efficiency is an intrinsic

feature of the interaction between the informed trader “x” and the market maker. In the

negative area (d < 0), my model is similar to the one presented in Appendix B, while in the

positive region (d > 0), the is similar to the standard Kyle model. Both these models predict

the same degree of inefficiency Var(d|p1) = 1
2
Var(d).

In the symmetric model with a “leader” (the informed trader “x”) and a “follower” (the

lender) the extra noise created by the “follower” can be compensated by a more aggressive

behavior of the “leader”, and eventually, the signal-to-noise ratio remains the same, i.e., 1 : 1.

It turns out that the deviations from the Kyle benchmark are due to the asymmetric nature

of the noise component: the negative realizations of w (the uninformed borrower “w”) are

reflected on the order flow s, while the positive realizations are not.

To prove the point that the deviations of market efficiency from the benchmark are due

to the asymmetric nature of the noise and not due to the follower’s choices, I provide another

simplified model. I exclude the lender, and make the noise component z intentionally skewed.

Let us suppose, z̃ ∼ N(0, 1) and define z in such a way that negative values have a more

significant impact:

z = kz̃− + z̃+, where k > 1.

Eventually, I end up having a standard Kyle model with non-Gaussian (left-skewed) noise.

In Appendix C, I show that such a model features non-constant price efficiency V (d|p1). In
the appendix, I explain in detail the mechanics behind this effect.The bottom line of the

analysis provided in the appendix is that even though equilibrium in this model is similar to

that in standard Kyle model, the trading aggressiveness in the buy side and sell side differs,

and the mismatches in the buy side and sell side lead to the deviations from the benchmark

market efficiency, as in the standard Kyle model.

Another main prediction is that the magnitude of the asymmetry in the price efficiency

if commensurate the asymmetry in the distribution of the liquidity trader’s order z. The

magnitude of the effect in the main model – the model with “front-running” depends, there-

fore, on the extent to which the quantity of noise in the negative part exceeds that in the

14The lender observes u = x + w instead of u = x− + w−. I retain the essence of the “leader-follower”
essence of the model and eliminate the asymmetry.
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Figure 15: Price discovery – conditional variance of the fundamental value Var(d|p1)
In the standard Kyle model Var(d|p1) = 1
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positive part. The amount of extra noise can be judged by looking at the linear “leader-

follower” model in Appendix B. In Panel 25b of Figure 25, I show that in the linear model,

the amount of extra noise is non-monotonic. If the uninformed borrower “w” is very ag-

gressive (ρ2 close to 0 in the plot), then the lender does not “copy” the extra noise, so there

should be little noise asymmetry in the full model. If, instead, the uninformed borrower

“w” is very inactive, this also leads to a relatively small amount of noise: as the activeness of

the uninformed borrower “w” shrinks, the magnification effect of the lender increases but

not as fast. All-in-all, in two extreme cases, we have no extra noise while the maximum is

attained somewhere between the two extremes.

Additionally, in Figure 16 I analyze the discrepancy between the expected price and the

fundamental value from the perspective of the informed trader. This discrepancy is what

drives the profits of the informed trader “x”, to what extent the informed trader can take

advantage of her informational superiority.

Figure 16 highlights that the market price adjusts considerably in response to negative

values of private signal d despite the fact that the informed trader’s short positions are

reduced. This happens because the lender’s behavior approximately compensates the fact
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Figure 16: Expected price from the informed trader’s point of view E(p1|d)
In the standard Kyle model E(p1|d) = 1
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the informed trader reduces her short sales. The lender does part of the informed trader’s

job in terms of revealing the negative signal to the market maker, thereby moving the price

downward.

In my model, the expected price from the perspective of the informed trader “x” is

approximately the same as in the standard Kyle model. The informed trader’s expected

profits per one unit of asset d − E(p1|d) are also similar to the ones in the standard Kyle

model. In the standard Kyle model, I have E(p1|d) = d − E(p1|d) = 1
2
d. In my model with

front-running and without commission, these equations hold approximately.

5 Model with front-running and commission

In the two previous sections, I have considered the implications of commission and front-

running separately. In this section, instead, I allow both mechanisms to work simultaneously.

The lender can both raise the commission and front-run the informed trader. Effectively,

this section brings together sections 3 and 4 to understand how the two mechanisms work

together.
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The following diagram summarizes the model considered in this section.

Figure 17: Diagram of the model front-running

i
Informed trader “x”
buys (sells) x shares

+ Lender + Market maker

Uninformed borrower “w”
buys (sells) w shares

Liquidity trader “z”
buys (sells) z shares

signal d

borrows if x < 0: x−

$ fee

x

u=x−+w− Y (u) s

borrows if w < 0: w−

$ fee

w

z

The sequence of actions in the variant of the model portrayed here is identical to the one

considered in section 4 apart from the fact that prior to all other decisions, the lender sets

the commission rate r. As a reminder, I provide a full description of the trading protocol.

1. The lender chooses size of commission rate r and commits to lend the securities at this

rate.

2. Sequence of moves identical to one in section 4:

� First move (t = 1):

– True value of the asset d is revealed to the informed trader “x”;

– The informed trader “x” borrows if necessary |x−| shares and submits an

order to buy (sell) x(d) shares;

– The uninformed borrower “w” borrows if necessary |w−| shares and submits

an order to buy (sell) w shares;

� Second move (t = 1):

– The lender observes x− + w−;

– The lender submits an front-running order to buy (sell) y [x− + w−] shares;

– The liquidity trader “z” submits an order to buy (sell) z shares;

� Clearing (t = 1):
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– The market maker observes x(d) + w + y [x− + w−] + z;

– The market maker sets the price and executes all the orders;

� t = 2: The true value d is paid out.

Once the rate r has been chosen, the game studied in this section is almost identical to

the one in section 4. The only difference is that the decisions of the informed trader “x”

are influenced by the fact that borrowing is no longer free-of-charge. As section 3 suggests,

and as we shall see later, this discourages short-selling to the extent that for a certain range

of values of d, the informed trader “x” completely abstains from trading. Obviously, the

strategy of front-running Y (·) and price-setting rule G(·) also adjust as a result.

In the model with both commission and front-running, the lender faces a trade-off be-

tween making money by charging high commission and extracting information from short-

selling activity and front-running.

The higher is the commission rate, the more often does the informed trader “x” re-

frains from short-selling and borrowing. In such cases, she hides her private signal from the

lender. The probability that the informed trader “x” does not borrow P (Xr
−(d) = 0) ≡

P (Xr(d) ≥ 0) generally increases as a function or interest rate r. As a result, if r is high

enough, this hinders the lender’s inferential ability about the liquidation value of the asset

d. If r is high enough, the informed trader “x” almost never opens short positions, and

therefore, the lender becomes poorly informed as his signal [u = Ur(d, w) ≡ Xr(d)
− + w−]

becomes almost independent of d. Note that the lender becomes less informed even in case

the borrowing does not happen. To illustrate this, I compare the two cases – zero commission

and a prohibitive rate of commission. If the commission is zero, then u = 0 is an insightful

signal because it rules out possibilities d < 0. If instead, the commission is high, then the

signal u = 0 becomes much less informative because it no longer rules out the moderate

negative values of d.

Since the rate r is set before each of the agents (the informed trader, the lender, and

the market maker) makes their decision, the equilibrium strategies X(·), Y (·), and G(·) can
be suited only to each particular rate r = r1. If the rate r changes (say takes on a different

value, r = r2), then all the strategies X(·), Y (·), and G(·) in equilibrium adjust.

In order to emphasize this, I augment the notations X(·), Y (·), and G(·), with subscript

r. In the following subsection, I recast Eqs. 7, 11, 8, 9, and 10 from Section 4 and stipulate a

notion of equilibrium with front-running and exogenous commission rate. I visually highlight

the new parts of the modified equations.

Definition 5.1. Equilibrium with front-running and exogenous commission rate r is a triple

of functions Xr(·), Yr(·), and Gr(·) such that the following conditions are met:
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1. Xr(·) is an optimal strategy of the informed trader “x” who takes as given the rate

r, the trading strategy of the lender (Yr(·)) and the price-setting mechanism of the

market maker (Gr(·)):

Xr

(
d̂
)
= argmax

x

x ·
(
d̂− E

[
Gr(x+ w + Yr(x

− + w−) + z)
])

︸ ︷︷ ︸
expected gross profit

+rx−︸ ︷︷ ︸
borr. costs

 . (13)

2. Yr(·) is an optimal strategy to front-run on the information available to the lender–

signal u. In this context the lender takes r, Xr(·) and Gr(·) as given. In particular,

this means that Yr has to satisfy the following condition:

Yr (û) = argmax
y

{
E
[
Πfront

Xr,Gr
(y, d, w, z)

∣∣Ur(d, w) = û
]}

where (14)

Πfront
Xr,Gr

(y, d, w, z) = y · [d−Gr(Xr(d) + y + z + w)] , and (15)

Ur(d, w) = Xr
−(d) + w− ≡ min(0, Xr(d)) + min(0, w). (16)

3. The price setting rule that the market maker follows (Gr(·)) is consistent with the

trading strategies of the informed trader “x” and the lender. In particular, this

means that Gr satisfies the following equation.

Gr(ŝ) = E
(
d
∣∣Xr(d) + w + Yr(Xr

−(d) + w−) + z = ŝ
)
. (17)

I find equilibrium numerically for a particular exogenous value of r = 0.5. In Fig-

ures 18, 19, and 20, I show equilibrium strategies of the informed trader “x”, the lender,

and the market maker, respectively.

Equilibrium trading strategy of the informed trader inherits features both from the

variants of the model with only commission (Section 3) and of the model with only front-

running (Section 4).

The optimal order size Xr(d) has a non-trade region just like in the model with commis-

sion: within a certain range of values of d, Xr(d) = 0, that is, the informed trader abstains

from trading because potential gains from short-selling are less than the commission fixed

cost.

Similarly to the equilibrium strategy in Section 4 (front-running only), when the informed

trader does eventually short-sell, the magnitude of the short position is decreased quasi

proportionally because the informed trader takes into account the additional price pressure

coming from lender’s front-running.
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Figure 18: Informed trader’s order size as a function of private signal: x = Xr(d)
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5.1 Profits/losses breakdown

In this section, I analyze the competition between the informed trader “x” and the lender.

The split of the profits between the two agents is affected by the aggressiveness of the unin-

formed borrower “w”.

First, as the aggressiveness of the uninformed borrower “w” shrinks, she submits smaller

order sizes, naturally, her losses also shrink. Even though liquidity trader’s trading decisions

do not change, her expected losses increase. The main reason is that she becomes the only

looser in the economy. Academically speaking, she faces more adverse selection when the

relative weight of the uninformed borrower “w” shrinks.

Overall, as the aggressiveness of the uninformed borrower “w” shrinks, the aggregate

losers’ activity moderates. Naturally, the net effect is that the aggregate losses in the economy

moderate as well.

We are dealing with a zero-sum game. Thus, the two winners – the informed trader

“x” and the lender – share between them the prey from the two losers – the uninformed

borrower “w” and the liquidity trader “z”.

As the aggressiveness of the uninformed borrower “w” shrinks, the informed trader

“x” also becomes more cautious. Conversely, the lender becomes more informed and more
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5.1 Profits/losses breakdown Securities lending and information transmission: a model of endogenous short-sale constraints

Figure 19: Front-running: lender’s proprietary order size as a function of short interest:
y = Y (u), u = x− + w−
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Figure 20: Market maker’s price setting rule in equilibrium p1 = G(s), s = x+ w + y + z
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aggressive. As a result, a higher proportion of the expected profits is allocated to the lender.

In this section, I additionally analyze how exactly the agents win or lose. In particu-

lar, I distinguish between commission expenses and trading losses. Similarly, I distinguish

between commission revenues and trading profits. I investigate in which cases commission

revenues/expenses are positively related to trading profits/losses, and in which cases they are

inversely related. As uninformed borrower “w”becomes less aggressive, both her commission

expenses and trading losses shrink. Regarding the informed trader “x”, as she also becomes

less aggressive as uninformed borrower curbs her trades. As the informed trader “x” trades

less, she earns less in terms of trading but at the same time spends less for the commission.

In equilibrium, the decrease of the informed trader’s trading profits is only partially

offset by the decrease of the informed trader’s commission paid to the lender. Overall, the

net expected profits of the informed trader “x” decrease as σw shrinks.

As opposed to the informed trader “x”, the lender becomes and more aggressive when

the uninformed borrower becomes less aggressive because the lender is more informed.

For her, the commission income and the trading profits move in opposite directions. As the

uninformed borrower becomes less aggressive, the lender’s commission income shrinks while

the trading profits increase.
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Figure 21: Profit sharing between the informed trader “x” and the lender, loss sharing
between the uninformed borrower “w” and the liquidity trader “z”. The bars above zero
depict the breakdown of the profit. The bars below zero depict the breakdown of the losses.
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The net effect is that lender earns less overall, but it is noteworthy that the negative effect

of commission dominates just because the commission rate that I chose for this example is

rater high.

Figure 21 illustrates the overall expected profits/losses15 in the model, how the profits

are shared between the informed trader “x” and the lender, and how the losses are shared

between the uninformed borrower “w” and the liquidity trader “z”.

5.2 Market efficiency

In this subsection, I analyze the price efficiency in the setting where both commission and

front-running are present. To this end, in Figure 22, I depict a measure of price efficiency –

conditional variance of the fundamental value d given the price level p1, i.e. how imprecise

is my forecast about d given that I know p1.

15Since my model is a zero-sum game, overall expected profits are equal to overall expected losses
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Figure 22: Price discovery – conditional variance of the fundamental value Var(d|p1)
In the standard Kyle model Var(d|p1) = 1
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Compared to Subsection 4.3, the overall price efficiency is lower: the forecast of d given

p1 is less precise. The shape of the conditional variance curve inherits the properties of the

corresponding curves in the model with “front-running” only (Section 4) and with commission

only (Section 3).

The overall decline in the curves is due to the effects highlighted in Section 4.3 – model

with “front-running” only. The upward-sloping part is due to the effects coming from the

borrowing commission.

The extent to which the fundamental value d is reflected in the price can be also measured

by looking at how close E(p1|d) is to actual d. Figure 23 demonstrates that in the model

with front-running and commission, the private signal d is reflected in price to a lesser extent

than in the standard Kyle model: E(p1|d) is farther from d than in the standard Kyle model.

It is also noteworthy that E(p1|d = 0) is below zero. This effect also manifests itself in the

commission-only model, and it is due to the non-trade region. Because of the commission,

the informed trader “x” abstains from trading or reduces the magnitude of sell orders. This

makes the case d = 0 more similar to d = −1
2
than to d = 1

2
from the perspective of the

market maker. This effect is described in detail in Pankratov (2018).
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Figure 23: Expected price from the informed trader’s point of view E(p1|d)
In the standard Kyle model E(p1|d) = 1
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6 Trade-off between front-running and commission

In this section, I focus on how the lender optimally solves the trade-off between extracting as

much as possible commission revenues and extracting as much as possible from front-running.

Obviously, the two activities – charging commission and front-running – are mutually

cannibalistic. When the lender charges a higher commission rate r, he forgoes a part of the

information about the informed trader’s decisions and therefore part of the front-running

profits. Conversely, when the lender front-runs the informed trader “x”, the lender discour-

ages the informed trader “x” from short-selling and therefore forgoes part of the commission.

It is a natural question therefore whether a monopolistic lender optimally chooses to

charge any commission whatsoever given that he has a possibility to front-run, and if so, then

whether the optimally chosen commission rate in the presence of front-running is significantly

smaller than the optimally chosen commission rate in the absence of commission. In order to

answer this question, I need to compare the implications of models with front-running [like

in Section 5] and without front-running [like in Section 3] but otherwise comparable.

To achieve full comparability, I need to take another step. As I mention in Section 4,

the presence of the uninformed borrower in the model is necessary for the existence of

equilibrium with front-running.

On the other hand, if I include the uninformed borrower in the model as is, it becomes
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impossible to cast a sensible problem for optimal commission rate. The maximization problem

breaks down because of the assumption that the uninformed borrower’s trading decisions

do not depend on the magnitude of the commission: even if the commission is extremely

high, the uninformed borrower often borrows big stakes of the asset – behaves like a shoal

of salmon during the mating run and becomes an easy victim of the lender. Clearly, this

assumption is not suitable for studying the optimal commission rate. If the uninformed

borrower behaves incautiously enough, then the lender’s optimal choice is to set r = +∞.

To overcome this issue, I introduce a modification in the model: instead of uninformed

borrower “w” I consider a cautious uninformed borrower “W”. The cautious uninformed

borrower decreases the borrowing volume in response to increases in the commission rate.

In particular, if the commission rate exceeds a short-selling private benefit perceived by

the cautious uninformed borrower, he abstains from borrowing and from trading. One

interpretation of the cautious uninformed borrower is an agent with a wrong signal about

d.

Suppose, the cautious uninformed borrower believes that d = dfake :=
σd

σw
w 16 and in the

absence of commission he submits a market order w = σw

σd
dfake. In the pesence of commis-

sion rate at rate r, the cautious uninformed borrower chooses to moderate his short-selling

activities as though his perceived expected gains from short selling shrink from −dfake to

−dfake − r:17

W :=


σw

σd
dfake for dfake ≥ 0,[

σw

σd
[dfake + r]

]−
, otherwise.

(18)

In terms of old notation, the cautious uninformed borrower’s rule can be written as

follows:

W =

w for w ≥ 0,[
w + σw

σd
r
]−

, otherwise.
(19)

Such a behavior of the cautious uninformed borrower “W” can be interpretated as an

optimal decision under wrong beliefs and risk-aversion. Let me additionally assume that

that the cautious uninformed borrower “W” believes that the execution price is distributed

normally p1 ∼ N(0, σ2
p) and her absolute risk aversion is γ, uW (profits) = −e−γ·profits. In this

case, the net price increase is d + rIW<0 − p1. According to the cautious uninformed bor-

16With this notation, d and dfake are independent and identically distributed. This means that the cautious

uninformed borrower “W” is mistken about the realization of d but has a correct perception of the probability
distribution of d.

17This implicitly assumes that the cautious uninformed borrower “W” is not strategic: he does not take
into account price impact from his own trade. In reality, the non-trader region that arises due to commission
must be even wider.
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rower, this quantity is distributed normally N(dfake + rIW<0, σ
2
p). Therefore, the probability

distribution of gains from trading is N(W (dfake + rIW<0),W
2σ2

p), and the expected utility is

− exp
[
−γW (dfake + rIW<0) +

1
2
γ2W 2σ2

p

]
. The cautious uninformed borrower chooses W to

maximize this quantity, which is equivalent to the maximization of

γW (dfake + rIW<0)−
1

2
γ2W 2σ2

p.

F.O.C. can be rewritten as follows:

W =
dfake + rIW<0

γσ2
p

.

This is not a solution yet because W is on both sides. If W > 0, it boils down to W = dfake
γσ2

p
.

If W < 0, it boils down to W = dfake+r
γσ2

p
.

In a nutshell, I obtain the following expression.

W =


dfake
γσ2

p
for dfake ≥ 0,[

dfake+r
γσ2

p

]−
, otherwise.

(20)

This is exactly in line with Eq. 18 as long as σw

σd
= 1

γσ2
p
.

In the setting with the cautious uninformed borrower “W”, I still have one degree of

freedom – how aggressive is the cautious uninformed borrower compared to the liquidity

trader. If we interpret the cautious uninformed borrower “W” as a misinformed agent,

then this relative importance of the cautious uninformed borrower “W” depends on her risk

aversion.

If the risk-aversion of the low, the cautious uninformed borrower “W” is willing to borrow

aggressively, and thus, the lender is likely to charge a high commission rate. This in turn

discourages the informed trader from revealing negative signal.

Instead, if the cautious uninformed borrower’s risk-aversion γ is high, she is reluctant

to sell short and borrow. Therefore, her contribution to the lender’s commission income is

insignificant, and therefore the lender is more likely to set a low commission rate to extract

more information from the informed trader and trade. As a result of lower commission, the

informed trader reveals more information.

All-in-all, this is a mechanism through which the misinformed trading strongly decreases

market efficiency. On top of the obvious mechanism that the misinformed trading creates

additional noise, it also discourages informed trading indirectly because the lender sets a

higher commission rate.

An additional implication of high aggressiveness of the uninformed borrower is a stronger
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dependence between asset returns and volatility. If the uninformed borrower is more aggres-

sive then the market efficiency suffers, and particularly so in the case of “bearish” market

(d < 0). The informed trader is able to reveal positive signals, but refrains from revealing

negative signals. As a result, the market maker is able to judge the magnitude of a positive

news but is blind with respect to the magnitude of negative news. This creates an asymmet-

ric volatility (a.k.a. “leverage”) effect roughly through the same mechanism that I explain in

Pankratov (2018). From the perspective of a regulator this implies that the misinformation

on the market should be very strongly discouraged because misinformed borrowers strongly

and negatively affect the market efficiency.

7 Conclusion

I model a market with asymmetric information and short selling. The novelty of my approach

is that I explicitly model the incentives and decisions of security lenders who can trade on the

information impounded in the asset-borrowing demand (a.k.a. short interest) in addition to

charging lending fees. This approach allows me to endogenize short-sale constraints. I show

that in equilibrium the possibility of information leakages and short-selling costs discourage

short selling.

In addition, I highlight that the explicit commission costs and the possibility of infor-

mation leakages have different implications for equilibrium behavior of informed agents. In

particular, the commission makes it purposeless to short-sell the asset if the potential trading

gains do not exceed the commission. As a result, the informed traders sell short only if the

signal that they observe is bad and strong enough. Instead, in the absence of commission,

the possibility of leakages and front-running works in a different way. Unlike a security lender

that only charges a commission, a front-running security lender does not entirely suppress

the borrowing demand. Even if the informed trader observes a moderate bad signal about

the asset payoff, she does not entirely abstain from trading, she borrows and sells short, but

the size is reduced because the informed trader knows that her sales trigger lender’s sales

and therefore create extra price pressure.

The relative importance of the two profit channels of the security lender (commission

and front-running) depends on the level of activity of the uninformed (or misinformed) bor-

rowers. If there is a substantial borrowing demand coming from the uninformed traders,

the security lender potentially can bargain on the borrowers by charging high commission

without foregoing considerable profits from front-running because in this case the informa-

tion content of the short interest is poor. If instead, the uninformed agents are reluctant to

borrow, the front-running scenario becomes more important. In this case, the short interest
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becomes highly informative, and as a result, the security lender is more inclined to set a

low commission rate, encourage the informed traders to reveal their information, and to use

this information by front-running the informed traders. In the extreme case, in which the

activity of the uninformed borrowers is negligible and the security lender does not charge a

commission, she is able to extract formidable rent by front-running the informed trader. If

the activity of the uninformed borrowers is minor, then the informed trader short-selling also

becomes extremely cautious, and the dominant fraction of the profits from the asset’s price

drop is allocated to the front-running security lender. Overall, considering both directions

of trading, the expected trading profits of the security lender can be almost as high as the

expected profits of the informed trader.

From the perspective of the information efficiency of the market, the scenario in which

front running plays a relatively big role is more desirable. With rather inactive uninformed

borrowers, the asset security lenders can only rely on the informed borrowers as their source

of income. In this setting, they are more likely to choose a moderate interest rate if they

have the possibility to front-run the borrowers. In this case, the informed borrowers are more

prone to reveal their negative signals to the security lenders and to the market in general. If

the lending rate is low, then the informed trader differentiates between bad signals of different

magnitude and eventually this information is revealed to the market. From the perspective

of “asymmetric” volatility (a.k.a. leverage effect), this effect becomes stronger with high

commission rates and dissipates as the commission rate tends to 0.

Also, my paper provides a theoretical background in which the security lenders that have

the possibility to front-run charge a lower commission rate. The intuition is that when

the lender has the possibility to trade and use the information impounded in the short

interest, then a high commission rate makes the front-running activity less profitable. This

prediction is in line with a recent empirical finding of Honkanen (2020) that actively managed

mutual funds set lower commission rates for stock lending compared to the funds with passive

investment strategies.
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A Price discrimination by brokers

In this section I consider different way in which the lender can take advantage of the informed

trader. In particular, I assume that the lender cannot front-run the informed trader.

Instead, the lender is allowed to set the borrowing commission rate depending on the volume

borrowed by the clients.

In this set-up, a sensible model can be cast without the uninformed borrower. This

Section I generalize Eq. 1 and assume instead the following quantity charged by the lender:

commissioninf = r
[
−Xr(d)

−] · [−Xr(d)
−] , (21)

So that the commission rate depends on the borrowing volume.

This results in a more general expression for the informed trader’s trading profits. Con-

sequently, the informed trader solves a more general optimization problem compared to the

one in Eq. 6:

Xr(·)(d) = argmax
x

E

x · [d−Gr(·)(x+ z + w)
]︸ ︷︷ ︸

gross profits

+r
[
−x−r

]
· x−︸ ︷︷ ︸

borrowing costs

∣∣∣∣∣∣∣d
 (22)

This gives the lender more freedom and potentially allows her to earn larger profits.

Assumption A.1. r(·) is a linear function:

r(b) = [r0 + krb]
+ . (23)

Assumption A.2. The lender chooses r0 and kr before knowing anything and commits to

provide lending at the rate given by Eq. 23.

Theorem A.1. Optimal values for the intercept and slope coefficient of the commision rates

are appoximately the following:

r0 ≈ 0.5 · σd (24)

kr ≈ 0 · σd
σz

(25)

Proof. This result is obtained numerically using the following procedure:

1. Choose certain values of r0 and kr.

2. For a given commission rate schedule, find an equilibrium between the informed trader

and the market maker.
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3. In this equilibrium find the probability distribution of the order sizes submitted by the

informed trader.

4. Apply mapping

Abs.commission : x 7→

|x| · [r0 + kr · |x|]+ for negative x,

0, otherwise
(26)

in order to obtain the probability distribution of the dollar commission raised by the

lender.

5. Compute the expected value of the dollar commission raised by the lender.

6. Repeat these steps until I find the parameters r̂0, k̂r that imply the highes possible

expected value of the dollar commission.

B Linear proxy of front-running model18

In this appendix, I consider a proxy model of front running. The model resembles the original

model for negative values of d. This model is intentionally made symmetric and has a closed-

form solution. This allows to shed light on what happens as the intensity of uninformed

borrowing decreases.

In this model the front-runner can judge about d irrespective of its sign: Instead of

observing u = X−(d) + w−, he observes u = X(d) + w.

In this setting, the equilibrium conditions are as follows:

G(ŝ) := E

d|X(d) + w + Y [X(d) + w] + z︸ ︷︷ ︸
s

= ŝ

 ,

X(d) = argmax
x

E

x · (d−G(x+ w + Y (x+ w) + z))︸ ︷︷ ︸
gains per unit of asset

∣∣∣∣d
 ,

Y (u) = argmax
y

E

y · (d−G(u+ y + z))︸ ︷︷ ︸
gains per unit of asset

∣∣∣∣X(d) + w = u


18Disclaimer: this appendix is not original and is entirely based on my own working paper

Pankratov (2019). Notation and terminology have been adjusted to fit the needs of the present
paper.
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There is a unique linear equilibrium: a unique triple of coefficients (λ, β,m) such that

functions G(s) = λs, X(d) = βd, and Y (u) = mu, satisfy the equilibrium conditions.

Figure 24: Amplification coefficient m as a function of ρ2 = σ2
z

σ2
z+σ2

w

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

rho.2

m

50



Securities lending and information transmission: a model of endogenous short-sale constraints

Figure 25: Aggressiveness, expected profits relative to benchmark (Kyle, 1985).
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The coefficients are available in closed form. The punchline is that with the increasing

precision of the front-runner’s inference regarding d (σw → 0), β → 0 and m → +∞: the

informed trader “x” almost abstains from trading, while the front-runner strongly magnifies

the informed trader’s orders. Overall, the front-runner’s sensitivity to d converges to a finite

number, moreover, this number corresponds to the equilibrium aggressiveness of the informed

trader in the static version of the Kyle model.

As a matter of fact, the behavior of the informed trader becomes negligible from the

perspective of the market maker, while the front-runner becomes almost as knowledgeable

as the informed trader “x”. Eventually, the front-runner assumes the role of the informed

trader while the informed trader “x” becomes merely a mole transmitting the signal to the

front-runner.
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B.1 Market efficiency

It is possible to show that the informed trader’s optimal behavior is:

X(d) = βd, where

β =
1

2λ(1 +m)
(27)

provided that G(s) = λs and Y (u) = mu.

Also, it is possible to demonstrate that market maker’s rational price-setting rule is:

G(s) = λs, where

λ =
β(1 +m)σ2

d

β2(1 +m)2σ2
d + σ2

z + (1 +m)2σ2
w

(28)

provided that X(d) = βd and Y (u) = mu.

A natural substitution B = β(1 +m) leads to an elegant system of equations:

B =
1

2λ
, (29)

λ =
Bσ2

d

B2σ2
d + σ2

z + (1 +m)2σ2
w

, (30)

which is easy to solve by plugging Eq. 29 in to Eq. 30, and obtain an equation for B:

1

2B
=

Bσ2
d

B2σ2
d + σ2

z + (1 +m)2σ2
w

(31)

with a unique sensible (positive) solution:

B =

√
σ2
z + (1 +m)2σ2

w

σd
. (32)

I measure market efficiency through the following quantity:

Var(d|p1) = E
[
(d− E(d|p1))2

]
= E

[
(d− p1)

2
]
= Var(d− p1)

I find it using the relationship:

Var(d|p1)
Var(d)

=
Var(s|d)
Var(s)

The closer this value to zero, the more efficient is the price. This ratio can be computed as
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the ratio of the variance of the information part of s over the the entire variance of s:

s = x+ w +m · (x+ w) + z = (1 +m)(βd+ w) + z = Bd+ (1 +m)w + z.

Finally, the variance ratio is:
(1 +m)2σ2

w + σ2
z

B2σ2
d + (1 +m)2σ2

w + σ2
z

Using equation 32, I have B2σ2
d = σ2

z + (1 +m)2σ2
w.

Thus, the variance ratio is:
Var(d|p1)
Var(d)

=
1

2
,

identical to that of the standard Kyle model.

It is noteworthy that in order to find the degree of price informativeness, the knowledge

of the coefficient m is unnecessary. To obtain this result, I simply use the Bayesian updating

rule employed by the market maker and the optimality condition of the informed trader

“x”. Note that Eq. 32 follows from Eqs. 27 and 28 that describe the behavior of the informed

trader and the market maker. Even if the coefficient m were chosen exogenously, the price

informativeness would have been the same.

C Kyle model with asymmetric noise

In this Appendix, I drop the uninformed borrower “w” and the lender, and assume that the

distribution of liquidity trader’s order size is asymmetric. Eventually, I have the standard

Kyle model with just a single departure in assumptions - non-Gaussian noise.

In Figure 26, I depict the probability density function of z (three alternative versions).

This probability density function is obtained in the following way.

� I take a standard normal variable z̃.

� I apply a monotonic transformation to z̃ so the negative tails have bigger impact:

z = kz̃− + z̃+, where k > 1; in particular, I consider 3 cases: k = 1.2, 1.5, and 2.

� I apply a positive affine tansformation to z to make sure that E(z) = 0 and Var(z) = 1.
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Figure 26: Density functions of the liquidity trader “z”
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Unlike the model in the body of this paper, in this simplified setting, the order flow is

given by:

s = x+ z = X(d) + z,

and the price is set accordingly:

p1 = E(d|X(d) + z).

In case d ≫ 0, it is mostly the right half of the distribution of z that plays a role in

the market maker’s inference process. Conversely, if d ≫ 0, it is mostly the left half of the

distribution of z that plays a role in the market maker’s inference process. This explains the

equilibrium strategies of the informed trader “x” are similar to the linear Kyle model with

small noise in the right half, while they are similar to the linear Kyle model with large noise

in the left half.

The informed trader “x” is more cautious in the positive region because there is relatively

little noise to hide behind. If the informed trader “x” buys too much, hardly ever the market

maker will mistake him for the liquidity trader “z”. Extremely large sales by the liquidity

trader “z” are more plausible, so the informed trader “x” is also more prone to sell more

because he can plausibly mislead the market maker. I show in Figure 27, that the magnitude
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of asymmetry between buying and selling is directly related to the degree of asymmetry in

the distribution of z.

Figure 27: Equilibrium trading strategy of the informed trader “x”
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Both informed trader “x” and uninformed borrower “w” are more prone to sell extreme

quantities than to buy extreme quantities. As a result, the price-setting mechanism also

works to compensate for this effect. For s≫ 0, the price-setting rule works like in the linear

Kyle model with smaller σz. Conversely, for s ≪ 0, the price-setting rule works like in the

linear Kyle model with larger σz. In Figure 28, I show that the degree of asymmetry in

pricing is directly related to the degree of asymmetry in the distribution of z.
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Figure 28: Price setting rule employed by the market maker
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In order to understand the reasons for the deviation of the price efficiency from the linear

Kyle model, develop a theoretical expression for the conditional density function. First of

all, instead of conditioning on price, I condition on s because it is equivalent and less tedious.

The density of x = X(d) is given by

fx(x̂) =
ϕ(X−1(x̂))

X ′(X−1(x̂))

The joint density of (x, z) is given by

f(x,z)(x̂, ẑ) = fx(x̂)fz(ẑ)

The joint density of (x, s = x+ z) is given by

f(x,s)(x̂, ŝ) = fx(x̂)fz(ŝ− x̂)

The conditional density of x|s = x+ z is given by

fx|s(x̂, ŝ) =
fx(x̂)fz(ŝ− x̂)∫̇

x

fx(ẋ)fz(ŝ− ẋ)dẋ
=

ϕ(X−1(x̂))
X′(X−1(x̂))

fz(ŝ− x̂)∫̇
x

ϕ(X−1(ẋ))
X′(X−1(ẋ))

fz(ŝ− ẋ)dẋ
=
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=

ϕ(d̂)

X′(d̂)
fz(ŝ−X(d̂))∫̇

d

ϕ(ḋ)fz(ŝ−X(ḋ))dḋ

The conditional density of d|s is given by

fd|s(d̂, ŝ) = ϕ(d̂)
fz(ŝ−X(d̂))∫̇

d

fz(ŝ−X(ḋ))ϕ(ḋ)dḋ
= ϕ(d̂)

fz(ŝ−X(d̂))

E(fz(ŝ−X(d)))

Let me now focus on the numerator in the last equation and compare two cases:

1. ŝ is moderately negative, say the value corresponding to p1 = −1,

2. ŝ is moderately positive, say the value corresponding to p1 = 1.

In the first case the distribution d − p1 has particularly fat right tail for the following

reasons.

1. p1 is negative because s is negative.

2. For positive d̂, X(·) is relatively flat, so for rather big positive d̂, ŝ−X(d̂) not too big

in absolute value.

3. Left tail of fz fades out relatively slowly.

In the second case, I do not have that big positive outliers in the distribution of d − p1,

because now, p1 = 1 instead of −1, so d has to be even bigger. At this stage, ϕ(d̂) kicks in

and makes such extreme values very unlikely.

In the secon case, I could have had negative outliers. Neverthelwss, this does not happen

because of the following reasons.

1. For negative d̂, X(·) is relatively steep, so for rather big negative d̂, ŝ−X(d̂) also very

big in absolute value.

2. Right tail of fz fades out relatively quickly.

To sum up, even though, in the tails the model is asymptotically similar to the standard

Kyle model, at the point when the negative area merges into the positive area, the mismatches

of parameters in the two models leads to significant deviations from the standard Kyle model

in terms of price efficiency.

The following two plots depict the conditional volatility and joint density in the model.
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Figure 29: Price informativeness: conditional variance Var(d|p1)
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Figure 30: Joint density (p1, d− p1)
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D Analysis of purchasing order size of the lender

For simplicity, I focus on the case u = 0. I consider the lender’s optimization problem:

max
y

{y · [E(d|u = 0)− E(P1(d, w, z, y)|u = 0)]} , where (33)

E(d|u = 0) = E(d|X(d) ≥ 0), and (34)

P1(d, w, z, y) = G(X(d) + w + y + z). (35)

The first term [E(d|X(d) ≥ 0)] is virtually independent of y, while the second term

[E(p1|u = 0)] is dependent on y. I linearize the second term to get an insight into what drives

the lender’s behavior.

E(p1(d, w, z, y)|u = 0) ≈ p
(0)
1 + λy, where (36)

p
(0)
1 is expected execution price in case of inaction and λ is the sensitivity of expected execution

price with respect to order size:

p
(0)
1 := E(p1(d, w, z, y)|u = 0)|y=0, and (37)

λ :=
∂

∂y
E(p1(d, w, z, y)|u = 0)|y=0 = E(G′(X(d) + w + z)|u = 0) 19 (38)

In this notation, the maximization problem can be approximated follows:

max
y

{
y ·
[
E(d|u = 0)− p

(0)
1 − λy

]}
. (39)

Therefore, the optimal front-running response of the lender in case on no-borrowing can

be approximated as follows:

y(0) ≈ argmax
y

{
y ·
[
E(d|u = 0)− p

(0)
1 − λy

]}
=

E(d|u = 0)− p
(0)
1

2λ
. (40)

In practice in equilibrium and E(d|u = 0) does not depend strongly on σw because

E[d|u = 0] = E[d|X(d) ≥ 0] ≈ E[d|d ≥ 0] =

√
2

π
≈ 0.798.

Therefore the optimal choice y(0) is driven by the interplay between p
(0)
1 and λ. As

19The interpretation of this quantity is “average” price sensitivity to order flow. Naturally, the notation is
inherited form Kyle (1985).
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σw shrinks towards zero, equilibrium λ increases, this causes a moderation of optimal y(0)

– induces the opposite effect of what we see in the equilibrium. On the other hand, as

σw shrinks towards zero, the expected execution price in case of inaction p
(0)
1 also shrinks

to towards zero and moves away from the expected value. That is, the return potential

increases.

Overall, both return potential [E(d|u = 0) − p
(0)
1 ] and price sensitivity [λ] increase. The

effect coming from return potential increase is stronger than the effect coming from price

sensitivity increase. As a result, the optimal order size y(0) increases as σw shrinks.

To understand the behavior of p
(0)
1 as σw shrinks I use the following approximation:

p
(0)
1 = E [Gσ(Xσ(d) + w + z)|X(d) ≥ 0, w ≥ 0] ≈ Gσ (E[Xσ(d)|Xσ(d) ≥ 0] + E[w|w ≥ 0]) ≈

(41)

≈ Gσ

(√
2

π

(
k+x/dσd + σw

))
, where

k+x/d is the average slope of the function Xσ(d) for positive d, subscript “σ” highlights that

the equilibrium pricing rule G(·) and informed trader’s strategy X(·) depend on the model

parameters σ = (σd, σw, σz)
′ = (1, σw, 1)

′.

This quantity shrinks as σw shrinks because

s0 =

√
2

π

(
k+x/dσd + σw

)
is directly related to σw: as σw shrinks, the average public signal s in case of lender’s inaction

also shrinks.

Obviously, the value of

Gσ

(√
2

π

(
k+x/dσd + σw

))
is not only driven by changes by changes in the argument (i.e. by changes in informed

trader’s and uninformed borrower’s behaviors) but also by changes in the equilibrium mar-

ket maker’s pricing rule Gσ(·) as the subscript σ changes. Apparently, the effect coming from

changes in the argument is stronger than the one coming from the changes in the subscript.

E Summary of continuous state space methodology

I look for a Nash equilibrium among three decision-making players:

1. The informed trader “x”;
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2. The lender;

3. The market maker.

I approach this task numerically. I use an iterative algorithm that can be interpreted as

sequential mutual adjustments of strategies for each of the three agents. In particular, the

sequence of adjustments is as follows:

1. Provide certain first-try conjectures for the strategies of the informed trader and the

lender.

2. Repeat the following adjustments until each agent’s strategy converges to a certain

fixed point:

(a) market maker chooses her rational strategy assuming the most up-to-date strate-

gies of the informed trader “x” and the lender,

(b) lender adjusts her strategy assuming the most up-to-date strategies of the in-

formed trader “x” and the market maker,

(c) market maker chooses her rational strategy assuming the most up-to-date strate-

gies of the informed trader “x” and the lender,

(d) informed trader “x” adjusts her strategy assuming the most up-to-date strategies

of lender and market maker.

The adjustment steps are described in detail and formalized below. For the sake of

tractability, the strategies of the informed trader, the lender, and the market makerare

restricted to certain families of functions.

In particular, I restrict the behavior of the informed trader “x” such that she can only

choose her order sizes X(d) according to a piecewise-linear rule x(·) with prespecified nodes.

From the economic perspective, this requirement is absolutely nonsensical: there is no eco-

nomic reason why optimal choices made independently from each other for different values

of d should constitute a piecewise-linear function of d. From the economic perspective, the

decision made by the informed trader “x” for each particular value of d is made irrespective

of the optimal decisions made for all other decisions made for all other values of d. Nev-

ertheless, if the true equilibrium x(·) is continuous, it is possible to approximate it with a

piecewise-linear function. Moreover, the finer is the granularity, the more precise the ap-

proximation. Instead of maximizing the expected profits for each particular value of d and

then finding the line of “best fit” (local linear approximation), I take a shortcut: I run a

constrained optimization in the first place.
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The original problem can be written as follows:

X(d) = argmax
x

E
[
Π

Y (·),G(·)
informed trader “x”(x, d, w, z)

∣∣d] (42)

Equivalently, I can define X(·) as follows

X(·) = argmax
X(·)∈F(R,R)

E
[
Π

X(·),Y (·),G(·)
informed trader “x”(d, w, z)

]
. (43)

Economically, this equivalence means that optimizing the conditional expectations case-

by-case (Eq. 42) is equivalent to maximizing unconditional expectation (Eq. 43), and follows

from the law of iterated expectations.

In practice, instead of solving the unconstrained problem (Eq. 43) – which is purely

notional – I solve an otherwise identical constrained maximization problem (Eq. 44).

Xconstrained(·) = argmax
X(·)∈X

E
[
Π

X(·),Y (·),G(·)
informed trader “x”(d, w, z)

]
, where (44)

X is the family of admissible functions.

Similarly, the original profit maximization problem of the lender is as follows. The

original problem can be written as follows:

Y (u) = argmax
y

E
[
ΠX(·),G(·)

lender (y, d, w, z)
∣∣u] (45)

This problem is equivalent to the following problem.

Y (·) = argmax
X(·)∈F(R,R)

E
[
Π

X(·),Y (·),G(·)
informed trader “x”(d, w, z)

]
. (46)

Finally, as a proxy for the unconstrained problem of the lender, (Eq. 46), I formally cast a

tractable maximization problem for the lender.

Yconstrained(·) = argmax
Y (·)∈Y

E
[
ΠX(·),Y (·),G(·)

lender (d, w, z)
]
, where (47)

Y as the family of admissible functions.

Definition E.1 (Sequential adjustment algorithm). By sequential adjustment algorithm I

mean the following steps.

1. I start with an arbitrary pair of functions X(0)(·) and Y (0)(·).

2. I iterate the adjustment steps (i = 1, 2, 3, ...)
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(a) Find price-setting strategy G(·) that corresponds to the most recent trading strat-

egy pair (X(·), Y (·))

G(·)(i−1) := BX(i−1)(), Y (i−1)()
market maker (·), where

BX(·), Y (·)
market maker(·) denotes the bayesian pricing rule 20 implemented by market maker

if she assumes that

� the informed trader “x” follows strategy X(·),

� the lender follows strategy Y (·).

(b) Adjust Y (·) by using the relevant equilibrium condition: optimal trading strategy

given the most recently computed strategy pair (X(·), G(·)),

Y (i) := α argmax
Y ∗(·)∈Y

EΠX(i−1)(·), Y ∗(·), G(·)(i−1)

lender + (1− α)Y (i−1). (48)

where α ∈ (0, 1) is a constant attenuation coefficient21, ΠX(·), Y ∗(·), G(·)
lender (d, w, z) de-

notes the lender’s profits form trading, given that

� the informed trader “x” follows strategy X(·),

� the lender follows strategy Y ∗(·),

� the market maker follows strategy G(·),

� particular values (d, w, z) are realized,

(c) Find price-setting strategy G(·) that corresponds to the most recent trading strat-

egy pair (X(·), Y (·))
Ĝ(·)(i−1) := BX(i−1)(), Y (i)()

market maker (·)

(d) AdjustX(·) by using the relevant equilibrium conditions: optimal trading strategy

given the most recently computed strategy pair (Y (·), G(·)):

X(i) := α argmax
X∗(·)∈X

EΠX∗(·), Y (i)(·), Ĝ(i−1)(·)
informed trader + (1− α)X(i−1), where (49)

ΠX∗(·), Y (·), G(·)
informed trader (d, w, z) denotes the informed trader’s profits form trading given

that

20Mathematically this function can be defined as:

Bmarket maker
X(·), Y (·) (ŝ) := E

(
d
∣∣X(d) + Y (X(d)− + w−) + z = ŝ

)
,∀ŝ ∈ R.

21The bigger the coefficient the bigger the lender’s adjustment.
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� the informed trader “x” follows strategy X∗(·),
� the lender follows strategy Y (·),
� the market maker follows strategy G(·),
� particular values (d, w, z) realized.

I employ the following families of functions:

1. (a) X = Xkink at 0 is composed of all the functions that can be written in the following

form:

X(d) =

x0 + k+d for d ≥ 0

x0 + k−d, otherwise.
(50)

Xkink at 0 is a set of continuous piecewise-linear functions with only one kink (at

d = 0).

(b) Y = Yjump at 0 is composed of all functions that can be written in the following

form:

Y (u) =

y0 for u = 0

y′0 + ku for u < 0.
(51)

Yjump at 0 is a set of functions that are defined only for u ≤ 0, linear for negative

u and with one discontinuity at u = 0.

2. (a) X = Xjumps at nodes is composed of all functions that are linear between the nodes

of a finite mesh {di}, see Assumption G.1. The values at the nodes do not matter

because d is distributed continuously, and thus the probability of precisely hitting

each individual node value is zero: P(d = di) = 0.

(b) Y = Yjumps at nodes is composed of all functions whose domain is u ∈ (−∞, 0] that

are linear between the neighboring nodes of the grid {ui}. At the nodes themselves,

the function is defined as the arithmetic mean between the right and the left limits.

The value at zero – where the right limit does not exist – may not be equal to

the left limit at 0. As opposed to the strategy X(·), for the strategy Y (·) the

individual values at the nodes may matter. It may be the case that P(u = ui) > 0

in some of the nodes ui. In particular, this is very likely to be the case for the the

rightmost node un = 0. This family satisfies the Assumption G.2.22

Definition E.2 (“Rough” equilibrium). “Rough” equilibrium is a triple of mutually con-

sistent strategies (X(·), Y (·), G(·)) in which strategies X(·) and Y (·) are obliged to satisfy

X ∈ Xkink at 0 and Y ∈ Yjump at 0.
22The assumption is even slightly more general. In particular, the values at the nodes are not restricted to

equal the arithmetic mean of the right and the left limits.
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Remark E.1. Finding the “rough” equilibrium is essentially finding six coefficients of the

strategies X·) and Y (·): two slopes and one intercept of the strategy X(·) plus one slope and
one intercept of strategy Y (·), and plus the value Y (0) (recall that Y may have a jump at 0).

Definition E.3 (“Transitional” (“Quasi”) equilibrium based on conjecture (X0, Y0, G0)).

“Transitional” (“Quasi”) equilibrium is a pair of strategies (X(·), Y (·)) ∈ X ×Y that satisfies

the following conditions:

1. Strategy X(·) is individually optimal for the informed trader “x” if she assumes that

� the lender follows strategy Y0(·),

� the market maker follows strategy G0(·).

2. Strategy Y (·) is individually optimal for the lender if she assumes that

� the lender follows strategy X0(·),

� the market maker follows strategy G0(·).

Remark E.2. It is important to not that conjectured strategies X0 and Y0 do not have to

come from the same family of functions. The essence of the “transitional” equilibrium is to

make a transition (as the name implies) from some class of strategies X ∗ × Y∗ to another

class X × Y .

In practice, I adopt the following procedure:

1. Run the sequential adjustment algorithm (see Def. E.1) subject to X ∈ Xkink at 0, Y ∈
Yjump at 0 and find “rough” equilibrium within these families: (Xrough(·), Yrough(·), Grough(·))

2. Use (Xrough(·), Yrough(·), Grough(·)) as a conjecture, based on this conjecture find the

“transitional” equilibrium (Xquasi(·), Yquasi(·)) ∈ Xjumps at nodes × Yjumps at nodes.

3. Again, run the sequential algorithm, this time within a wider class of functions X ∈
Xjumps at nodes, Y ∈ Yjumps at nodes with starting point (Xquasi(·), Yquasi(·)).

Luckily, there is convergence both times I apply the sequential adjustment algorithm.

E.1 Quasi-random simulations and maximization

Finally, I would like to make a few remarks on how I perform the maximization in each of

the steps.

Both, from the perspective of the informed trader “x” and the lender, I maximize the

expectation of a random quantity that depends on three independent normal variables d, w,
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and z and on the choice of strategies X(·), Y (·), G(·). I use Quasi-Monte-Carlo method to

compute these expectations.

1. I generate low-discrepancy-sequence (Halton sequence with parameters (2, 3, 5)) on a

parallelepiped [0, 1]× [0, 1]× [0, 1].

2. I rescale it to [−k, k]× [−k, k]× [−k, k].

3. I truncate the “corners”, by eliminating the observations that do not satisfy
√
d2 + w2 + z2 ≤

k.23

4. I rescale the censored sample to [−kσd, kσd] × [−kσw, kσw] × [−kσz, kσz] to obtain an

ellipsis-shaped cloud.

5. I assign a weight to each observation this cloud that comes from the density of joint

normal distribution. The weights are given by

weighti =
ϕ
(

di
σd

)
ϕ
(

wi

σw

)
ϕ
(

zi
σz

)
N∑
i=1

ϕ
(

di
σd

)
ϕ
(

wi

σw

)
ϕ
(

zi
σz

) , where (52)

(di, wi, zi) are the observations generated at the previous steps.

Finally, the expectation E(f(d, w, z)) is approximated as

E(f(d, w, z)) ≈
N∑
i=1

weighti · f(di, wi, zi), where (53)

f is some quantity depending on the random outcome (d, w, z). In practice, f can mean either

the realized profits of the informed trader “x” or of the lender. Implicitly these quantities

obviously depend on the strategies that each of the players follows: (X(·), Y (·), G(·)).

E.2 Optimization

Instead of maximizing the expectations (EΠ) in Eqs. 48 and 49, I maximize the approxi-

mation of these expectations following the approach in Eq. 53, subject to a relevant con-

straint (x ∈ X or y ∈ Y). It is remarkable that when I preform maximizations subject

to x ∈ Xjumps at nodes or to y ∈ Yjumps at nodes, I employ another trick that makes the maxi-

mization procedure more efficient and more reliable. In particular, I break down the overall

23This is roughly one half of the sample.
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summation
N∑
i=1

weighti · f(di, wi, zi) (54)

into autonomous sub-summations. In the case of maximizing informed trader’s profits, the

partitioning is made based on di. In each subgroup of indices I select those observations

where di ∈ (dnodej , dnodej+1 ). If by chance some observations are exactly at the edge, then

they are counted with half weight. Within each subgroup the function X(·) is linear. The

maximization is separable: maximizing the overall summation is equivalent to maximizing

the expectation and chose linear function withing each interval between the nodes. This

trick reduces dimensionality: only two dimensions within each interval. As a by-product, it

increases robustness because the coefficients pertaining to the outskirt regions of d, say |d| >
3σd have a very small impact on the overall summation, and therefore the values of optimal

strategy X(·) in the outskirts region may be poorly estimated by maximizing the overall

expectation directly. The piecemeal maximization results in a more robust choice for the

optimal order size for unlikely values of d, and therefore is more insightful for understanding

the asymptotics of equilibrium strategies, which can be used to compare the predictions of

the model with some benchmark cases for which closed-form solutions are known.

Finally, in order to find the numerical values of the coefficient, I use function “optim”

from R “base” package, which in turn relies on the simplex Nead-Melder method.

E.3 Computation of function G

Since all the possible families X , and Y are within the class of piecewise-linear function, I

can use Corollary G.1.3, that is, I can express values of function G through functions exp(·),
Φ(·), and Ψ·(·, ·) 24.

The computation of Ψ involves numeric integration, whose methodology is described in

Internet Appendix. The final formula of G(s) (see Eq. 108) is a fraction whose numerator

and denominator tend to 0 as |s| → +∞. Moreover, when s takes on very unlikely values,

the computation of g is challenged by the fact that numeric integration produces highly

imprecise results because some of or many of the terms in summation become subnormal

numbers, which leads to disproportionately high rounding errors. Eventually if the observed

value of s is even more unlikely, the numerically computed value of the numerator in Eq. 108

can become 0 because all the terms in summation that approximates Ψ’s turn 0 even though

the true mathematical value of Ψ is far enough from 0.

24Ψ is the function whose values are de facto CDF of bivariate correlated normal random vector. Formally,

Ψ is defined as Ψk

(
δ, b
)
:=

δ∫
−∞

ψk (δ, b)dδ, where ψk (δ, b) := Φ(kδ + b)ϕ(δ).

67



Securities lending and information transmission: a model of endogenous short-sale constraints

In order to avoid imprecise results, I limit the potential values of s. In particular, I

consider only s within an interval [s∗, s∗] which I obtain as an extension of

[s, s] = Range{s0(di, wi) + zi}i∈1,n. (55)

I perform the extension as follows:

[s∗, s∗] = [s− sext. coef.(s− s), s+ sext. coef.(s− s)], which means that (56)

I move the margins away from the middle of the interval by sext. coef. share of the length of the

interval. I compute g within this interval and [s∗, s∗] at all the nodes of a uniform partition

including the ends of the interval.

s(i) = s∗ +
i(s∗ − s∗)

sgranularity
(57)

Once, the values of G are computed at the nodes of the mesh [this is done only once for each

conjectured function G], g is computed using linear interpolation between the nodes, only

the two closest nodes are taken into consideration.

F Updating beliefs based on obseving the borrowed

quantity

In this appendix, I analyze how the broker updates his beliefs about the probability distri-

bution of (d, w) once he observes the signal u ≡ X−(d) + w−.

Suppose that the broker knows the functional form of X. X(·) is assumed to be a

non-decreasing continuous function continuously differentiable for d < dshort except perhaps

a finite number of values, where the X(·) has kinks. Variables d and w are independent

and continuously distributed around zero with well-behaved densities (here I do not require

normality, however, in the body of the paper I have this assumption).

For X(d) < 0 ⇐⇒ d < dshort, I have a simple relation between the densities of d and

X(d):

fx (x̂) =
fd

(
d̂
)

X ′
(
d̂
) , (58)

where x̂ = X
(
d̂
)
.

68



F.1 Case of non-zero borrowingSecurities lending and information transmission: a model of endogenous short-sale constraints

X−(d) is distributed as follows:

X−(d) ∼

0 with probability π = P(X(d) ≥ 0) = P(d ≥ dshort),

x̂ < 0 with density fx (x̂) =
fd(d̂)
X′(d̂)

=
fd(X−1(x̂))
X′(X−1(x̂))

(59)

Similarly, w− is distributed as follows:

w− ∼

0 with probability ρ = P(w ≥ 0)

ŵ < 0 with density fw (ŵ)
, (60)

where ρ = 1
2
in case if w being continuously and symmetrically distributed.

I am interested in the joint distribution of (d, w) conditionally on X−(d) + w− ≡ u = û.

This conditional distribution depends on the level of û. I treat separately two cases: strictly

negative û and û = 0.

F.1 Case of non-zero borrowing

I start with the negative case. In order to make sure that conditional probabilities well-

defined, I weaken the constraint, considering the condition

x− + w− ≡ u ∈ B ε
2
(û), (61)

where B ε
2
(û) denotes an open ball of radius ε

2
and ε is arbitrarily small.

In the plane (x,w) these areas look as in Panel a of Figure 31. In the plane (d, w) these

areas look as in Panel b of Figure 31.

I am interested in conditional distribution of (d, w) given u ∈ B ε
2
(û). I start analyzing

this distribution from looking at the probability of b ∈ B ε
2

(
b̂
)

⇐⇒ u ∈ B ε
2
(û).

P
[
u ∈ B ε

2
(û)
]
= ε ·

 0∫
û

fx(x̂)fw (û− x̂)dx̂+ ρfx (û) + πfw (û)

+ o(ε), (62)

where the quantity within the square brackets is the density of u evaluated at û:

0∫
û

fx(x̂)fw (û− x̂)dx̂+ ρfx (û) + πfw (û) = fu (û) (63)
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Note that u is not entirely a continuous random variable, u is distributed as follows:

u ∼

û < 0 with density fu (û)

0 with probability πρ = P(X(d) ≥ 0) · P(w ≥ 0)
, (64)

Joint distribution (x−, w−)|u = û(< 0) is as follows

(x−, w−)|b = b̂ ∼


x− with density fboth short

x−|u=û (x̂) = fx(x̂)fw(û−x̂)
fu(û)

for x̂ ∈ (û, 0) , w− = û− x− < 0,(
b̂, 0
)

with probability ρfx(û)
fu(û)

,(
0, b̂
)

with probability πfw(û)
fu(û)

.

(65)

From the point of view of the joint distribution of (d, w), the second and the third cases

are further split into a continuum of possibilities. If w− = 0, then w can be any non-negative

number. Similarly, if x− = 0, x can be any non-negative number while d can be any number

with d ≥ dshort.
Finally, the joint distribution is as follows:

(d,w)|u = û ∼


d with density fboth short

d|b=b̂

(
d̂
)
=

fd(d̂)fw(û−X(d̂))
fu(û)

for d̂ ∈
(
X−1 (û) , dshort

)
, w = û−X

(
d̂
)
< 0,(

X−1(û), w
)
where w has the density of f informed shorts

w|b=b̂
(ŵ) = fw(ŵ)fx(û)

fu(û)
=

fw(ŵ)fd(X−1(û))
fu(û)X′(X−1(û)) for w ≥ 0,

(d, û) where d has the density of fnoise shorts
d|b=b̂

(
d̂
)
=

fd(d̂)fw(û)

fu(û)
for d ≥ dshort.

(66)

The first case in Eq. 66 corresponds to the downward sloping segments of the isoquants in

Panel b of Figure 31. The second case corresponds to the vertical parts of the same isoquants,

while the third case corresponds to the horizontal parts of those isoquants.

Since the lender is particularly interested in the expected value of d, I project the distri-

bution given in Eq. 66 onto d-axis in order to obtain the conditional distribution of d.

d|u = û ∼


X−1(û), with probability pinformed shorts

d|b=b̂
(X−1(û)) =

ρfd(X−1(û))
fu(û)X′(X−1(û))

,

with density fboth short
d|b=b̂

(
d̂
)
=

fd(d̂)fw(û−X(d̂))
fu(û)

for d̂ ∈ (X−1 (û) , dshort) ,

with density fnoise shorts
d|b=b̂

(
d̂
)
=

fd(d̂)fw(û)

fu(û)
for d̂ ≥ dshort.

(67)

The definition of derivative in this case should be extended:

Definition F.1.

ψ′(h) = lim
dh→0

ψ
(
h+ dh

2

)
− ψ

(
h− dh

2

)
dh

.

If function X(·) has kinks, then the generalized derivative is also well-defined at the kinks.
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Figure 31: Signal u = x− + w− (negative of borrowing volume b)
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Thus, the conditional expectation E [d|u = û] is as follows:

X−1(û) · ρfd (X
−1 (û))

fu (û)X ′ (X−1 (û))
+

dshort∫
X−1(û)

d̂ ·
fd

(
d̂
)
fw

(
û−X

(
d̂
))

fu (û)
dd̂+

+∞∫
dshort

d̂ ·
fd

(
d̂
)
fw (û)

fu (û)
dd̂.

(68)

F.2 Case of zero borrowing

So far, I have been dealing with the case where the broker observes strictly positive borrowing

demand u < 0 (b > 0). The remaining case (u = 0) corresponds to the the upper-right shaded

area in Panel b of Figure 31 and to the flat part of the surface depicted in Panel c of Figure 31.

In this case, d and w are conditionally independent and their densities are as follows:

fd|u=0

(
d̂
)
= fd|d≥dshort

(
d̂
)
=

fd
(
d̂
)/

π for d̂ ≥ dshort,

0, otherwise,
(69)

fw|b=0 (ŵ) = fd|w≥0 (ŵ) =

fw (ŵ)/ρ for ŵ ≥ 0,

0, otherwise.
(70)

Thus, the conditional expectation E [d|u = 0] is as follows:

+∞∫
dshort

d̂ · fd
(
d̂
)
dd̂

π
(71)

G Updating beliefs based on observing overall order

flow

By assumption, d, w and z are continuously distributed random variables with densities de-

fined everywhere apart from at most a finite number of values. X(·) and Y (·) are continuously
differentiable functions apart from at most a finite number of values.

The market maker sets the price of the asset, based on the conditional distribution of d

after observing

S0(d, w) + z =: S(d, w, z) =: s = ŝ, where (72)

S0(d, w) := X(d) + w + Y (X−(d) + w−) (73)
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Theorem G.1. Joint density fd,s is given by:

fd,s

(
d̂, ŝ
)
= fd

(
d̂
) +∞∫
−∞

fw (ŵ) fz

(
ŝ− S0

(
d̂, ŵ

))
dŵ (74)

Proof.

P
[
d ∈ B ε

2

(
d̂
)
, s ∈ B ε

2
(ŝ)
]
=

1

ε

+∞∫
−∞

P
[
d ∈ B ε

2

(
d̂
)
, w ∈ B ε

2
(ŵ) , s ∈ B ε

2
(ŝ)
]
dŵ =

1

ε

+∞∫
−∞

P
[
d ∈ B ε

2

(
d̂
)
, w ∈ B ε

2
(ŵ) , z ∈ B ε

2

(
ŝ− S0

(
d̂, ŵ

))]
dŵ =

ε2
+∞∫

−∞

fd

(
d̂
)
fw (ŵ) fz

(
ŝ− S0

(
d̂, ŵ

))
dŵ.

Corollary G.1.1. Conditional density fd|s is given as follows:

fd|s

(
d̂, ŝ
)
=
fd,s

(
d̂, ŝ
)

fs (ŝ)
=

fd,s

(
d̂, ŝ
)

+∞∫
−∞

fd,s

(
d̂, ŝ
)
dd̂

=

fd

(
d̂
) +∞∫

−∞
fw (ŵ) fz

(
ŝ− S0

(
d̂, ŵ

))
dŵ

+∞∫
−∞

fd

(
d̂
) +∞∫

−∞
fw (ŵ) fz

(
ŝ− S0

(
d̂, ŵ

))
dŵdd̂

.

(75)

Corollary G.1.2. Conditional expectation E [d|s = ŝ] is given as follows:

E [d|s = ŝ] =

+∞∫
−∞

d̂ · fd,s
(
d̂, ŝ
)
dd̂

+∞∫
−∞

fd,s

(
d̂, ŝ
)
dd̂

=

+∞∫
−∞

d̂ · fd
(
d̂
) +∞∫

−∞
fw (ŵ) fz

(
ŝ− S0

(
d̂, ŵ

))
dŵdd̂

+∞∫
−∞

fd

(
d̂
) +∞∫

−∞
fw (ŵ) fz

(
ŝ− S0

(
d̂, ŵ

))
dŵdd̂

. (76)

I additionally impose certain assumtions on the functional forms of X(·) and Y (·) and on

the prior distribitions of d, w, and z.

In particular, I assume the following about X(·).

Assumption G.1.

X(d) = X(i)(d) for d ∈ I id, (77)

X(i)(d) = kixd+ bix, (78)
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I id = (di, di+1) for i ∈ 1, ..., Nx, d1 = −∞, dNx+1 = +∞.25 (79)

Besides, I assume the following about Y (·).

Assumption G.2.

Y (u) = Y (i)(u) for u ∈ I iu, (80)

Y (i)(u) = kiyd+ biy, (81)

I iu = (ui, ui+1) and I
−i
u = {ui+1} = [ui+1, ui+1] (82)

for i ∈ 1, ..., Ny − 1, d1 = −∞, dNy+1 = 0.26

Obviously, slope coefficients are redundant for the degenerate intervals I−i
u . Nevertheless, I

would like to keep the generality of notation. For this reason I specify k−i
y = 0.

Regarding the prior distributions, I assume the following.

Assumption G.3. d ∼ N(0, σ2
d), z ∼ N(0, σ2

z), and w ∼ N(0, σ2
w).

Corollary G.1.3. Under these three assumptions the conditional expectation in the previous

Corollary can be computed according to the following steps.

Consider separately numerator and denominator that both can be written as:

+∞∫
−∞

d̂ν · fd
(
d̂
) +∞∫
−∞

fw (ŵ) fz

(
ŝ− S0

(
d̂, ŵ

))
dŵdd̂, where ν ∈ {0, 1} (83)

1. Split the integration area R2 into a finite set of non-overlapping and closure-exhaustive

trapezoids [tiles] within which function s0 is linear in d̂ and ŵ.27 I denote this finite

set of tiles as Θ = {τ}, where each tile τ ia a subset of R2 for τ ∈ Θ. Each of these

tiles has four sides, two of them are vertical: d(τ) < d < d(τ), while the other two

are either horizontal or sloped straight lines: wτ (d) < w < wτ (d), where wτ (d) =

Kw/d(τ) · d + Bw/d(τ) and wτ (d) = Kw/d(τ) · d + Bw/d(τ). Any of the sides can

degenerate to ±∞. If, say, the upper boundary wτ (·) degenerates to +∞, then I say

that Kw/d(τ) = 0 and Bw/d(τ) = +∞.

25For pracrical purposes the openness of the intervals is innocuous. In the computation of the repeated
integrals

∫∫
· · ·dd̂dŵ so it is acceptable that a function is not defined at a finite number of straight lines

{{di} × R}(i).
26I deliberately allow for discontinuities. If function X(·) has negative shelves, then values of function Y (·)

in individual points may matter: it cannot be defined up to a set of measure 0. Minus (“−”) in front of “i”
has a purely symbolical meaning. It is only meant for distinguishing intervals from the points between them.

27The description of the algorithm is provided in Internet Appendix.
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2. For each tile τ , determine the slope and intercept coefficients that are effective for

functions X(·), X−(·), Y (·) and the slope of w− as a function of w.

kx(τ), bx(τ), kx−(τ), bx−(τ), ky(τ), by(τ), and Iw<0(τ) (84)

3. For each tile, explicitly articulate the linear form of s0:

s0

(
d̂, ŵ

)
= bx(τ) + ky(τ)bx−(τ) + by(τ)︸ ︷︷ ︸

:=Bs0 (τ)

+ [kx(τ) + ky(τ)kx−(τ)]︸ ︷︷ ︸
:=Ks0/d

(τ)

·d̂+ [1 + Iw<0(τ)ky(τ)]︸ ︷︷ ︸
:=Ks0/w

(τ)

·ŵ

= Bs0(τ) +Ks0/d(τ) · d̂+Ks0/w(τ) · ŵ
(85)

4. Provide a closed-form integral over ŵ (the internal one) within a particular tile inter-

sected with a particular value of d̂.

Kw/d(τ)d̂+Bw/d(τ)∫
Kw/d(τ)d̂+Bw/d(τ)

fw(ŵ)fz

(
ŝ− s0

(
d̂, ŵ

))
dŵ =

Kw/d(τ)d̂+Bw/d(τ)∫
Kw/d(τ)d̂+Bw/d(τ)

fw(ŵ)fz

(
ŝ−Bs0(τ)−Ks0/d(τ) · d̂−Ks0/w(τ) · ŵ

)
dŵ =

exp

[
−(ŝ−Bs0 (τ)−Ks0/d

(τ)·d̂)
2

2Σ2(τ)

]
√
2πΣ(τ)

· Φ(∆)

∣∣∣∣
Kw/d(τ)d̂+Bw/d(τ)−λ(τ)·(ŝ−Bs0 (τ)−Ks0/d

(τ)·d̂)
σ(τ)

Kw/d(τ)d̂+Bw/d(τ)−λ(τ)·(ŝ−Bs0 (τ)−Ks0/d
(τ)·d̂)

σ(τ)

≡

exp

[
−(ŝ−Bs0 (τ)−Ks0/d

(τ)·d̂)
2

2Σ2(τ)

]
√
2πΣ(τ)

×

×

Φ
Kw/d(τ)d̂+Bw/d(τ)− λ(τ) ·

(
ŝ−Bs0(τ)−Ks0/d(τ) · d̂

)
σ(τ)

 −

Φ

Kw/d(τ)d̂+Bw/d(τ)− λ(τ) ·
(
ŝ−Bs0(τ)−Ks0/d(τ) · d̂

)
σ(τ)

 , where

(86)

Σ(τ) =
√
Ks0/w(τ)

2σ2
w + σ2

z , (87)
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σ(τ) =
σwσz
Σ(τ)

, (88)

λ(τ) =
Ks0/w(τ)σ

2
w

Σ2(τ)
, (89)

5. Rewrite the internal integral with a new notation:

Kw/d(τ)d̂+Bw/d(τ)∫
Kw/d(τ)d̂+Bw/d(τ)

fw(ŵ)fz

(
ŝ− s0

(
d̂, ŵ

))
dŵ =

exp

[
−(ŝ−Bs0 (τ)−Ks0/d

(τ)·d̂)
2

2Σ2(τ)

]
√
2πΣ(τ)

×
[
Φ
(
κ(τ) · d̂+ β(τ)

)
− Φ

(
κ(τ) · d̂+ β(τ)

)]
, where

(90)

κ(τ) =
Kw/d(τ) + λ(τ)Ks0/d(τ)

σ(τ)
=
Kw/d(τ)

σ(τ)
+
Ks0/w(τ)Ks0/d(τ)σw

Σ(τ)σz
, (91)

κ(τ) =
Kw/d(τ) + λ(τ)Ks0/d(τ)

σ(τ)
=
Kw/d(τ)

σ(τ)
+
Ks0/w(τ)Ks0/d(τ)σw

Σ(τ)σz
, (92)

β(τ) =
Bw/d(τ)

σ(τ)
+
Ks0/w(τ)σw
Σ(τ)σz

(Bs0(τ)− ŝ) , (93)

β(τ) =
Bw/d(τ)

σ(τ)
+
Ks0/w(τ)σw
Σ(τ)σz

(Bs0(τ)− ŝ) . (94)

6. Use the simplified version of the inner integral (with respect to ŵ) obtained at the

previous step to plug into the outer integral.

I(ν)(τ) :=

d(τ)∫
d(τ)

d̂ν · fd
(
d̂
) Kw/d(τ)d̂+Bw/d(τ)∫
Kw/d(τ)d̂+Bw/d(τ)

fw(ŵ)fz

(
ŝ− s0

(
d̂, ŵ

))
dŵdd̂ =

1√
2πΣ(τ)

d(τ)∫
d(τ)

d̂ν · fd
(
d̂
)
exp

−
(
ŝ−Bs0(τ)−Ks0/d(τ) · d̂

)2
2Σ2(τ)

×

×
[
Φ
(
κ(τ) · d̂+ β(τ)

)
− Φ

(
κ(τ) · d̂+ β(τ)

)]
dd̂

(95)
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7. Rewrite the integral by transforming

fd

(
d̂
)
exp

−
(
ŝ−Bs0(τ)−Ks0/d(τ) · d̂

)2
2Σ2(τ)

 =

=
1√
2πσd

exp

−1

2

 d̂2

σ2
d

+

(
ŝ−Bs0(τ)−Ks0/d(τ) · d̂

)2
Σ2(τ)


 =

=
1√
2πσd

exp

−1

2

 d̂2

σ2
d

+

(
Ks0/d(τ) · d̂− s̃(τ)

)2
Σ2(τ)


 =

=
1√
2πσd

exp

−1

2


(
d̂− λ̃(τ)s̃(τ)

)2
σ̃2(τ)

+
s̃2(τ)

Σ̃2(τ)


 =

=
1√
2πσd

exp

−
(
d̂− λ̃(τ)s̃(τ)

)2
2σ̃2(τ)

 exp

[
− s̃2(τ)

2Σ̃2(τ)

]
, where

s̃(τ) = ŝ−Bs0(τ) (96)

Σ̃2(τ) = Σ2(τ) + σ2
dK

2
s0/d

(τ) (97)

σ̃2(τ) = Σ2(τ)σ2
d/Σ̃

2(τ) (98)

λ̃(τ) = σdKs0/d/Σ̃
2(τ) (99)

In particular, obtain

I(ν)(τ) =
1√

2πΣ(τ)

d(τ)∫
d(τ)

d̂ν · 1√
2πσd

exp

−
(
d̂− λ̃(τ)s̃(τ)

)2
2σ̃2(τ)

 exp

[
− s̃2(τ)

2Σ̃2(τ)

]
×

×
[
Φ
(
κ(τ) · d̂+ β(τ)

)
− Φ

(
κ(τ) · d̂+ β(τ)

)]
dd̂

(100)

8. Standardize the integral by applying a change of variable:

δ =
d̂− λ̃(τ)s̃(τ)

σ̃(τ)
⇐⇒ d̂ = λ̃(τ)s̃(τ) + σ̃(τ)δ ⇒ dd̂ = σ̃dδ (101)
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I(ν)(τ) =
ϕ
[
s̃(τ)

Σ̃(τ)

]
Σ̃(τ)

×
δ(τ)∫

δ(τ)

(
λ̃(τ)s̃(τ) + σ̃(τ)δ

)ν
· ϕ (δ)×

×
[
Φ
(
κ(τ)σ̃(τ) · δ + β(τ) + κ(τ)λ̃(τ)

)
− Φ

(
κ(τ)σ̃(τ) · δ + β(τ)κ(τ)λ̃(τ)

)]
dδ =

ϕ
[
s̃(τ)

Σ̃(τ)

]
Σ̃(τ)

×
δ(τ)∫

δ(τ)

(λ(τ)s̃(τ) + σ̃(τ)δ)ν · ϕ (δ)×

×
[
Φ
(
K(τ) · δ +B(τ)

)
− Φ (K(τ) · δ +B(τ))

]
dδ, where

(102)

K(τ) = κ(τ)σ̃(τ), K(τ) = κ(τ)σ̃(τ), (103)

B(τ) = β(τ) + κ(τ)λ̃(τ)s̃(τ), B(τ) = β(τ) + κ(τ)λ̃(τ)s̃(τ), (104)

δ(τ) =
d(τ)− λ̃(τ)s̃(τ)

σ̃(τ)
, δ(τ) =

d(τ)− λ̃(τ)s̃(τ)

σ̃(τ)
, (105)

9. Rewrite the integral in terms of standardized integrals Ψ that I define in Internet

Appendix.

I(0)(τ) =

ϕ
[
s̃(τ)

Σ̃(τ)

]
Σ̃(τ)

{[
Ψ

(0)

K(τ)

(
δ, B(τ)

)
−Ψ

(0)

K(τ)

(
δ, B(τ)

)]
−
[
Ψ

(0)
K(τ)

(
δ, B(τ)

)
−Ψ

(0)
K(τ) (δ, B(τ))

]}
(106)

I(1)(τ) = λ̃(τ)s̃(τ)I(0)(τ) + σ̃
ϕ
[
s̃(τ)

Σ̃(τ)

]
Σ̃(τ)

×

×
{[

Ψ
(1)

K(τ)

(
δ, B(τ)

)
−Ψ

(1)

K(τ)

(
δ, B(τ)

)]
−
[
Ψ

(1)
K(τ)

(
δ, B(τ)

)
−Ψ

(1)
K(τ) (δ, B(τ))

]}
.

(107)

10. Compute the conditional expectation as∑
τ I(1)(τ)∑
τ I(0)(τ)

(108)
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