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Abstract 
We employ a repertoire of machine learning models to explore the cross-sectional return 
predictability in cryptocurrency markets. While all methods generate substantial eco-
nomic gains, those that account for nonlinearities and interactions fare the best. The 
return predictability derives mainly from a handful of simple features—such as idiosyn-
cratic volatility, past alpha, or maximum daily return—and is likely driven by mispricing. 
Accordingly, abnormal returns originate predominantly from short positions, concentrate 
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1. Introduction 
Cryptocurrency literature has documented a growing list of characteristics that predict 
cross-sectional returns. Some of them—such as momentum, size, or reversal (Liu et al., 
2022; Bianchi et al., 2022)—are parallels of similar phenomena in equity markets; others, 
such as network activity measures (Liu & Tsyvinski, 2021; Cong et al., 2022), are inher-
ently specific to cryptocurrencies. The emerging cryptocurrency “factor zoo”—comprising 
potentially noisy and correlated predictors—may require methods beyond simple portfo-
lio sorts or cross-sectional regressions. Recent advances in machine learning methods 
appear to be a natural response to this task. Due to their capacity to handle vast multi-
dimensional data, select best predictors, and account for nonlinearities and interactions 
(Gu et al., 2020; Giglio et al., 2022), machine learning models are well poised to face the 
cryptocurrency landscape. 

In this paper, we combine machine learning with asset pricing research in order to gain 
new insights into cross-sectional return predictability in cryptocurrency markets. Build-
ing on a comprehensive dataset that covers more than 500 major coins and tokens listed 
across 250 exchanges over the years of 2017 to 2022, we identify, classify, and reproduce 
34 cryptocurrency characteristics. Next, we use these to feed 10 popular machine learning 
models; this includes dimension reduction techniques, raw and regularized regressions, 
tree methods, and neural networks. Finally, we explore their prediction performance. The 
aim of these exercises is not only to assess the machine learning effectiveness in the 
cryptocurrency world but—first and foremost—to enrich our understanding of pricing 
mechanisms within this new and growing asset class. 

Our findings contribute in four ways. First, we demonstrate that machine learning tech-
niques can be successfully deployed to predict the cross-section of cryptocurrency returns. 
While all our forecasting models generate substantial economic gains, the tree methods 
and neural networks prove particularly effective. Their superiority derives from the ability 
to capture interactions and nonlinearities in returns; this highlights the complexity of 
asset pricing in cryptocurrency markets. The linear models, which cannot capture these 
phenomena, typically lag.  

Besides the mere prediction accuracy, the machine learning models can be forged into 
successful investment strategies via portfolio sorts. The best-performing method is the 
forecast combination, which equally weights outputs from individual models. In a nut-
shell, while all models have their benefits, merging them works best. A long-short value-
weighted combination strategy yields a mean weekly return of 4.72% at an annualized 
Sharpe ratio of 5.37. The abnormal returns survive controlling for common factor expo-
sures and hold for alternative weighting schemes. Furthermore, as seen in Coqueret 
(2022), investors typically benefit from using longer-horizon forecasts. As a result, strat-
egies based on daily forecast yield lower—though still significant—abnormal returns than 
either weekly or bi-weekly portfolios. 
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Importantly, because space constraints prevent us from displaying the full details of our 
machine leaning strategies, we supplement the paper with a visual tool to view them on 
a dedicated website.1 It allows researchers to compare the performance of all strategies 
discussed in this study. 

Second, our findings highlight the main drivers of the cross-sectional variation in cryp-
tocurrency returns. The machine learning models allow for pinpointing the essential re-
turn predictors among the “factor zoo.” Our variable importance analysis suggests that 
cryptocurrency returns are determined by a handful of uncomplicated signals—including 
idiosyncratic volatility, CAPM alpha, maximum daily return, nominal price, value at 
risk, and distance to a 90-day high. Notably, all these variables originate from simple 
data types—such as prices and returns. Moreover, when predictors are grouped into gen-
eral economic categories, what matters the most are past returns, volatility, and liquidity. 

Our third contribution concerns the sources of cross-sectional return predictability in 
cryptocurrency markets. A deeper look at machine learning forecasts provides insights 
into the nature of asset pricing mechanisms. Our findings align most closely with the 
mispricing explanation of return predictability: market inefficiencies emerge due to, e.g., 
investors’ limited rationality and persistence if they cannot be easily arbitraged away. 
Consistent with this, machine learning alphas predominantly come from the short legs of 
long-short strategies. A similar pattern also characterizes many equity anomalies (Stam-
baugh et al., 2012, 2015; Avramov et al., 2013, 2019), as short selling costs and constraints 
may impede attempts to eliminate mispricing.  

Moreover, the abnormal returns on machine learning portfolios mainly concentrate in 
difficult-to-trade cryptocurrencies. While our strategies are profitable everywhere, they 
thrive particularly in market segments that are characterized by excessive limits to arbi-
trate: high idiosyncratic risk, illiquidity, and bid-ask spread. In other words, the return 
predictability exists to the extent that impediments to arbitrage prevent traders from 
fully eliminating inefficiencies. Overall, the alphas in the tercile of assets with the highest 
limits to arbitrate are roughly three times as high as in the tercile of easiest-to-trade 
cryptocurrencies.  

Last, in addition to the cross-sectional variation above, the magnitude of return predict-
ability also varies over time. In particular, the abnormal returns on machine learning 
strategies gradually decline over time—as the markets become more efficient. Whereas 
their alphas have remained significant even in the second half of our sample (April 2020 
to July 2022),  their sheer size has declined by about 30%.  

                                                           
1 Https://azaremba.shinyapps.io/Cryptocurrency_machine_learning/. 
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Our fourth—and final—contribution concerns an investor's practical perspective. The 
cryptocurrency machine learning strategies produce phenomenal alphas, which can 
hardly be encountered in other asset classes. In particular, their Sharpe ratios visibly 
beat those of machine learning strategies in developed or emerging stock markets (e.g., 
Gu et al., 2020; Liu et al., 2022). Can these profits be harvested in practice? We find 
that despite a sizeable portfolio turnover, machine learning strategies survive net of trans-
action costs—even under restrictive assumptions. Admittedly, the trading costs can con-
sume as much as 60% of the payoffs of long-short machine learning strategies. Nonethe-
less, the remaining profits are still sizeable and are at par with their counterparts in 
equity markets. 

However, the cryptocurrency machine learning strategies come with two caveats. First, 
they exhibit substantial tail risk; therefore, an investor must be prepared for significant 
drawdowns of up to 30-50% of the invested capital. Second, they require taking massive 
short positions in small capitalizations cryptocurrencies. In particular, the last point may 
be challenging or even unfeasible. A successful implementation of machine learning in 
cryptocurrency markets depends on sorting out these two issues.  

Our study connects with three main strains of finance research. First, we extend the 
discussion on cross-sectional return predictability in cryptocurrency markets. A growing 
list of studies has demonstrated dozens of signals that capture the cross-sectional varia-
tion in cryptocurrency returns. Examples include—but are not limited to—momentum, 
size, liquidity, reversal, downside risk, crypto-specific network and on-chain measures, as 
well as macroeconomic exposures (e.g., Bhambhwani et al., 2019; Liu et al., 2021, 2022; 
Liu & Tsyvinski, 2021; Zhang et al., 2021; Borri et al., 2022; Cong et al., 2022; Bianchi 
et al., 2022). Against this backdrop, our paper is most closely linked to studies that 
attempt to aggregate the multidimensionality of returns into a uniform pricing model. 
For example, Liu et al. (2022) propose a three-factor model, and Babiak and Bianchi 
(2022) implement the instrumented principal component analysis of Kelly et al. (2019).  

Second, our paper adds to the research on machine learning applications to cross-sectional 
return predictability within financial markets. Earlier studies concentrated on diverse 
asset classes, including U.S. equities (Freyberger et al., 2020; Gu et al., 2020, 2021; Av-
ramov et al., 2021; Coqueret, 2022), international stocks (Leippold et al., 2021; Drobetz 
& Otto, 2021; Tobek & Hronec, 2021; Azevedo et al., 2022; Cakici et al., 2022; Fieberg 
et al., 2022; Hanauer & Kalsback, 2022), corporate bonds (Bali et al., 2022), U.S. Treas-
ury bonds (Bianchi et al., 2021), and commodities (Struck & Cheng, 2020; Rad et al., 
2021). Cryptocurrencies have thus remained a largely uncharted territory.  

Third, our findings relate to the evidence on economic constraints on return predictabil-
ity. Existing literature concentrates mainly on equities. For example, Hong et al. (2000), 
Fama and French (2008, 2012), and Hou et al. (2020) show that anomalies concentrate 
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primarily in small and illiquid securities. Pontiff (2006) and McLean (2010) accentuate 
the role of idiosyncratic volatility limiting arbitrage. Stambaugh et al. (2012, 2015) and 
Avramov et al. (2013, 2019) argue that most abnormal returns come from short legs of 
anomaly portfolios. Novy-Marx and Velikov (2016, 2019), Patton and Weller (2020), and 
Chen and Velikov (2021) document the sensitivity of profits from cross-sectional return 
predictions to trading costs. Finally, abundant literature—encompassing the works of 
Schwert (2007), Chordia et al. (2014), McLean and Pontiff (2016), Caluzzo et al. (2019), 
and Linnainmaa and Roberts (2018)—demonstrate the gradual decrease in return pre-
dictability over time.2 Against this background, our article is particularly associated with 
Avramov et al. (2022)—who explore economic restrictions on machine learning imple-
mentation effectiveness in equity markets. Similarly, they conclude that machine learning 
methods extract profitability mainly from difficult-to-arbitrage securities. 

The remainder of the study proceeds as follows. Section 2 discusses our data and findings. 
Section 3 presents the baseline empirical findings on the prediction performance of ma-
chine learning models, as well as the contribution of individual crypto characteristics. 
Section 4 concentrates on machine learning portfolios. Section 5 scrutinizes economic 
restrictions on machine learning strategies. Section 6 concerns the practical investor per-
spective. Finally, Section 7 concludes the study. 

2. Data and Methods 

This section summarizes the data and methods used in this study. We begin by presenting 
our dataset and the sample of cryptocurrency characteristics. We then describe the ma-
chine learning models employed, as well as the methods of evaluating their performance. 

2.1. Data Sources and Sample Preparation 

Following Bianchi and Babiak (2022), we combine data from several databases to max-
imize market coverage and availability of cryptocurrency characteristics. Specifically, we 
source OHLC price and volume data from CryptoCompare.com and blockchain activity 
from IntoTheBlock.com. Unlike many other data providers, CryptoCompare aggregates 
transaction data from more than 250 centralized exchanges around the world to provide 
an accurate price estimation. The market data is volume-weighted across the exchanges, 
linking the data source's importance with trading activity. As a result, smaller trading 
venues are given less emphasis in the aggregation process than the big and liquid markets. 
CryptoCompare has been recommended by Alexander and Dakos (2019) due to its supe-
rior reliability; it is frequently employed as a prime data source (Borri, 2019; Lucchini et 
al., 2020; Bianchi et al., 2022; Borri & Shankhnov, 2022). On the other hand, 

                                                           
2 Notably, several studies—including Jacobs (2016) and Jacobs and Müller (2020)—contest the conclusions 
on declining return predictability.  
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IntoTheBlock—used by Cong et al. (2022), Bianchi and Babiak (2022), and Hoang and 
Baur (2022), among others—is one of the most common sources of on-chain activity.  

Cryptocurrency tickers used by various providers may differ. Hence, in order to ensure 
correct matching coins from CryptoCompare and IntoTheBlock, we use a two-step pro-
cedure. In the first pass, we pair the cryptocurrencies by their full name rather than by 
ticker. However, cryptocurrency names may also exhibit minor discrepancies across da-
tabases. Hence, in the second pass, we turn to matching by tickers. We only retain these 
assets with market data available from both sources and require price consistency. Pre-
cisely, we discard coins with identical tickers but prices differing on average by more than 
5%. In addition, we verify that their names are qualitatively consistent on a case-by-case 
basis.  

We clean our sample with a series of filters to eliminate potential data errors, mainly 
following Bianchi and Babiak (2022). We begin with static screens. We exclude (i) sta-
blecoins, e.g., USDT or DAI (either centralized or algorithmically stabilized); (ii) coins 
backed by or tracking prices of precious metals, such as gold; (iii) cryptocurrencies serving 
as collaterals for derivative platforms, e.g., SNX; and (iv) so-called “wrapped coins,” 
including Wrapped Bitcoin (WBTC). The cryptocurrency classification for these filters 
is based on CoinMarketCap.com. 

Next, we also apply a battery of dynamic filters. First, following Cong et al. (2022), we 
delete any observations with non-positive trading volume, market capitalization, or price. 
Second, as in Bianchi et al. (2022), we mitigate issues with “fake” or “erroneous” volume 
by dropping observations with the ratio of daily traded volume to market capitalization 
exceeding one. Third, to align our study with practice, we exclude the smallest crypto-
currencies—which may be difficult to trade. To be precise, we adopt the approach of Liu 
et al. (2022): setting a minimum threshold of $1 million for cryptocurrency market capi-
talization. Finally, as in Bianchi and Babiak (2022), we discard extreme returns as they 
may likely originate from database errors. Concretely, we remove daily returns below -
99.9% and above 100%—as well as weekly returns below -99.9% and exceeding 200%.  

After we apply all the filters, our sample contains 574 distinct cryptocurrencies. The 
study period runs from July 1, 2017 to July 6, 2022 and the start time is defined as 
00:00:00 UTC. Obviously, the number of coins is not stable over time and grows gradually 
along with the evolution of the cryptocurrency markets. Figure 1 provides a snapshot of 
the research sample. As seen in Panel A, the number of available assets increased from 
30 in July 2017 to reach 300 in late 2018. Notably, the cross-section may seem modest 
when compared to the existing cryptocurrency universe; at the time of writing, CoinMar-
ketCap.com informs more than 24 thousand coins traded at different exchanges. Never-
theless, by focusing on larger and more tradeable tokens, we simultaneously capture most 
of the global market capitalization. As seen in Panel C, the total market value of the 
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sample is below less than $100 billion in 2017 to exceed two trillion in 2021—effectively 
capturing most of the tradeable cryptocurrency universe. 

[Insert Figure 1 about here] 

Our study period—although relatively short—covers a diverse set of market, economic, 
and geopolitical circumstances; this includes the COVID-19 pandemic outbreak, the sub-
sequent global recession, the stock market downturn and rally in 2020, and the Russian 
invasion of Ukraine. It also captures various institutional and regulatory changes, such 
as introducing novel instruments—Chicago Mercantile Exchange Bitcoin and Ethereum 
futures or Bitcoin ETFs—or the crypto exchange ban in China. Consequently, it reflects 
a broad array of conditions in the cryptocurrency market—including the initial coin of-
fering frenzy in 2017, the subsequent “crypto-winter,” as well as massive cryptocurrency 
crash at the onset of the pandemic in 2020. In summary, our research sample compre-
hensively represents conditions and tendencies in cryptocurrency markets. 

Finally, Panel B of Figure 1 illustrates the cross-sectional composition of our research 
sample. An average token in our selection has 774 trading days’ worth of data.3 A total 
of 89 coins have a history longer than 1,500 trading days. On the other hand, the sample 
also includes a substantial representation of cryptocurrencies' relatively short history, 
and 186 coins have less than one year of data available. 

2.2. Cryptocurrency Characteristics 

Our machine-learning forecasting models require inputs in the form of coin characteris-
tics. Hence, we identify, classify, and reproduce 34 return-predicting variables from fi-
nance literature. We build our selection mainly on Liu et al. (2022) and Bianchi and 
Babiak (2022), which we complement with more recent findings from cryptocurrency 
research. We also use these source papers to follow possibly close the calculation proce-
dure. Below, we briefly summarize the predictors, while Table 1 contains a detailed de-
scription. 

[Insert Table 1 about here] 

We group the signals into six broad categories based on their underlying economic intu-
ition. The first group—the measures of on-chain activity—encompasses new addresses 
(new_add), active addresses (active_add), and network-to-market ratio (bm). These sig-
nals are sometimes treated as proxies for cryptocurrency value (Pagnotta & Buraschi, 
2018; Liu et al., 2021; Cong et al., 2022; Liebi, 2022).  

Next, we consider an array of variables associated with liquidity that has been explored 
in cryptocurrency literature (Brauneis et al., 2021; Li et al., 2021; Zhang & Li, 2021; Han 
et al., 2022; Dong et al., 2022; Liu et al., 2022): trading volume (volume), market value 
                                                           
3 Unlike stocks, cryptocurrencies are traded 365 days a year. As a result, 774 trading days imply roughly 
25 months.  



8 

(size), bid-ask spread (bidask), illiquidity ratio (illiq), turnover (turn), and detrended 
turnover (dto). As in Leivrik (2021), Bianchi and Babiak (2022), and Dong et al. (2022), 
we also account for measures of variability in liquidity—namely, turnover and trading 
volume volatility (std_dto, std_vol), as well as 30- and 60-day volume shocks 
(volsh_30d, volsh_60d). 

The third category includes various proxies for security-level price volatility and risk that 
have been found to either positively or negatively correlate with future cryptocurrency 
payoffs (Jia et al., 2021; Zhang & Li, 2020; Burggraf & Rudolf, 2021; Zhang et al., 2021; 
Dobrynskaya & Dubrowskiy, 2022): realized volatility (rvol), the capital asset pricing 
model (CAPM), beta (beta), idiosyncratic risk (ivol), and value-at-risk (var).  

The fourth group, associated with past returns, is relatively broad. It encompasses as-
sorted variables that are derived from past price changes. These signals capture the pos-
itive or negative correlation between past and future coin performance (Grobys & Sap-
kota, 2019; Liu et al., 2020; Shen et al., 2020; Tzouvanas et al., 2020; Dobrynskaya, 2021; 
Liu & Tsyvinski, 2021; Bianchi et al., 2022; Jia et al., 2022). Specifically, we calculate 
several momentum measures motivated by Liu et al. (2022): seven-day, 13-day, 23-day, 
31-day, and intermediate momentum (r7_2, r13_2, r22_2, r31_2, r30_14); two reversal 
signals: daily reversal (r2_1) and long-term reversal (r180_r60); as well as two other 
measures: the 90-day high (90dh) and the CAPM alpha (alpha). 

Besides the average past returns, we also study their distribution. In addition to skewness 
(skew) and kurtosis (kurt), this category also includes the maximum and minimum daily 
returns (max, min)—examined initially by Bali et al. (2011). Numerous works (e.g., Gro-
bys & Junttila, 2021; Jia et al., 2021; Lin et al., 2021; Liu et al., 2021; Ozdamar et al., 
2021) suggest that such distributional properties may contain information about future 
coin returns. 

Finally, our set also includes several variables classified as other—which do not fit well 
into the categories above. These include the nominal price (prc), analyzed by Miller and 
Scholes (1982); the cross-sectional seasonality (seas) from Keloharju et al. (2016); and 
the variables associated with distribution perception distortions: the salience theory 
measure (st) by Cosemans and Frehen (2021) and the chronological return ordering (cro) 
variables of Mohrschladt (2021). The cryptocurrency counterparts of these anomalies 
have been scrutinized by Zaremba et al. (2020), Cai and Zhao (2021), Chen et al. (2022), 
and Liu et al. (2022)—among others. 

Table 2 presents the summary statistics for the main variables in the sample. We report 
the averages, standard deviations, skewness coefficients, and key percentiles. Notably, 
most variables have asymmetric distributions. Many of them—such as on-chain measures, 
size, or volume—exhibit positive skewness. This phenomenon reflects the specific market 
structure, with a small number of very large cryptocurrencies (such as Bitcoin or 
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Ethereum). On the other hand, multiple liquidity variables display negative skewness—
suggesting a long tail of illiquid coins. 

[Insert Table 2 about here] 

2.3. Machine Learning Models 

We build on Gu et al. (2020) and use a general additive prediction model to capture the 
association between the cryptocurrency returns and their characteristics: 

 𝑟௜,௧ାଵ = 𝐸௧൫𝑟௜,௧ାଵ൯ + 𝜀௜,௧ାଵ, (1) 

with 𝑟௜,௧ାଵ denoting the excess return on token 𝑖 = 1, … , 𝑁் in the week (seven days) 𝑡 =

1, … , 𝑇. Most cryptocurrency asset pricing studies typically focus on explaining daily 
(e.g., Bianchi & Babiak, 2022; Bianchi et al., 2022) or weekly (e.g., Cong & He, 2019; 
Liu & Tsyvinski, 2021; Liu et al., 2022) returns. We opt for the latter, a less granular, 
approach for two reasons. First, the weekly returns are less noisy—allowing us to focus 
more on the underlying return drivers. Second, the less frequent portfolio reconstruction 
is more aligned with an investor’s perspective as it generates lower trading costs. 

We compute the expected returns 𝐸௧൫𝑟௜,௧ାଵ ൯ as a constant function of cryptocurrency 
characteristics: 

 𝐸௧൫𝑟௜,௧ାଵ൯ = 𝑔൫𝑧௜,௧൯, (2) 

where 𝑧௜,௧ denotes the vector of stock characteristics, which contains the 34 variables 
described in Section 2.1. The function 𝑔൫𝑧௜,௧൯ estimates the rates of return that solely 
rely on information from token i and day t. In other words, it does not take into account 
the characteristics of other cryptocurrencies or from earlier periods. Moreover, its precise 
form is not specified. The approximated functions differ across the machine learning 
algorithms and may be parametric or nonparametric, linear or nonlinear. 

As in Babiak and Bianchi (2022), we consistently predict returns and construct strategies 
that assume a skipping in portfolio formation equals one day. In other words, we forecast 
returns based on data from day d-1, use them to form portfolios in d, and track their 
returns over the next week (i.e., from day d+1 to d+7). This one-day lag not only aligns 
well with the practical investor perspective, but it also allows for the mitigation of po-
tential microstructure issues that are associated with bid-ask bounce (Zaremba et al., 
2021; Bouri et al., 2022).  

We train all models to forecast the true returns by minimizing the out-of-sample mean 
squared forecast error: 
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 𝑀𝑆𝐹𝐸௧ାଵ =
ଵ

ே೟శభ
∑ ൫𝜀௜̂,௧ାଵ൯

ଶே೟శభ
௜ୀଵ , (3) 

with 𝜀௜̂,௧ାଵ indicating the individual prediction error for the cryptocurrency i, and 𝑁௧ାଵ 
representing the number of tokens at t+1. As a general rule, we aim to find a forecasting 
model with the best prediction accuracy among a pool of candidates. 

Machine learning literature offers a broad—and growing—number of prediction models. 
Our selection of a sample of representative methods builds on several seminal studies 
from asset pricing literature; this includes Gu et al. (2020), Bali et al. (2022), and Leip-
pold et al. (2022). In consequence, we consider 10 distinct models—which are briefly 
summarized below. Regarding further implementation details, we closely reproduce pro-
cedures from Cakici et al. (2022). 

Ordinary Least Squares Regression (OLS).  The OLS regression assumes fitting a mul-
tiple predictive regression that utilizes all features as model inputs. The model is rela-
tively simple and does not involve regularizing, hyperparameters tuning, or validation. 
Nonetheless, it is highly prone to overfitting—especially in a high-dimensional setting 
(Gu et al., 2020). 

Partial Least Squares (PLS).  PLS is an effective dimension-reduction technique that 
accounts for the association between covariates and security returns. Advocated by Kelly 
and Pruitt (2013, 2015), the three-pass PLS regression concentrates on the features most 
strongly correlated with cryptocurrency payoffs. Specifically, the individual predictors 
are aggregated into composite factors to maximize the correlation between them and 
future returns. Subsequently, these newly created factors are used as inputs to predictive 
regressions. The tuning parameter is the number of components in the regression. 

Penalized Linear Regressions (LASSO, ENET).  Penalize linear regressions to cope with 
the overfitting problem by imposing a penalty term on slope coefficients. We employ two 
popular regularization approaches: the least absolute shrinkage and selection operator 
(LASSO), and the elastic net (ENET) of Zou and Hastie (2005). LASSO penalizes the 
model proportionally to the absolute values of its coefficients. On the other hand, ENET’s 
penalty function combines the component of LASSO and the ridge regression of Hoerl 
and Kennard (1970)—which concentrates on squared coefficients. In our case, both com-
ponents are weighted equally. The primary benefit of ENET over LASSO is its effective-
ness in dealing with a correlation between covariates (for details, see Zou & Hastie, 2005; 
Diebold & Shin, 2019). The tuning parameter in both models is the penalty term. 

Support Vector Machine (SVM). The support vector machine (SVM) models search for 
hyperplanes to divide the multidimensional vector space territorially into clusters. In our 
case, the vectors represent cryptocurrency features. The SVM procedure aims to mini-
mize the number of misclassified vectors, maximizing the distance between the correctly 
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classified ones. SVM may be used for binary and multi-class problems in classification 
and regression contexts. We estimate SVM parameters using the average stochastic gra-
dient descent method (Xu, 2011). 

Tree Models (RF, GBRT). The tree models are flexible non-parametric algorithms that 
effectively capture returns' interactions and nonlinearities. They divide observations 
(cryptocurrency characteristics) into distinct subcategories, typically called “leaves.” A 
tree is constructed in stages, and the splitting variables and decision nodes determine the 
tree's structure. At each splitting point, a splitting variable generates two disjoint 
branches. The tree continues to grow until the terminal leaves are reached. 

Individual trees tend to overfit the data, so they require heavy regularization. We choose 
two popular approaches: random forests (RF) and gradient-boosted regression trees 
(GBRT). RF relies on the bootstrap aggregation algorithm called “bagging” (Breiman, 
2001). Specifically, it assumes averaging multiple trees based on bootstrapped subsamples 
on the original data. The GBRT technique, in turn, assumes fitting subsequent trees 
based on earlier trees’ residuals and forming ensemble predictions by aggregating numer-
ous trees consecutively multiplied by the learning rate (0.1). We fit the GBRT mode 
using the least-squares boosting method (Breiman, 2001; Hastie et al., 2008) with be-
tween 100 and 200 learning cycles. 

Feed-Forward Neural Networks (NN1, NN2). The feed-forward neural networks com-
prise: (i) an “input layer,” i.e., cryptocurrency characteristics; (ii) a number of “hidden 
layers” containing activation and functions that transform the features; and (iii) an “out-
put layer” that converts the hidden layers’ outcomes into return predictions. The infor-
mation flows through the neurons, from the input through hidden to output layer, even-
tually aggregates into forecasts.  

The neural networks allow for the accounting of non-linearities and interactions, and 
their flexibility increases with the number of layers. We use two different versions: one 
(NN1) and two (NN2) layers, with the first and second layer comprising 16 and 8 neu-
rons—respectively. Following Gu et al. (2020), we employ the rectified linear unit as the 
activation function. We optimize the trees using the Adam algorithm of Kingma and Ba 
(2014). 

Forecast Combination. To create an ensemble forecast, the forecast combination 
(COMB) method weighs a number of predictions from various models. Combining several 
predictions into one has strong statistical roots (Bates & Granger, 1969; Clemen, 1989; 
Timmermann, 2006). Merging the models helps diminish their variance, eventually re-
ducing the forecast error (Petropoulos et al., 2022). As in Bali et al. (2022), we obtain 
the COMB forecast by calculating a simple equal-weighted average of the predictions 
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from nine individual models discussed above: OLS, PLS, LASSO, ENET, SVM, RF, 
GBRT, NN1, and NN2. 

We estimate the model’s parameters, tune their hyperparameters, and assess their per-
formance using standard methods from machine learning literature. We split the sample 
into three consecutive subperiods, keeping their temporal order: a training period of 150 
days, a validation period of 50 days, and the testing period comprising the subsequent 
week. Hence, the first testing period runs from July 1, 2017 to November 27, 2017. The 
training sample is used to estimate model parameters subject to pre-specified hyperpa-
rameters (specific to a given model type). Next, we use the subsequent validation period 
to optimize the hyperparameters to minimize the objective loss function. Last, we test 
the model’s accuracy using the following week. The testing week is not included in the 
training or validation samples. Finally, we re-estimate the model each week and reproduce 
this procedure until we reach the end of the entire study period. We assume a fixed (or 
rolling) training window, which means that the length of the training, validation, and 
testing samples is held constant and rolled forward at each reestimation. 

2.4. Performance Evaluation 

Our baseline measure of forecasting accuracy is the out-of-sample predictive R2 coeffi-
cient: 

 𝑅ைைௌ
ଶ = 1 −

∑ ൫௥೔,೟శభି௥̂೔,೟శభ൯
మ

(೔,೟)∈೹య

∑ ௥೔,೟శభ
మ

(೔,೟)∈೹య

, (4) 

where �̂�௜,௧ାଵ and 𝑟௜,௧ାଵ indicated forecasted and realized weekly returns on the cryptocur-
rency i in week t+1, and 𝛵ଷ denotes the testing sample. As in Gu et al. (2020), we 
estimated 𝑅ைைௌ

ଶ  using the entire sample of all weekly return observations pooled across 
cryptocurrencies and time. 

𝑅ைைௌ
ଶ  is the most common measure of prediction performance; however, it might be prob-

lematic to interpret or could even be irrelevant in some cases. In particular, it may fail 
to reflect the perspective of a quantitative portfolio manager who sorts securities to form 
a portfolio. What matters for them would be how effectively a model ranks assets in line 
with their actual ex-post returns. In other words, can it distinguish between losers and 
winners? Nevertheless, the link between predicted and realized returns might be blurred 
for 𝑅ைைௌ

ଶ , as the cross-sectional correlation becomes drowned in the return variances 
(Coqueret, 2022). As a result, investors may still realize measurable economic gains—
even if 𝑅ைைௌ

ଶ  is negative (Kelly et al., 2022).  

We also calculate simple average cross-sectional correlation coefficients to deal with the 
issues. To be specific, each week, we compute the Spearman rank-based and Pearson 
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product momentum correlation coefficient between the expected and realized payoffs. 
Subsequently, we calculate their averages through the time-series dimension (�̅�ௌ, �̅�௉). 
The obtained values provide an intuitive snapshot of the relationship between the model 
expectations and realized profits.  

3. Baseline Empirical Findings 

This section summarizes the prediction performance of machine learning methods. First, 
we summarize the overall measures of forecasting accuracy. Next, we explore the contri-
bution of individual cryptocurrency characteristics. 

3.1. Prediction Performance 

Table 3 presents the prediction performance for different machine learning methods. Ob-
serve first the 𝑅ைைௌ

ଶ  measures. The overall predictability level qualitatively resembles 
those documented in earlier asset class studies. With the top models generating 𝑅ைைௌ

ଶ  of 
approximately 0.7-0.8%, the forecasting accuracy for cryptocurrencies is stronger than 
for the U.S. stocks; meanwhile, Gu et al. (2022) reported values not exceeding 0.4%—
even for the best methods. On the other hand, the cryptocurrency return predictability 
lags behind corporate bonds or emerging market equities—where 𝑅ைைௌ

ଶ  may reach 2% to 
5% (Bali et al., 2022; Leippold et al., 2022). 

[Insert Table 3 about here] 

The OLS model—by far the simplest in our array—has positive 𝑅ைைௌ
ଶ  of 0.243%. Hence, 

it does not suffer severely from overfitting and allows for generating potentially helpful 
forecasts. This observation stands in contrast with the seminal study of Gu et al. (2020)—
where OLS produced a sizeable negative 𝑅ைைௌ

ଶ  value. Moreover, since overfitting does not 
seem to pose a substantial problem, the models aimed at reducing the overfitting do not 
bring measurable performance improvement. In consequence, the dimension reduction 
techniques (PLS) and penalized regressions (LASSO, ENET), generate low—and even 
negative— 𝑅ைைௌ

ଶ . Furthermore, SVM fails to outperform OLS measurably. 

Yet, what really makes a difference, is accounting for nonlinearities and interactions in 
the cross-section of returns. Hence, the prediction accuracy of tree methods and neural 
networks thrive in our ranking. This observation emphasizes the crucial benefits of ma-
chine learning models: they allow one to capitalize on unique return patterns in big 
datasets, which cannot be captured with simple linear models. In consequence, 𝑅ைைௌ

ଶ  for 
GBRT, RF, NN1, and NN2 visibly exceed 0.7% in all cases. The best performing model 
is NN1, yield 𝑅ைைௌ

ଶ  of 0.826%. Notably, the outperformance of the single-layer network 
of the double-layer matches the tendency of “shallow” models to beat the “deep” ones; 
this is recognized not only in finance, but also in other files—such as bioinformatics or 
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computer vision. Gu et al. (2020) attribute this phenomenon to the relative dearth of 
data and high noise-to-signal ratio in asset pricing applications. 

Finally, Table 3 also uncovers the strong performance of the COMB method; this cor-
roborates earlier observations of Cakici et al. (2022) from international stock markets. 
Forecast combinations diminish the model variance, reducing the forecast error. In con-
sequence, its 𝑅ைைௌ

ଶ  is at par with tree models and neural networks—equaling 0.742%.  

The bottom rows of Table 3 display the average weekly cross-sectional correlation coef-
ficients. At first glance, their values reveal notable similarities with the 𝑅ைைௌ

ଶ  measure. 
For instance, the tree models generate solid performance. Likewise, COMB fares very 
well; in fact, �̅�ௌ classifies it as the best method among all examined. Nevertheless, one 
notable difference stands out: the correlation measures consistently exceed zero for all 
models considered. In other words, despite low or even negative 𝑅ைைௌ

ଶ  scores, all the 
machine learning models can be forged into successful portfolios based on sorting. Over-
all, �̅�௉ ranges from 0.046 to 0.107 and �̅�ௌ from 0.052 to 0.092—laying the foundations for 
profitable investment strategies. 

Notably, even though the correlation levels may seem relatively low, they could be suffi-
cient for producing substantial economic gains. This occurs due to idiosyncrasies in a 
portfolio setting being canceled out, which boosts the resulting predictability. Conse-
quently, even the allegedly worst-performing methods—such as OLS—can still effectively 
distinguish future winners from losers. 

3.2. Which Cryptocurrency Characteristics Matter? 

One of the unique traits of machine learning methods is that they help to pinpoint which 
of the variables matter for future returns. Therefore, they allow introducing some order 
into the “factor zoo.” Though the cryptocurrency asset pricing literature is not as rich as 
for stocks, yet, the number of documented cross-sectional returns already reaches into 
the dozens. Hence, we are interested in the relative importance of these signals.  

To measure the contribution of specific variables to overall return predictability, we com-
pute variable importance (VI) by following the approach developed by Kelly et al. (2019). 
To be precise, for each predictor, we calculate in 𝑅ைைௌ

ଶ  resulting from setting all variables 
to zero while keeping all else fixed. This allows us to capture the critical determinants of 
the cross-sectional variation in cryptocurrency returns while simultaneously accounting 
for the full battery of 34 signals in the system. 
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3.2.1. Individual Importance 

Figure 2 illustrates the VI of the 34 characteristics considered in this study. First, most 
models largely agree on the critical drivers of cryptocurrency returns. The top five vari-
ables include idiosyncratic risk (ivol), CAPM alpha (alpha), maximum monthly return 
(max), nominal price (prc), and value at risk (var). Moreover, the linear models—such 
as OLS, PLS, and penalized regressions—emphasize the role of the distance to the 90-
day high (90dh). On the other hand, neural networks accentuate the importance of var-
ious liquidity indicators—including illiquidity ratio (illiq), trading volume (volume), or 
turnover (turn). The discrepancy in the importance of these features in linear and non-
linear models indicates that their importance emanates mainly from market interactions 
or nonlinearities, which simple OLS or LASSO cannot capture. 

 [Insert Figure 2 about here] 

Interestingly, the top variables in Figure 2 do not include some well-known predictors of 
cryptocurrency returns (such as size) or the simple momentum indicators (such as 
r31_2). Possibly, their role may be subsumed by more sophisticated variables—capturing 
more effectively the same economic phenomenon. For example, the simple momentum 
may be subsumed CAPM alpha (alpha) or the distance to the 90-day high—as suggested 
by Jia et al. (2022). 

Last, it is worth noting that the top predictors are relatively simple. They are derived 
from purely market data—such as prices, volumes, and returns. On the other hand, for 
example, the on-chain measures play a minor role. This conclusion is gracious for the 
practitioners: one can form successful predictions for the cryptocurrency markets without 
access to sophisticated data, such as the on-chain measures. What matters most can be 
found in simple price and return data, which is much more readily available.  

Figure 3 zooms further on the 10 most important variables and illustrates their relative 
importance. Specifically, we compare their VI across different methods. Interestingly, for 
many methods, most predictability is derived from a handful of key variables. This is 
particularly striking for regularized regressions, where the top variable – ivol – matters 
more than several subsequent predictors taken together. A similar pattern is also notice-
able for other linear models, as well as the tree methods, where a couple of key features 
(such as 90dh, prc, and ivol) matter incomparably more than others. The neural net-
works, in turn, seem more democratic; the VI appears more equally distributed among 
the predictors. 

[Insert Figure 3 about here] 
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Figure 4 sheds light on the model sparsity from a different angle. Specifically, we report 
the total VI for the top variables aggregated using the method of Bali et al. (2022). To 
this end, we first rescale all VI for each model so that their sum equals one. Then, we 
aggregate the scores for the top three, five, and 10 predictors.  

[Insert Figure 4 about here] 

The analyses seen in Figure 4 corroborate our earlier conclusions. The regularized regres-
sion and tree extract their information from a small number of top variables. For LASSO 
and ENET, the aggregate importance of the three top covariates equals about 40%, and 
the top 10 account for almost 70% of the predictability. In turn, while the aggregate VI 
of the top 3 predictors is smaller for the tree models, that of the top 10 exceeds even 
75%.  

Contrary to the trees and regularized regressions, the neural networks are more demo-
cratic. The aggregate VI of the top three variables does not pass even 15%, and the top 
10 barely crosses 40%. This implies that neural networks extract information from a 
broader and more balanced panel of variables than other methods. Overall, the results 
in Figure 4 emphasize the remarkable dissimilarities behind the mechanics of machine 
learning models. 

3.2.2. Category Importance 

Last, we are also interested in the contribution of different types of characteristics to 
overall predictability. Hence, we closely follow the approach of Bali et al. (2022) to esti-
mate aggregate VI (rescaled previously to sum to 1) within the categories representing 
similar economic intuitions—as specified in Table 1. We aim to determine which of these 
groups matters the most for the cross-section of cryptocurrency returns. Figure 5 displays 
the results of this exercise. 

[Insert Figure 5 about here] 

The three categories that drive the prices the most are associated with past returns, 
volatility, and liquidity. For example, in the COMB model (which averages the forecasts 
of other models), they account for 27%, 23%, and 20% of the aggregate VI—respectively. 
The other measures appear less critical, with a more modest role played by the on-chain 
metrics. However, the category importance is comparably uneven and may differ sub-
stantially across the models. For example, the liquidity characteristics, which account 
for only 17% of the aggregate VI for LASSO and ENET models, are simultaneously the 
most crucial set for NN1—representing 39% of the total VI. Likewise, the volatility cat-
egory contribution ranges from 12% (SVM) to 35% (LASSO, ENET). This observation 
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once again emphasizes the structural differences between various machine learning algo-
rithms.  

4. Machine Learning Portfolios 

Having established the basic predictive properties of the machine learning signals, we 
now turn to portfolio analysis. We investigate whether machine learning forecasts can be 
transformed into effective investment strategies. We consider various study periods and 
investment horizons.  

4.1. Portfolio Construction and Evaluation 

Following the standard approach in asset pricing literature, we form one-way sorted port-
folios. Specifically, each week, we rank all assets on their expected returns as predicted 
by different machine learning models. Next, we sort them into quintiles to form equal- 
and value-weighted portfolios.4 In addition, we create long-short strategies that buy (sell) 
the quintile of cryptocurrencies with the highest (lowest) predicted return.5 The perfor-
mance of this portfolio provides an intuitive snapshot of the cross-sectional patterns of 
cryptocurrency returns.  

We evaluate the portfolio performance with three distinct asset pricing models with fac-
tors derived from the cryptocurrency space. To begin with, we employ a simple one-factor 
market model: 

 𝑟௧ = 𝛼ଵ + 𝛽ெ௄்𝑀𝐾𝑇௧ + 𝜀௧, (5) 

where rt is the excess return on an examined cryptocurrency portfolio in week t; MKTt 
is the market risk factor returns, εt is the residual term, βMKT measures the market factor 
exposure, and α1 is the weekly abnormal return (the so-called Jensen’s alpha). The MKT 
return is calculated as a value-weighted excess return on all cryptocurrencies in the sam-
ple.  

                                                           
4 The size distribution of the cryptocurrencies is remarkably uneven, with a handful of biggest assets 
accounting for most of the total market capitalization. Hence, to form more balanced yet tradeable port-
folios, we cap the weight of the largest cryptocurrencies in the value-weighted portfolios. Specifically, we 
adopt the procedure from Jensen et al. (2022) and winsorize the market capitalization at the 90th percentile 
each week. 
5 As noted by Bianchi and Babiak (2022), though short selling cryptocurrencies is not always straightfor-
ward, it can be achieved on several major exchanges—such as Binance, Bitfinex, or Poloniex. The imple-
mentation requires borrowing assets at the current market price, selling them in the market, and repur-
chasing later to cover the position. Alternatively, the short positions in the hedge strategies could be 
interpreted as relative underweighting of a relevant market benchmark. 
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The second model, advocated by Liu et al. (2022), extends model (5) with two additional 
factors that represent size and momentum effects: 

 𝑟௧ = 𝛼ଷ + 𝛽ெ௄்𝑀𝐾𝑇௧ + 𝛽ௌூ௓ா𝑆𝐼𝑍𝐸௧
௅்ௐ + 𝛽ெைெ𝑀𝑂𝑀௧

௅்ௐ + 𝜀௧. (6) 

The calculation of factor returns for model (6) reproduces the procedures in Liu et al. 
(2022, p. 1150). Specifically, the 𝑆𝐼𝑍𝐸௧

௅்ௐ factor is represented by a long-short portfolio 
that buys (sells) 30% of cryptocurrencies with the lowest (highest) market capitalization. 
On the other hand, the 𝑀𝑂𝑀௧

௅்ௐ factor comes from 2×3 sorts on market value (size) and 
momentum (r22_1). First, we split the market into big and small cryptos by their me-
dian. Second, we determine the 30th and 70th r22_1 percentiles. Next, we intersect the 
two sorts to obtain six double-sorted portfolios. The momentum factor is then computed 
as the average return on two high-momentum portfolios minus the average return on the 
two low-momentum portfolios. The superscripts LTW highlight that the factors are cal-
culated using the Liu et al. (2022) methodology. 

Last, we extend the three-factor model (6) with three further factors considered in Babiak 
and Bianchi (2022): 

 𝑟௧ = 𝛼଺ + 𝛽ெ௄்𝑀𝐾𝑇௧ + 𝛽ௌூ௓ா𝑆𝐼𝑍𝐸௧
஻஻ + 𝛽ெைெ𝑀𝑂𝑀௧

஻஻ + 𝛽௅ூொ𝐿𝐼𝑄௧
஻஻ + 𝛽௏ை௅𝑉𝑂𝐿௧

஻஻ +

𝛽ோா௏𝑅𝐸𝑉௧
஻஻ + 𝜀௧.  (7) 

The model encompasses six observable risk factors included in the static F6 model from 
Babiak and Bianchi (2022); we then calculate them following the methods therein. Three 
new factors—𝐿𝐼𝑄௧

஻஻, 𝑉𝑂𝐿௧
஻஻, and 𝑅𝐸𝑉௧

஻஻– represent the liquidity (illiq), volatility (rvol), 
and short-term reversal effects (r2_1). All the cross-sectional factors in the model are 
represented by long-short portfolios buying (selling) a quintile of assets with the highest 
(lowest) expected return.  

Table A1 in the Online Appendix summarizes the statistical properties of returns on 
factor portfolios from different asset pricing models. In line with earlier studies (Liu et 
al., 2022; Babiak & Bianchi, 2022), all factors generate positive average returns in our 
sample in the range of 0.62% (MKT) to 6.49% (LIQ). Their level qualitatively resembles 
evidence from the referenced studies. Notably, all factors exhibit substantial volatility—
with the return standard deviation from 6.24% to 15.48% per week. 

4.2. Baseline Performance 

Table 4 reports the average weekly returns on different machine learning strategies, with 
Panels A and B focusing on equal- and value-weighted portfolios—respectively. A quick 
look at the results uncovers a crucial pattern: all machine learning forecasts can be trans-
formed into measurable economic gains for investors. All prediction models can effectively 
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sort cryptocurrencies in line with their realized returns, so quintile portfolios systemati-
cally exhibit a monotonic or near-monotonic pattern. In consequence, all long-short strat-
egies produce robust profits—even those that display seemingly low 𝑅ைைௌ

ଶ  values (such as 
LASSO and ENET). 

[Insert Table 4 about here] 

Consider first the equal-weighted portfolios (Panel A). The mean weekly returns span 
from 2.10% (PLS) to 4.32% (COMB), all statistically significant. The best-performing 
strategy is the forecast combination, highlighting the benefits of averaging predictions of 
several models. The superior profits on the COMB portfolios corroborate similar findings 
of Cakici et al. (2022) for international stock markets, all strategies have their benefits; 
however, combining them proves particularly efficient.  

Besides COMB, the highest returns are earned by the GBRT and RF portfolios—closely 
followed by NN1 and NN2. The outperformance of the tree models and neural networks 
emphasizes the essential role of nonlinearities and interactions in cryptocurrency markets. 
The linear models, such as raw and regularized regressions or dimension reduction tech-
niques, cannot capture these inherent features of the return cross-section. Consequently, 
their mean returns—though still highly significant—visibly lag. 

The machine learning profits strategies cannot be subsumed by popular risk factors. The 
long-short portfolios continue to generate significant alphas after accounting for the factor 
models (5) to (7). Even the most comprehensive six-factor model fails to explain the 
machine learning returns. In consequence, for example, 𝛼଺ on the long-short COMB port-
folio equals 3.96% (t-stat = 11.88). To summarize, the machine learning models extract 
new information from cryptocurrency markets that cannot be easily captured with stand-
ard linear models. 

Panel B of Table 4 reports the returns on value-weighted portfolios. The results uncover 
essentially the same patterns. All the long-short portfolios generate positive and highly 
significant profits, which any of our factor models cannot capture. The raw and abnormal 
returns magnitude is qualitatively similar to the equal-weighted strategies. For example, 
the three-factor alphas of Liu et al. (2022) on the value-weighted portfolios range from 
2.11% to 4.73%; meanwhile, for the equal-weighted strategies, they fare between 1.86% 
and 4.28%. In a nutshell, the machine learning effectiveness works independently of the 
portfolio weighting scheme. This observation may matter particularly from a practical 
angle, as it limits the reliance on overweighting small and illiquid coins. 

While our discussion has so far revolved around the hedge portfolios, a closer look at the 
individual quintiles uncovers further insights. The cross-sectional return pattern suggests 
that the alphas on long-short strategies mainly originate from their short legs rather than 
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long ones. The mean returns on the cryptocurrency quintile with the highest expected 
returns are relatively moderate. For instance, for the value-weighted portfolios (Table 4, 
Panel B), they range from 0.14% (PLS) to 1.00% (NN1). On the other hand, the negative 
returns on the bottom portfolios are markedly higher in absolute terms: from -3.84% 
(COMB) to -2.05% (PLS).  

To illustrate this further, Figure 6 displays alphas from the model of Liu et al. (2022). 
The cross-sectional pattern in cryptocurrency returns is somewhat L-shaped rather than 
linear—especially for the linear models. The low abnormal returns on the bottom quintile 
stand out, surpassing all other portfolios in absolute terms.  

[Insert Figure 6 about here] 

Substantially higher alphas on the bottom quintiles comply with the mispricing view on 
market anomalies (Stambaugh et al., 2012, 2015; Avramov et al., 2013, 2019). Buying—
stocks and cryptocurrencies alike—is easier than shorting for most investors. In conse-
quence, arbitrageurs may be quicker to eliminate underpricing than overpricing. In the 
extreme, when the short selling is severely impeded, the overpricing may last over a 
prolonged period. This arbitrage asymmetry may result in stronger abnormal returns on 
the short legs of anomaly portfolios than on long ones.  

Notably, the reasoning above inherently links the cross-sectional return patterns with 
mispricing. Hence, the strong alphas on the short legs of our portfolios may suggest a 
similar economic mechanism: the return predictability in cryptocurrency markets is due 
to mispricing rather than risk. 

4.3. Subperiod Analysis 

The return predictability in financial markets declines over time. A voluminous literature 
has documented that the profitability of stock characteristics has been declining due to 
investor learning, improvements in liquidity, or an increase in arbitrage activity (Schwert, 
2003; Chordia et al., 2014; McLean & Pontiff, 2016; Caluzzo et al., 2019). Furthermore, 
this phenomenon extends beyond mere stocks: to currencies, industry and country port-
folios, or even mutual funds (Bartram et al., 2018; Zaremba et al., 2020; Jones & Mo, 
2021).6 This decrease in predictability typically connects with the mispricing story of 
asset pricing anomalies: once the market becomes more efficient, mispricing becomes less 
common.  

Our findings from Section 4.2 concerning the alphas in the long and short legs align with 
the mispricing story. Hence, do the abnormal returns share the same time-series patterns 
                                                           
6 It is important to note that Jacobs and Müller (2020) do not confirm a robust predictability decline in 
international stock markets. 
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as in the stock market landscape? Do they gradually decline over time as cryptocurrency 
markets become more liquid and efficient?  

Figure 7 illustrates the cumulative returns on the long-short machine learning strategies 
that are considered in this study. To begin with, their performance is remarkably stable 
over time. No major downturns occurred within our study period, regardless of the situ-
ation in the cryptocurrency markets. The long-run fluctuations in returns are limited.  

[Insert Figure 7 about here] 

Despite this apparent stability, a particular pattern seems noticeable: the long-short port-
folio returns have declined over time. In particular, the years 2021 and 2022 witnessed 
a flattening of the profit curve. While all strategies seem to continue generating abnormal 
returns, their size appears lower.  

To scrutinize this effect further, we reproduce our portfolio sorts from Table 4 in sub-
periods. Specifically, we split the whole research period into rough halve (January 17, 
2018 to April 7, 2020 and April 8, 2020 to July 6, 2022) and check the performance 
therein. Table 5 reports the results of this exercise. For brevity, we limit the presentation 
to value-weighted strategies.7 

[Insert Table 5 about here] 

Both subperiods exhibit substantial return predictability. The mean returns and alphas 
are positive and highly significant for all models in both halves of the research sample. 
Nevertheless, the disparity in performance in the earlier and later years is evident. The 
mean long-short portfolio returns from January 2018 to April 2020 varied from 2.85% 
(PLS) to 5.49% (COMB). The latter years, however, brought a measurable drop in prof-
itability. The mean returns declined to a range between 1.57% (PLS) to 3.96% (COMB). 
On average, the mean long-short strategy payoffs decreased by 30% and were accompa-
nied by a similar reduction in alphas. Notably, this decrease occurred despite the growing 
number of listed assets—which generally tend to boost profits on hedge portfolios (Bes-
sembinder et al., 2021).  

To conclude, our findings from the cryptocurrency markets match earlier evidence from 
stocks and other asset classes. Whether it is due to improved liquidity, market efficiency, 
or investor learning, abnormal returns' magnitude gradually declines over time. This 
finding complies with the mispricing narrative of return predictability.  

                                                           
7 The results for equal-weighted portfolios are available upon request. 
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4.4. Alternative Forecast Horizons 

Our tests so far have concentrated on a one-week prediction horizon. However, return 
predictability with machine learning may vary substantially across different horizons. For 
example, Coqueret (2022) documents that predictability is typically stronger for longer 
forecast horizons. Consistently with this, Gu et al. (2022) and Leippold et al. (2022) 
observe higher 𝑅ைைௌ

ଶ  for longer horizons. The effect may be associated with the higher 
signal-to-noise ratio in long-term returns and more pronounced signal persistence. Does 
the prediction horizon also matter for machine learning forecasts in cryptocurrencies?  

To answer this question, we reproduce our baseline analysis from Section 4.2 using two 
alternative forecast horizons: a shorter one (one day) and a longer one (two weeks). We 
begin by assessing the prediction accuracy. Holding all else equal, we recalculate the 
performance measures from Table 3 for these two alternative settings. Table 6, Panel A 
uncovers the results. 

[Insert Table 6 about here] 

The 𝑅ைைௌ
ଶ  values and average correlation coefficients for daily forecasts (Panel A.1) are 

considerably lower than for the weekly intervals. For example, the average Pearson meas-
ure for the COMB model equals 0.022 versus 0.096 in our baseline approach. All metrics 
and modes exhibit a similar drop in the obtained scores. On the other hand, the predic-
tions of the biweekly returns (Panel A.2) are slightly higher than in our baseline case. 
For instance, the same Pearson measure for COMB—evoked in the example above—
amounts to 0.139. Furthermore, the 𝑅ைைௌ

ଶ  measures exhibit a noticeable increase and the 
effect holds across all the prediction models. In other words, as in the stock markets, 
predictability tends to be weaker for shorter horizons and vice versa. 

Can this boost in predictability be forged into higher profits on the machine learning 
strategies? To verify this, we revisit our univariate portfolio sorts from Section 4.2 with 
a modified prediction horizon and holding period. Specifically, we use signals from the 
daily prediction models to form long-short strategies that are reformed daily. Analo-
gously, we also employ the 14-day predictions to form bi-weekly reconstructed portfolios. 
Table 6, Panel B reports the returns on long-short value-weighted machine learning port-
folios implemented using the aforementioned  procedures. 

In line with the observations in Panel A, the strategies based on a daily horizon display 
noticeably lower profitability. The mean returns and alphas decline substantially com-
pared to our baseline-weekly horizon, though all remain highly significant. The mean 
weekly returns span between 0.34% (SVM) and 2.95% (COMB). Conversely, the bi-
weekly strategies show marginal improvement relative to our baseline case; however, the 
change is minuscule. For example, the COMB alpha equals 4.89% versus 4.73% in the 
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baseline scenario. Moreover, the increase in profitability is uneven, and some models—
such as GBRT and RF—witness even a slight decrease in abnormal returns.  

To sum up, the forecast horizon indeed affects machine learning performance. In partic-
ular, reducing the return interval to one day shrinks the prediction accuracy and portfolio 
performance measurably. In turn, an increase in the return horizon plays a smaller role; 
this results in only in a minor improvement in prediction accuracy and a negligible boost 
in portfolio profits. 

5. Return Predictability and Limits to Arbitrage 

Machine learning methods aggregate multiple signals from individual anomalies. Accord-
ingly, any weaknesses of these signals may transmit into the models’ forecasts. This 
inference may have substantial consequences for machine learning effectiveness. For ex-
ample, in the equity universe, most well-known anomalies—such as momentum, value, 
or profitability—extract their alphas mainly from small and illiquid firms (Hong et al., 
2000; Israel & Moskowitz, 2013; Hou et al., 2020; Cakici & Zaremba, 2022). This evidence 
aligns with the view that mispricing typically arises where arbitrage activities are con-
strained. In line with this, as shown by Avramov et al. (2022), machine learning profits 
also tend to concentrate on difficult-to-arbitrage stocks.  

Our evidence so far complies with the mispricing view on return predictability. Hence, if 
the cryptocurrency return predictability is driven by mispricing, it should prevail in dif-
ficult-to-arbitrage assets. So, does it? We run two experiments to shed light on these 
issues: cross-sectional regressions with interactions and bivariate portfolio sorts. 

5.1. Cross-Sectional Regressions With Interaction Terms 

To identify the difficult-to-trade securities, we employ three popular proxies of limits of 
arbitrage: idiosyncratic volatility (ivol), illiquidity (illiq), and bid-ask spread (bidask). 
Numerous asset pricing studies have argued that assets with values of these variables are 
costly to trade and difficult to hedge; consequently, any mispricing is likely to persist 
(e.g., Pontiff, 2006, 2016; Sadka & Scherbina, 2007; Chordia et al., 2008; McLean, 2010; 
Lam & Wei, 2011). In addition to these three variables, we also calculate an aggregate 
measure of limits of arbitrage (lim). For each cryptocurrency, it is represented by its 
average cross-sectional rank on ivol, illiq, and bidask in a given week. 

To explore the impact of the limits to arbitrage on return predictability, we estimate 
weekly cross-sectional regressions with interaction terms accounting for the limits to ar-
bitrage: 

 𝑟௜,௧ାଵ = 𝛾଴,௧ + 𝛾ଵ,௧𝐸௧൫𝑟௜,௧ାଵ൯ + 𝛾ଶ,௧𝐴𝑟𝑏௜,௧ + 𝛾ଷ,௧𝐸௧൫𝑟௜,௧ାଵ൯𝐴𝑟𝑏௜,௧ + 𝜀௜,௧ାଵ,  (8) 
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where 𝐸௧൫𝑟௜,௧ାଵ൯ is the cryptocurrency i expected return, as predicted by the COMB 
model, and 𝑟௜,௧ାଵ is its realized value. For brevity, we limit our presentation to the COMB 
predictions, which aggregates all individual models; using other models yields qualitative 
results and is available upon request. 𝐴𝑟𝑏௜,௧ is a dummy variable taking a value of one if 
a given measure of limits to arbitrage (ivol, illiq, bidask, lim) is higher than the weekly 
cross-sectional median or zero otherwise. 𝜀௜,௧ାଵ is the error term and 𝛾଴,௧, 𝛾ଵ,௧, 𝛾ଶ,௧, and 
𝛾ଷ,௧ are the estimated weekly regression coefficients. Our focus is on the coefficient 𝛾ଷ,௧; 
its positive value would imply that high limits to arbitrage augment the return predict-
ability by machine learning models.  

Table 7 reports the average slope coefficients from regression (8). The limits to arbitrage 
clearly matter. The 𝛾ଷ,௧ coefficients are positive and highly significant in all specifications, 
regardless of the particular proxy used. Admittedly, the coefficients on 𝐸௧൫𝑟௜,௧ାଵ൯ also 
remain significant in all cases; this signifies that machine learning models continue to 
forecast returns successfully even if arbitrage constraints are controlled for. In other 
words, they work even in market segments where trading is relatively more straightfor-
ward. Nonetheless, the return predictability in difficult-to-trade assets is measurably 
stronger. This observation lends further support to the hypothesis that return predicta-
bility in the cryptocurrency markets originates mainly from mispricing.  

[Insert Table 7 about here] 

5.2. Bivariate Portfolio Sorts 

We carry on with bivariate portfolio sorts to corroborate the conclusions from the cross-
sectional regressions seen in Section 5.1. In this analysis—each week—we rank crypto-
currencies on one of the four proxies for arbitrage constraints, ivol, illiq, bidask, and lim, 
and sort them into terciles. Thus, we generate three market segments with high, medium, 
and low arbitrage difficulties. Next, within each of these segments, we sort the assets 
again on their predicted returns from a machine learning model. Again, for conciseness, 
we limit the presentation to the COMB model.8 Next, we weight the cryptocurrencies—
equally or on their capitalization—in order to obtain nine portfolios from double-depend-
ent sorts. Finally, we calculate long-short machine learning strategies within each of the 
terciles representing different levels of limits to arbitrage. Table 8 presents the outcomes 
of this analysis. 

[Insert Table 8 here] 

                                                           
8 An application of other models leads to consistent conclusions. The detailed results are available upon 
request. 
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Table 8, Panel A reports the average portfolio returns. Overall, the machine learning 
strategies work effectively across all market segments. The long-short portfolios generate 
positive and significant mean raw and abnormal returns in each of the considered speci-
fications. Nonetheless, their magnitude evidently differs. The payoffs are considerably 
more solid in the market segments with high barriers to arbitrage than in those when 
trading is more straightforward. 

Take the aggregate lim proxy for arbitrage constraints as an example (Table 8, Panel 
A.4). The value-weighted long-short strategy (right section of Panel A) earns an average 
return of 5.53% (t-stat = 6.06) per week in the high lim tercile. On the other hand, in 
the low arbitrage segment, the equivalent mean return amounts to 1.96% (t-stat = 5.15). 
The difference between the high and low lim segments equals 3.57% and is highly signif-
icant (t-stat = 3.76). Furthermore, it cannot be explained by common risk factors from 
the model of Liu et al. (2022). The equal-weighted portfolios yield similar results, as seen 
in the left section of Panel A. 

Panels A.1 to A.3 of Table 8 shed further light on the role of different components of the 
lim measure. Which proxies for the limits to arbitrage matter the most? The strongest 
performance dispersion is observed for ivol. Consider the value-weighted portfolios. In 
this case, the average difference between long-short portfolio alpha in the high and low 
ivol terciles equals 5.38% (t-stat 6.69). On the other hand, for bidask, the effect is rela-
tively weaker—though still visible. The alpha difference between high and low bidask 
tercile amounts to 1.88% (t-stat = 2.08). 

Our earlier evidence in Section 4.2 indicates that most of the abnormal returns originate 
from the short legs of investment strategies. A closer look at individual bivariate portfo-
lios in Table 8, Panel A leads to similar conclusions. However, the absolute value of 
returns is not equal across different market segments. Concretely, it is powerful in terciles 
with high limits to arbitrate and relatively weaker in the terciles with low constraints. 
Consider the two-way sorts on lim. The average returns on the cryptocurrencies with the 
highest expected returns span between 0.24% and 0.85%; on the other hand, the ones 
with the lowest predictions are between -5.29% and -1.30%. Notably, the meager mean 
return of -5.29% is recorded precisely on the portfolio with the highest lim values. In 
other words, the machine learning strategies derive their predictability—particularly from 
short positions in difficult-to-arbitrage securities. 

The conclusions above are especially interesting when juxtaposed with the average cryp-
tocurrency capitalization in different market segments and their respective relative size. 
Table 8, Panel B uncovers the details of such distribution. Consider the bivariate sorts 
on expected returns in lim in Panel B.4. The tercile of cryptocurrencies with the lowest 
limits to arbitrage (the one when machine learning profits are the weakest) accounts for 
96.45% of the cryptocurrency market capitalization. Meanwhile, the tercile of the most 
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difficult-to-trade coins (the ones which generate the highest profits) represent only 0.80% 
of the market value. In other words, the market segment where the return predictability 
is the most robust accounts for a minuscule fraction of the cryptocurrency universe. 

Furthermore, the two-way sorted portfolio with the lowest expected return in the high 
lim tercile—which produced a remarkable mean value-weighted return in Panel B of – 
5.29%—represents only 0.08% of the market value, and the average cryptocurrency cap-
italization therein equals $ 20 million. In consequence, shorting and effective trading of 
such small cryptocurrencies may be challenging. Moreover, their economic significance is 
rather modest.  

To conclude, the machine learning models work across diverse segments of cryptocur-
rency markets. Nevertheless, the return predictability is the strongest where trading is 
the most difficult. Particularly, it originates from short positions in difficult-to-trade 
assets—which aggregate market value; because of this, economic importance may be 
limited. 

6. Practical Investor Perspective 

Finally, we are also interested in the practical perspective on return predictability with 
machine learning. Do these forecasts translate into feasible strategies? Can they survive 
real-world conditions? To throw light on these issues, we look closer at three aspects: 
(i) risk statistics; (ii) portfolio investability; and (iii) trading costs.  

6.1. Risk Statistics 

Table 9, Panel A reports the major risk measures for the long-short value-weighted ma-
chine learning strategies. Their standard deviations of weekly returns fit into a moderate 
range of between 5.58% (OLS) and 6.65% (SVM). Consequently, the strategies display 
impressive Sharpe ratios—their annualized values fall between 2.73 (PLS) and 5.37 
(COMB). Notably, this level of risk-adjusted returns noticeably beats their counterparts 
in traditional asset classes—such as equities. For example, Gu et al. (2020) report annu-
alized Sharpe ratios on long-short machine learning strategies for the U.S. stocks of up 
to 2.45; furthermore, Leippoled et al. (2022) record values of up to 3.45 for the Chinese 
market. 

[Insert Table 9 about here] 

Notably, the long-short cryptocurrency strategies also exhibit asymmetrical risks—which 
are not fully captured by the standard deviation measure. For example, maximum weekly 
losses on all strategies are substantial; in many cases, an investor must be prepared to 
lose more than 20% in one week. The worst performer in this regard is SVM, with a 
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maximum seven-day loss of 33.43%. This tail risk is also manifested in prolonged and 
deep maximum drawdowns. In most cases, the investors would have to survive a loss of 
more than 30-40% of the invested capital. For SVM, this statistic amounts to as much 
as 58.83%. Hence, the potential tail risk in cryptocurrency machine-learning strategies 
may be substantial. 

6.2. Long-Short Portfolio Feasibility 

Table 9, Panel B focuses on the average cryptocurrency capitalization of different quin-
tiles. The top quintile typically contains bigger coins, with an average market value 
between three and nine billion USD. Nevertheless, as seen in both Table 4 and Figure 6, 
the abnormal returns concentrate mainly in the short leg; i.e., the one with the lowest 
expected return. In this case, however, the capitalizations are noticeably smaller. The 
average cryptocurrency market value in the bottom quintile is roughly 100 to 600 million 
USD.  

Table 9, Panel C offers an additional perspective on this issue by reporting the average 
proportion of the total market capitalization captured by different quintiles. The long 
legs typically account for the biggest chunk of the cryptocurrency universe, representing 
between 26.3% (NN1) and 77.4% (LASSO) of its aggregate market value. On the other 
hand, the bottom quintile—the primary source of alphas in the long-short strategies—
accounts for between 0.8% (COMB) and 9.1% (NN1) of the market. Notably, this subset 
does not capture more than 1% of the aggregate cryptocurrency capitalization for almost 
half the strategies.  

To sum up, a practical implementation of long-short cryptocurrency strategies may pose 
substantial challenges. It hangs on taking massive short positions in very small coins that 
represent a minuscule fraction of the entire market. The feasibility of such operations 
may be questionable. The short-selling opportunities may be limited due to lending fees, 
deposit requirements, or unavailability of assets for lending. 

6.3. Trading Costs 

Machine learning strategies typically require active trading and frequent portfolio recon-
structions (Gu et al., 2020; Leippold et al., 2022). This, in turn, may incur substantial 
trading costs—especially since the strategies derived their profitability primarily from 
small coins. High portfolio turnover and trading costs are the enemies of many quantita-
tive strategies, impeding their performance and even calling into question their validity 
(Novy-Marx & Velikov, 2016). Does this problem haunt cryptocurrency strategies as 
well?  
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6.3.1. Portfolio Turnover 

Table 9, Panel D demonstrates the portfolio turnover of quintile portfolios formed on 
machine learning forecasts. Analogously, as in Bollerslev et al. (2018) and Koijen (2018), 
we calculate the turnover statistic as the average of portfolio share that needs to be 
replaced each week: 

 𝑃𝑇௧ =
ଵ

ଶ
∑ ห𝑤௜,௧ିଵ × ൫1 + 𝑟௜,௧൯ − 𝑤௜,௧ห௡

௜ୀଵ , (9) 

where 𝑤௜,௧ିଵ and 𝑤௜,௧ are the weights of cryptocurrency i in two consecutive weeks, and 
𝑟௜,௧ is the crypto return. We compute a one-sided (rather than two-sided) turnover meas-
ure to avoid double-counting of buys and sells.9  

Consistent with earlier machine learning studies, the portfolio turnover is substantial. 
The individual quintile portfolios typically require replacing about 40 to 70% of their 
value each week. As a result, the long-short strategies exhibit a weekly turnover that falls 
between 78.6% (LASSO) and 110.8% (SVM). The approach based on the COMB model, 
previously identified as the top performer, has a turnover ratio of 83.9%. Such a substan-
tial portfolio rotation may negatively impact real-world portfolio performance.  

6.3.2. Trading Cost Estimation 

To quantify the transaction cost drag on the profitability of machine learning strategies, 
we continue with a more formal analysis. To ensure a comprehensive perspective, we 
calculate three different sensitivity measures to trading costs. First, we compute the 
breakeven point for the trading costs. We estimate it as the average portfolio return 
divided by the average turnover. 

Second, we turn to an estimation of net returns. In practice, obtaining detailed data on 
a large sample of cryptocurrency daily spreads and slippage rates may be challenging. 
Furthermore, the fixed transaction fees may vary across exchanges and investor types; 
they are also subject to various special offers. Hence, in the most simplistic approach, we 
follow Bianchi et al. (2022) and assume a fixed one-way fee of 30 (40) basis points for the 
long (short) leg as an all-inclusive approximation of transaction costs. Bianchi et al. 
(2022, p. 6) deem this measure as “a set of fairly conservative transaction costs for a 
market maker.” 

A vital shortcoming of the fixed trading costs is that they miss the inherent features of 
the machine learning strategies, which derive profits mainly from small cryptocurrencies. 
These coins are more likely to be illiquid and difficult to trade; and so the overall 
                                                           
9 Notably, the average weekly turnover computed this way for the case of long-short strategies may exceed 
100% as the long and short legs’ turnover are added up. 
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transaction costs may be underestimated. Hence, we also employ a third, more nuanced 
measure: the return net of variable transaction costs. In this framework, we dynamically 
estimate each cryptocurrency's effective spread using the methods of Corwin and Schultz 
(2012) and Abdi and Ranaldo (2017). This approach's total one-way transaction cost is 
calculated as a sum of the bid-ask spread estimate (bidask defined as in Table 1), with 
an additional flat fee equal to 10 basis points. As seen from the properties of bidask in 
Table 2, this measure is much more conservative and assumes higher trading costs—
especially for the tail of less liquid coins. 

6.3.3. Cost-Adjusted Returns 

Table 10 summarizes the role of trading costs in the long-short machine learning strate-
gies illustrated using different approaches. Since the results for equal-weighted (Panel A) 
and value-weighted portfolios (Panel B) are relatively similar, let us focus on the value-
weighted strategies. The breakeven trading costs range between 133 (SVM) and 281 
(COMB) basis points. These numbers are far beyond the conservative trading costs as-
sumptions in Babiak et al. (2022); thus, they promise a potentially successful portfolio 
implementation. The combination strategy, which fared the best in Table 4, also turns 
out most resilient to the impact of trading costs. 

[Insert Table 10 about here] 

Not surprisingly, all strategies produce positive and significant mean returns when the 
fixed trading costs are considered. The average profits range from 1.66% (PLS) to 4.13% 
(COMB). More importantly, most strategies also survive the variable transaction cost 
approach. Admittedly, the drag on portfolio performance is substantial; moreover, the 
strategies lose about 60% of their gross profits on average. Furthermore, the mean returns 
on two long-short portfolios—PLS and SVM—are rendered insignificant. Nevertheless, 
most algorithms survive—continuing to produce sizeable and significant profits. Our top 
performer, the COMB strategy, generates an average weekly net return of 2.89% (t-stat 
= 5.54). 

To sum up, the cryptocurrency machine learning strategies seem robust to real-world 
impediments. Despite a high portfolio turnover, they endure even conservative trading 
costs. Nevertheless, this performance comes with two caveats. First, the strategies exhibit 
considerable tail risk and large drawdowns. Second, it requires taking substantial short 
positions in the smallest cryptocurrencies—which pose practical difficulties. A successful 
practical implementation hinges on resolving these two challenges.  
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7. Concluding Remarks 

Both machine learning tools and cryptocurrency investments have attracted growing in-
vestor attention in recent years. Our study intersects these two fields. We combine asset 
pricing research with machine learning to gain new insights into return predictability in 
cryptocurrency markets. Using data ranging from 2017 to 2022, we calculate 34 crypto-
currency features. We use 10 popular machine learning algorithms—including regularized 
regression, dimension reduction techniques, tree models, and neural networks. Using the 
cryptocurrency characteristics as inputs, we train the models to predict the cross-section 
of returns. 

Our empirical analysis brings four main contributions. First, we demonstrate that ma-
chine learning models can be effectively applied to predict the cross-section of cryptocur-
rency returns. All our models’ forecasts generate measurable economic gains. In conse-
quence, they translate into profitable portfolios from univariate sorts. A value-weighted 
long-short quintile portfolio formed on the most successful model—the forecast combina-
tion—generates a mean monthly return of 4.72%. These abnormal returns cannot be 
subsumed by popular factor models and hold in various robustness checks, different 
weighting schemes, forecast horizons, and subperiod analyses.  

Second, we cast light on the crucial determinants of the cross-sectional variation in cryp-
tocurrency returns. A variable importance analysis allows us to pinpoint the crucial var-
iables. Most models derive their predictability from a handful of relatively simple sig-
nals—such as idiosyncratic volatility, CAPM alpha, maximum daily return, nominal 
price, value at risk, and distance to a 90-day high. With respect to general categories of 
cryptocurrency features, what matters the most are past returns, volatility, and liquidity. 

Third, we provide insights into the sources of the cross-sectional return predictability in 
cryptocurrency markets. Our results comply with the mispricing view on return predict-
ability. The machine learning profits derive mainly from short legs, where eliminating 
mispricing might be more challenging due to short-selling constraints. Furthermore, the 
alphas concentrate in difficult-to-trade assets—where limits to arbitrage are more pro-
nounced. Finally, abnormal returns decline over time as markets become more efficient. 

Fourth, we assess the cryptocurrency machine-learning strategies from a practical angle. 
Despite substantial portfolio turnover, we find them resilient to transaction costs—even 
when we assume relatively high trading costs. Nonetheless, the allegedly impressive per-
formance has two hooks. First, it exhibits substantial tail risk that manifests in sizeable 
drawdowns. Second, it requires taking substantial short positions in the small coins. Re-
solving both these issues may be critical for a successful implementation of cryptocur-
rency machine-learning strategies. 
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  Figure 1. A Snapshot of the Research Sample 

The figure provides an overview of the sample of cryptocurrencies used in this study. Panel A presents the time-series 
evolution of the number of cryptocurrencies included in the sample. Panel B illustrates the cross-sectional distribution 
of the number of daily observations available per cryptocurrency. The red vertical line indicates the average number 
of observations across all assets in the sample. Panel C displays the sample's aggregate market capitalization (in USD 
billion) over time. The sample comprises 573 unique cryptocurrencies; the study period runs from July 1, 2017 to July 
6, 2022. 

 Panel A: Time-series composition Panel B: Cross-sectional composition Panel C: Market capitalization 
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Figure 2. Variable Importance per Characteristic 

The figure presents the rankings of 34 return predictors covered in the study in terms of their average total model 
contribution. The variable importance (VI) is computed as the reduction of the overall OOS R2 resulting from 
excluding a given variable from the model. We consider 11 machine learning models: ordinary least squares (OLS), 
partial least squares (PLS), the least absolute shrinkage and selection operator (LASSO), elastic net (ENET), 
support vector machine (SVM), gradient-boosted regression trees (GBRT), random forests (RF), feed-forward neural 
networks with one and two hidden layers (NN1, NN2), and forecast combination (COMB). The color gradients 
represent the VI rank; the dark blue (white) represents the most influential (least influential) characteristics. The 
sample comprises 574 cryptocurrencies; the total study period is from July 1, 2017 to July 6, 2022; and the testing 
period starts on 17 January 2018. 
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Figure 3. Variable Importance in Different Models 

The figure presents the importance of the top 10 variables in the 10 machine learning models considered in this study: ordinary least squares (OLS), partial least squares (PLS), 
the least absolute shrinkage and selection operator (LASSO), elastic net (ENET), support vector machine (SVM), gradient boosted regression trees (GBRT), random forests (RF), 
feed-forward neural networks with one and two hidden layers (NN1, NN2, 3), and forecast combination (COMB). The variable importance (VI) is computed as the reduction of the 
overall OOS R2 resulting from excluding a given variable from the model. The panels display the reduction in R2 from setting all values of a given variable to zero in the training 
sample. VI is averaged across all the training samples and rescaled to sum to 1. The sample comprises 574 cryptocurrencies; the total study period is from July 1, 2017 to July 6, 
2022; and the testing period starts on 17 January 2018. 
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Figure 4. Aggregate Importance of Top Predictors 

The figure illustrates the aggregate contribution of the top three, five, and 10 predictors for the machine 
learning models used in this study: ordinary least squares (OLS), partial least squares (PLS), the least 
absolute shrinkage, and selection operator (LASSO), elastic net (ENET), support vector machine (SVM), 
gradient boosted regression trees (GBRT), random forests (RF), feed-forward neural networks with one 
and two hidden layers (NN1, NN2, 3), and forecast combination (COMB). The variable importance (VI) 
is computed as the reduction of the overall OOS R2 resulting from excluding a given variable from the 
model. VI is averaged across all the training samples and rescaled to 1. The aggregate importance is 
obtained as in Bali et al. (2022). The sample comprises 574 cryptocurrencies; the total study period is from 
July 1, 2017 to July 6, 2022; and the testing period starts on 17 January November 2018. 
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Figure 5. Variable Importance per Category 

The figure illustrates the aggregate importance of six categories of cryptocurrency characteristics, as clas-
sified in Table 1, in terms of their overall model contribution. We consider 10 machine learning models: 
ordinary least squares (OLS), partial least squares (PLS), the least absolute shrinkage and selection oper-
ator (LASSO), elastic net (ENET), support vector machine (SVM), gradient-boosted regression trees 
(GBRT), random forests (RF), feed-forward neural networks with one and two hidden layers (NN1, NN2, 
3), and forecast combination (COMB). The variable importance (VI) is computed as the reduction of the 
overall OOS R2 resulting from excluding a given variable from the model. VI is averaged across all the 
training samples and is rescaled to sum to 1. The VIs per category are aggregated following the method in 
Bali et al. (2022). The sample comprises 574 cryptocurrencies; the total study period is from July 1, 2017 
to July 6, 2022; and the testing period starts on 17 January November 2018. 
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Figure 6. Abnormal Returns on Quintile Machine Learning Portfolios  

The figure presents the weekly alphas from the three-factor model of Liu et al. (2022) on quintile portfolios formed 
on machine learning forecasts. We sort the cryptocurrencies into quintiles based on predictions from 10 models: 
ordinary least squares (OLS), partial least squares (PLS), the least absolute shrinkage and selection operator 
(LASSO), elastic net (ENET), support vector machine (SVM), gradient boosted regression trees (GBRT), random 
forests (RF), feed-forward neural networks with one or two hidden layers (NN1, NN2), and forecast combination 
(COMB). High (Low) is the cryptocurrency quintile with the highest (lowest) return forecast. The blue bars indicate 
the portfolios with the lowest expected returns. All alphas are reported in percentage terms. Panels A and B report 
the results for equal- and value-weighted portfolios, respectively. The sample comprises 574 cryptocurrencies; the 
total study period is from July 1, 2017 to July 6, 2022; and the testing period starts on 17 January November 2018.  

Panel A: Equal-weighted strategies 

 
Panel B: Value-weighted strategies 
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Figure 7. Cumulative Returns on Long-Short Machine Learning Portfolios 

The figure presents the cumulative returns on long-short machine learning portfolios. We sort the cryptocurrencies 
into quintiles based on predictions from 10 models: ordinary least squares (OLS), partial least squares (PLS), the 
least absolute shrinkage and selection operator (LASSO), elastic net (ENET), support vector machine (SVM), 
gradient boosted regression trees (GBRT), random forests (RF), feed-forward neural networks with one or two 
hidden layers (NN1, NN2), and forecast combination (COMB). The reported strategies assume a long (short) 
position in the quintile of cryptocurrencies with the highest (lowest) expected return. The strategies are rebalanced 
weekly. Panels A and B report the results for equal- and value-weighted portfolios, respectively. The sample 
comprises 574 cryptocurrencies; the total study period is from July 1, 2017 to July 6, 2022; and the testing period 
starts on 17 January November 2018. The blue line represents the strategy indicated in the headline, and the grey 
lines display other strategies for comparison. 

Panel A: Equal-weighted portfolios 

 

Panel B: Value-weighted portfolios 
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Table 1. Cryptocurrency Characteristics 

The table presents the 34 cryptocurrency characteristics used as inputs to machine learning models. No. is the running 
number, and Symbol indicates the acronym used to denote the variable in the paper. The table spans two pages. 

No. Characteristic Symbol Definition 

On-chain measures 

(1) New addresses new_add 
The number of unique addresses appearing for the first time in a transaction of the 
native coin in the network (Liu et al., 2021). 

(2) Active addresses active_add 
The number of unique addresses that were active in the network, either as a sender 
or receiver (Pagnotta & Buraschi, 2018). The calculations are limited to the ad-
dresses that were active in successful transactions. 

(3) 
Network-to-market 
value 

bm 
As in Pagnotta and Burashi (2018), the network-to-market value is calculated as the 
cumulative number of unique addresses divided by the total market value (see Mar-
ket value for the calculation details). 

Liquidity 

(4) Trading volume volume 
The total dollar value of all native tokens transferred across wallets - both across 
and within centralized exchanges. 

(5) Market value size 
The available supply times the market price in USD (Liu et al., 2022). The currently 
available supply is the current supply minus the coins that have been burned. 

(6) Bid-ask spread bidask 
A bid-spread estimation calculated based on 30 days of OHLC data as an average of 
two approximations by Corwin and Schultz (2012) and Abdi and Ranaldo (2017). 

(7) Illiquidity ratio illiq 
The price impact measure of Amihud (2002), which is calculated as the average 90-
day ratio of the absolute value of daily returns over the daily trading volume meas-
ured in USD. 

(8) Turnover turn 
The last day's dollar trading volume (see Trading volume) over the market value 
(see Market Value) (Datar et al., 2018). 

(9) 
Detrended turno-
ver 

dto 

Similar to Garfinkel (2009), the detrended turnover is calculated in two steps. First, 
we compute the daily excess turnover as the daily turnover (see Turnover) minus the 
value-weighted average daily market turnover. Second, we detrend the obtained 
value by its 180-day median. 

(10) Turnover volatility std_dto 
Residuals' standard deviation from a regression of daily turnover on a constant using 
a 30-day estimation period. 

(11) 
Trading volume 
volatility 

std_vol 
Residuals' standard deviation from a regression of daily trading volume on a con-
stant that uses a 30-day estimation period. 

(12) 
Volume shock (30 
days) 

volsh_30d 
Log-deviation of trading volume from its rolling 30-day average, as in Llorente et al. 
(2002) and Babiak et al. (2022). 

(13) 
Volume shock (60 
days) 

volsh_60d 
Log-deviation of trading volume from its rolling 60-day average, as in Llorente et al. 
(2002) and Babiak et al. (2022). 

Volatility 

(14) Realized volatility rvol 
Daily realized volatility calculated based on 30 days of OHLC prices using the esti-
mator of Yang and Zhang (2000). 

(15) CAPM beta beta 

The market beta from the Capital Asset Pricing Model was using a trailing 30-day 
period. As in Levellen and Nagel (2006), the beta is calculated as the sum of two 
slope coefficients from the regression of daily cryptocurrency returns on the contem-
poraneous and one-day-lagged market excess returns. The market portfolio return is 
the value-weighted average return of all cryptocurrencies in the sample. 

(16) Idiosyncratic risk ivol 
The standard deviation of the residuals from the regression of daily excess cryptocur-
rency returns on the daily market portfolio excess returns estimated using a trailing 
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30-day period. The market portfolio return is the value-weighted average return of 
all cryptocurrencies in the sample. 

(17) Value-at-risk var 
The historical empirical value-at-risk computed as the 5th percentile of daily returns 
over a rolling 90-day period. 

Past returns 

(18) Daily reversal r2_1 Return on the previous day. 

(19) 7-day momentum r7_2 Cumulative return from seven to two days before return prediction. 

(20) 13-day momentum r13_2 Cumulative return from 13 to two days before return prediction. 

(21) 22-day momentum r22_2 Cumulative return from 22 to two days before return prediction. 

(22) 31-day momentum r31_2 Cumulative return from 31 to two days before return prediction. 

(23) 
Intermediate mo-
ment. 

r30_14 Cumulative return from 30 to 14 days before return prediction. 

(24) Long-term reversal r180_60 Cumulative return from 180 to 60 days before return prediction. 

(25) 
Closeness to the 
90-day high 

90dh 
Following the logic of George and Hwang (2004), the closeness to the 90-day high is 
the last day's price over the maximum price over the previous 90 days. The estima-
tion period follows Babiak and Bianchi (2022). 

(26) CAPM alpha alpha 

An intercept from the regression of daily excess cryptocurrency returns on the daily 
market portfolio excess returns, which is estimated using a trailing 30-day period. 
The market portfolio return is the value-weighted average return of all cryptocurren-
cies in the sample. 

Distribution 

(27) Skewness skew The skewness of the daily return distribution calculated over a rolling 90-day period. 

(28) Kurtosis kurt The kurtosis of the daily return distribution calculated over a rolling 90-day period. 

(29) 
Maximum daily re-
turn 

max The maximum daily return over the last 30 days. 

(30) 
Minimum daily re-
turn 

min The minimum daily return over the last 30 days. 

Other 

(31) Salience theory st 

The salience theory variable is calculated closely following the multistep procedure in 
Cosemans and Frehen (2021), which uses a rolling 30-day estimation period. We use 
the market portfolio return as the reference rate and set the parameters θ=0.1 and 
δ=0.7. 

(32) 
Chronological re-
turn ordering 

cro 
As in Mohrschladt (2021), the chronological return ordering variable is calculated as 
the correlation between daily returns over the last 30 days and the corresponding 
number of trading days until the end of the rolling 30-day estimation window. 

(33) Seasonality seas The average same-weekday return calculated over a rolling 20-week period. 

(34) Price prc Cryptocurrency price at the end of the previous day. 
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Table 2. Statistical Properties of Cryptocurrency Characteristics 

The table presents the basic statistical properties of the 34 cryptocurrency characteristics used as inputs to machine 
learning models. The explanation of variable symbols seen in the leftmost column is available in Table 1. The 
reported values are calculated using a pooled sample of all daily observations. The sample comprises 573 unique 
cryptocurrencies, and the study period runs from July 1, 2017 to July 6, 2022. 

  
Mean 

Standard 
deviation 

Skewness 
Percentiles 

 1st 5th 25th 50th 75th 95th 99th 
On-chain measures 

new_add 2907.93 28672.65 13.78 0.00 0.00 1.00 7.00 29.00 516.00 63510.05 
active_add 6998.01 64080.47 12.34 0.00 0.00 8.00 29.00 107.00 1286.00 153414.20 
bm 0.01 0.11 629.18 0.00 0.00 0.00 0.00 0.01 0.04 0.09 

Liquidity 
volume ($mln) 11.97 115.25 25.34 0.00 0.00 0.01 0.06 0.59 22.12 239.50 
size ($mln) 2263.34 33343.77 23.61 1.06 1.43 4.55 15.76 69.24 1095.29 18721.31 
bidask (%) 4.61 14.47 21.72 0.00 0.00 0.57 2.30 4.97 14.41 34.25 
illiq 1.29 171.49 150.64 0.00 0.00 0.00 0.00 0.00 0.01 0.27 
turn (%) 2.58 7.07 6.11 0.00 0.00 0.05 0.36 1.82 12.29 37.13 
dto (%) 0.49 5.22 5.59 -9.63 -2.70 -0.35 0.00 0.32 5.01 21.44 
std_dto (%) 1.69 3.56 3.78 0.00 0.01 0.08 0.34 1.40 8.83 18.64 
std_vol ($mln) 6.45 52.43 18.72 0.00 0.00 0.01 0.06 0.51 15.27 130.20 

Volatility 
rvol (%) 15.71 39.33 16.10 2.70 4.36 7.03 9.98 14.73 32.60 102.02 
beta 0.97 0.82 -0.13 -1.22 -0.11 0.61 0.99 1.34 2.02 3.03 
ivol (%) 8.43 6.27 1.98 1.10 2.32 4.25 6.54 10.51 21.21 31.59 
volsh_30d -0.59 1.56 -2.21 -6.78 -3.47 -1.02 -0.31 0.21 1.21 2.19 
volsh_60d -0.71 1.66 -1.97 -7.08 -3.80 -1.24 -0.42 0.20 1.26 2.26 
var (%) -13.85 8.72 -3.73 -49.01 -28.07 -15.68 -11.90 -9.27 -6.13 -3.26 

Past returns 
r2_1 (%) 0.26 10.94 1.33 -26.95 -14.10 -4.39 -0.21 3.89 16.21 38.71 
r7_2 (%) 0.32 21.82 2.37 -49.16 -27.69 -10.05 -1.10 8.07 33.22 73.88 
r13_2 (%) 0.79 33.92 4.17 -64.50 -39.27 -16.03 -2.61 11.66 51.80 115.55 
r22_2 (%) 1.81 49.20 5.48 -78.92 -50.51 -22.86 -4.99 15.16 75.54 176.93 
r31_2 (%) 3.45 66.11 8.22 -86.94 -58.03 -28.64 -7.03 18.46 96.45 239.36 
r30_14 (%) 1.43 42.57 5.11 -73.29 -45.67 -20.03 -3.81 13.86 65.35 149.95 
r180_60 (%) 30.14 275.17 22.08 -99.76 -85.57 -55.12 -23.26 33.42 285.07 844.23 
90dh (%) 59.10 65.96 521.00 11.87 21.47 39.66 57.85 77.52 98.24 112.78 
alpha (%) 0.19 2.03 -1.56 -4.66 -1.92 -0.62 0.02 0.83 3.23 6.29 

Distribution 
skew 0.60 1.14 -0.10 -2.64 -1.02 0.01 0.52 1.14 2.55 3.84 
kurt 4.26 5.70 3.07 -0.83 -0.11 0.93 2.30 5.30 15.41 27.71 
max (%) 25.26 19.26 1.59 2.87 6.41 11.97 19.08 31.90 68.50 92.94 
min (%) -19.48 12.99 -2.26 -72.61 -44.67 -23.24 -16.07 -11.46 -6.77 -3.44 

Other 
st 0.00 0.05 -7.90 -0.14 -0.05 -0.02 0.00 0.01 0.04 0.08 
cro 0.00 0.17 -0.03 -0.41 -0.28 -0.11 0.00 0.11 0.28 0.40 
seas (%) -0.73 0.33 -1.93 -1.96 -1.31 -0.86 -0.67 -0.52 -0.34 -0.22 
prc ($) 159.70 2241.00 22.84 0.00 0.00 0.01 0.06 0.51 32.33 1904.61 
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Table 3. Prediction Performance of Machine Learning Models 

The table presents the prediction performance of the 10 machine learning models used in this study: 
ordinary least squares (OLS), partial least squares (PLS), the least absolute shrinkage and selection oper-
ator (LASSO), elastic net (ENET), support vector machine (SVM), gradient boosted regression trees 
(GBRT), random forests (RF), feed-forward neural networks with one or two hidden layers (NN1, NN2), 
and forecast combination (COMB). The reported measures are out-of-sample R2 coefficients (𝑅ைைௌ

ଶ ), calcu-
lated as by Gu et al. (2020), as well as the average weekly Pearson (�̅�௉) and Spearman (�̅�ௌ) correlation 
coefficients. 𝑅ைைௌ

ଶ  is expressed in percentage terms. The sample comprises 574 cryptocurrencies; the total 
study period is from July 1, 2017 to July 6, 2022; and the testing period starts on 17 January 2018. 

  OLS PLS LASSO ENET SVM GBRT RF NN1 NN2 COMB 
𝑅ைைௌ

ଶ  0.243 -0.097 -2.234 -2.234 0.067 0.787 0.779 0.826 0.772 0.742 
�̅�௉ 0.074 0.046 0.054 0.054 0.054 0.106 0.107 0.067 0.069 0.096 
�̅�ௌ 0.072 0.052 0.063 0.063 0.085 0.084 0.083 0.062 0.077 0.092 
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Table 4. Univariate Portfolio Sorts on Machine Learning Model Predictions 

The table presents the average weekly returns on machine learning strategies for cryptocurrency markets. 
We sort the cryptocurrencies into quintiles based on predictions from 10 models: ordinary least squares 
(OLS), partial least squares (PLS), the least absolute shrinkage and selection operator (LASSO), elastic 
net (ENET), support vector machine (SVM), gradient boosted regression trees (GBRT), random forests 
(RF), feed-forward neural networks with one or two hidden layers (NN1, NN2), and forecast combination 
(COMB). High (Low) is the cryptocurrency quintile with the highest (lowest) return forecast, and High-
Low is the long-short strategy that buys (sells) the top (bottom) quintile. α1, α3, and α6 denote alphas 
from the one-, three-, and six-factor asset pricing models—respectively. All returns and alphas are reported 
in percentage terms. The numbers in parentheses are Newey and West’s (1987) t-statistics. Panels A and 
B report the results for equal- and value-weighted portfolios, respectively. The sample comprises 574 cryp-
tocurrencies; the total study period is from July 1, 2017 to July 6, 2022; and the testing period starts on 
17 January November 2018.  

  OLS PLS LASSO ENET SVM GBRT RF NN1 NN2 COMB 
Panel A: Equal-weighted portfolios 

Low -2.71 -2.09 -2.26 -2.27 -2.40 -3.16 -3.30 -2.74 -2.66 -3.37 
2 -0.52 -0.40 -0.52 -0.49 -0.52 -0.74 -0.65 -0.73 -0.73 -0.30 
3 -0.30 0.11 -0.17 -0.19 -0.09 -0.04 -0.08 -0.43 -0.10 -0.22 
4 0.38 -0.22 0.17 0.18 0.28 0.42 0.49 0.27 0.14 0.35 
High 0.55 0.01 0.19 0.17 0.14 0.92 0.94 1.03 0.75 0.94 
High-Low 3.26 2.10 2.46 2.45 2.54 4.08 4.23 3.77 3.42 4.32 

 (10.03) (5.78) (7.40) (7.28) (8.70) (10.45) (10.90) (11.46) (11.63) (12.74) 
α1 3.19 2.04 2.39 2.38 2.49 4.00 4.15 3.72 3.40 4.23 

 (10.65) (6.47) (7.40) (7.36) (7.97) (11.75) (12.12) (12.19) (11.51) (14.19) 
α3 3.07 1.86 2.27 2.26 2.44 4.14 4.28 3.63 3.32 4.12 

 (9.99) (5.74) (6.77) (6.73) (7.55) (11.96) (12.39) (11.57) (10.82) (13.35) 
α6 2.92 1.76 2.07 2.05 2.27 3.94 4.08 3.66 3.15 3.96 

 (8.79) (4.96) (5.74) (5.67) (6.43) (10.39) (10.66) (10.78) (9.45) (11.88) 
Panel B: Value-weighted portfolios 

Low -3.32 -2.05 -2.77 -2.77 -2.82 -3.51 -3.39 -2.70 -3.27 -3.84 
2 -0.22 -0.42 -0.33 -0.28 -0.63 -0.72 -0.75 -0.79 -0.72 -0.57 
3 -0.15 0.12 -0.34 -0.37 0.02 -0.04 -0.01 -0.42 0.13 -0.12 
4 0.36 -0.18 0.18 0.20 0.55 0.28 0.26 0.16 0.15 0.29 
High 0.57 0.16 0.24 0.23 0.14 0.88 0.95 1.00 0.81 0.88 
High-Low 3.89 2.21 3.02 3.01 2.96 4.40 4.34 3.70 4.08 4.72 

 (8.25) (4.98) (6.71) (6.66) (6.48) (8.59) (8.75) (8.24) (10.46) (9.06) 
α1 3.83 2.17 2.97 2.96 2.92 4.33 4.28 3.62 4.08 4.64 

 (10.64) (5.70) (7.43) (7.38) (6.70) (10.07) (10.05) (9.80) (10.93) (11.43) 
α3 3.79 2.11 2.91 2.90 2.88 4.50 4.43 3.70 4.04 4.73 

 (10.26) (5.33) (7.00) (6.96) (6.40) (10.33) (10.26) (9.65) (10.43) (11.38) 
α6 3.27 1.60 2.12 2.10 2.23 3.67 3.66 3.75 3.49 3.98 
  (8.27) (3.76) (4.88) (4.82) (4.62) (8.05) (8.05) (9.00) (8.50) (9.13) 
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Table 5. Returns on Machine Learning Portfolios in Subperiods 

The table presents the average weekly returns on machine learning strategies for cryptocurrency markets. 
We sort the cryptocurrencies into quintiles based on predictions from 10 models: ordinary least squares 
(OLS), partial least squares (PLS), the least absolute shrinkage and selection operator (LASSO), elastic 
net (ENET), support vector machine (SVM), gradient boosted regression trees (GBRT), random forests 
(RF), feed-forward neural networks with one or two hidden layers (NN1, NN2), and forecast combination 
(COMB). High (Low) is the cryptocurrency quintile with the highest (lowest) return forecast, and High-
Low is the long-short strategy that buys (sells) the top (bottom) quintile. α3 denotes alphas from the three-
factor asset pricing models. All returns and alphas are reported in percentage terms. The numbers in 
parentheses are Newey and West’s (1987) t-statistics. The sample comprises 574 cryptocurrencies; the total 
study period is from July 1, 2017 to July 6, 2022; and the testing period starts on 17 January 2018. Panels 
A and B report the results for the first and second half of the full testing period; i.e., January 17, 2018 to 
April 7, 2020 and April 8, 2020 to July 6, 2022.  

  OLS PLS LASSO ENET SVM GBRT RF NN1 NN2 COMB 
Panel A: First half (17 January 2018 to 7 April 2020) 

Low -5.34 -4.16 -5.26 -5.27 -5.19 -5.75 -5.81 -4.07 -5.42 -6.27 
2 -1.89 -2.12 -1.93 -1.89 -2.21 -2.38 -2.20 -2.40 -2.23 -1.86 
3 -1.73 -1.38 -1.67 -1.72 -1.68 -1.88 -1.92 -2.27 -1.19 -1.79 
4 -1.16 -2.13 -1.73 -1.69 -1.11 -1.19 -1.17 -1.53 -1.75 -1.12 
High -1.15 -1.31 -1.22 -1.23 -1.46 -0.54 -0.46 -0.61 -0.88 -0.78 
High-Low 4.19 2.85 4.03 4.04 3.74 5.21 5.35 3.46 4.55 5.49 

 (7.01) (4.65) (6.40) (6.42) (6.63) (8.46) (9.45) (7.76) (9.56) (8.65) 
α3 4.22 2.87 4.06 4.06 3.75 5.23 5.38 3.47 4.56 5.52 

 (8.98) (5.77) (7.46) (7.43) (7.12) (10.42) (10.59) (7.12) (10.14) (10.93) 
Panel B: Second half (8 April 2020 to 6 July 2022) 

Low -1.32 0.05 -0.31 -0.29 -0.46 -1.29 -1.00 -1.35 -1.14 -1.43 
2 1.44 1.28 1.26 1.31 0.95 0.92 0.68 0.81 0.77 0.71 
3 1.42 1.60 0.97 0.97 1.71 1.78 1.87 1.41 1.45 1.54 
4 1.87 1.75 2.06 2.06 2.20 1.74 1.68 1.83 2.05 1.68 
High 2.27 1.62 1.70 1.69 1.72 2.30 2.34 2.60 2.48 2.53 
High-Low 3.59 1.57 2.01 1.98 2.18 3.59 3.34 3.95 3.63 3.96 

 (4.96) (2.58) (3.64) (3.57) (3.21) (4.56) (4.37) (5.08) (6.01) (4.99) 
α3 3.47 1.47 1.90 1.88 2.00 3.41 3.17 3.60 3.68 3.75 
  (6.30) (2.54) (3.30) (3.25) (2.90) (4.89) (4.69) (6.59) (6.18) (5.92) 
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Table 6. Machine Learning Performance Over Different Forecast Horizons 

The table presents the performance of machine learning models for different forecast horizons: one day 
(Panels A.1 and B.1) and 14 days (Panels A.2 and B.2). We consider 10 machine learning models: ordinary 
least squares (OLS), partial least squares (PLS), the least absolute shrinkage and selection operator 
(LASSO), elastic net (ENET), support vector machine (SVM), gradient boosted regression trees (GBRT), 
random forests (RF), feed-forward neural networks with one or two hidden layers (NN1, NN2), and forecast 
combination (COMB). Panel A reports measures of prediction performance: out-of-sample R2 coefficients 
(𝑅ைைௌ

ଶ ), calculated as in Gu et al. (2020), as well as the average weekly Pearson (�̅�௉) and Spearman (�̅�ௌ) 
correlation coefficients. 𝑅ைைௌ

ଶ  is expressed in percentage terms. Panel B reports the weekly returns on long-
short portfolios formed on prediction from the machine learning models. The strategies buy (sell) a quintile 
of cryptocurrencies with the highest (lowest) predicted return. High-Low R is the mean return, and α3 
denotes alphas from the three-factor asset pricing models. The portfolios are value-weighted, and the 
security holding period is consistent with the forecast horizon (i.e., one or 14 days). All returns and alphas 
are reported in percentage terms. The numbers in parentheses are Newey and West’s (1987) t-statistics. 
The sample comprises 574 cryptocurrencies; the total study period is from July 1, 2017 to July 6, 2022; 
and the testing period starts on 17 January 2018. 

Panel A: Prediction accuracy 

  OLS PLS LASSO ENET SVM GBRT RF NN1 NN2 COMB 
Panel A.1: One-day forecast horizon 

𝑅ைைௌ
ଶ  -0.094 0.002 -0.219 -0.219 -0.207 -0.038 -0.050 -0.018 -0.032 0.002 

�̅�௉ 0.017 0.014 0.012 0.012 0.006 0.023 0.023 0.018 0.016 0.022 
�̅�ௌ 0.014 0.013 0.006 0.006 0.044 0.019 0.019 0.013 0.007 0.023 

Panel A.2 14-day forecast horizon 
𝑅ைைௌ

ଶ  -0.125 -0.632 -5.278 -5.279 0.133 0.679 0.665 0.954 1.022 1.453 
�̅�௉ 0.100 0.063 0.072 0.072 0.088 0.129 0.132 0.131 0.114 0.139 
�̅�ௌ 0.095 0.066 0.078 0.078 0.118 0.103 0.105 0.109 0.105 0.125 

Panel B: Long-Short Portfolio Performance 

  OLS PLS LASSO ENET SVM GBRT RF NN1 NN2 COMB 
Panel B1: One-day forecast horizon 

High-Low R 2.38 1.55 2.00 2.00 1.34 2.71 2.84 1.99 1.57 2.94 
 (5.42) (3.37) (3.72) (3.72) (2.57) (5.72) (6.08) (4.31) (3.62) (6.44) 

High-Low α3 2.29 1.60 2.00 2.00 1.48 2.58 2.73 1.85 1.40 2.87 
 (4.84) (3.41) (3.64) (3.65) (2.79) (4.91) (5.21) (3.67) (2.69) (5.96) 

Panel B.2: 14-day forecast horizon 
High-Low R 3.84 2.28 3.06 3.04 3.20 3.96 4.17 4.27 4.30 4.82 

 (7.39) (4.53) (6.86) (6.83) (6.05) (6.85) (7.62) (7.58) (10.51) (7.78) 
High-Low α3 3.86 2.19 3.08 3.06 3.02 4.18 4.35 4.18 4.44 4.89 
  (10.04) (4.33) (7.37) (7.32) (6.04) (9.12) (10.21) (9.07) (11.49) (10.90) 
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Table 7. Interactions Between Machine Learning Predictions and Limits to Arbitrage 

The table reports the average slope coefficients from weekly predictive cross-sectional regressions following 
Fama and MacBeth (1973); where the dependent variable is a weekly cryptocurrency return, and the 
independent variables include expected returns (E(R)) from the forecast combination (COMB) model, 
proxies of limits to arbitrage, and their interaction terms. The limits to arbitrage are represented by 
dummy variables that take a value of one if a given proxy is higher than a weekly median, or zero otherwise. 
The leftmost column indicates the dummies for four different proxies for limits to arbitrage: idiosyncratic 
volatility (ivolD), illiquidity (illiqD), bid-ask spread (bidaskD), and a composite measure (limD). The num-
bers in parentheses are Newey and West’s (1987) adjusted t-statistics. The bottom row presents the average 
weekly cross-sectional adjusted R2 coefficient (Rഥଶ) expressed in percentage terms. The sample comprises 
574 cryptocurrencies; the total study period is from July 1, 2017 to July 6, 2022; and the testing period 
starts on 17 January 2018. 

  (1) (2) (3) (4) (5) 
E(R) 1.352 0.701 0.699 0.692 0.872 

 (12.61) (5.31) (5.24) (5.29) (6.47) 
ivolD  0.014    
  (2.17)    
E(R)×ivolD  1.167    
  (5.96)    
bidaskD   0.014   
   (2.09)   
E(R)×bidaskD   1.165   
   (5.93)   
illiqD    0.014  
    (2.11)  
E(R)×illiqD    1.177  
    (6.11)  
limD     0.007 

     (1.32) 
E(R)×limD     0.846 

     (4.24) 
Rഥଶ 1.38 1.88 1.88 1.86 1.82 
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Table 8. Bivariate Portfolio Sorts on Limits to Arbitrage and Predicted Returns 

The table presents the portfolios from bivariate sorts on different measures of limits to arbitrage and expected returns (E(R)) from the forecast combination (COMB) 
model. In the first step, we sort the cryptocurrencies on their limits to arbitrage using four different proxies: idiosyncratic volatility (ivol), illiquidity (illiq), bid-ask spread 
(bidask), and a composite measure (lim). Subsequently—within each of these subsets—we sort cryptocurrencies into Low E(R), Medium E(R), and High E(R) terciles (as 
indicated in the top row) based on the COMB predictions. All portfolios are rebalanced weekly. Panel A displays the average weekly returns on the considered portfolios; 
it additionally presents the average returns (H-L R) and three-factor model (Liu et al., 2022) alphas (High-Low α3) on the spread portfolio that buys (sells) the coins with 
the High (Low) E(R). The left and right sections concern equal- and value-weighted strategies, respectively. The bottom rows of each panel present the differences in 
returns on the High-Low portfolios between the High and Low limits to arbitrage terciles. All returns and alphas are reported in percentages. The numbers in parentheses 
are Newey and West’s (1987) adjusted t-statistics. Panel B pertains to the relative importance of stocks in different portfolios. Its left side reports the average market 
value of coins in different categories (in $ billion), and the right side illustrates the average proportion (in percentage) of the total market capitalization allocated therein. 
The sample comprises 574 cryptocurrencies; the total study period is from July 1, 2017 to July 6, 2022; and the testing period starts on 17 January 2018. 

Panel A: Average returns 

  Equal-weighted portfolios   Value-weighted portfolios 

 
Low 
E(R) 

Medium 
E(R) 

High 
E(R) 

High-
Low R  

t-statR 
High-

Low α3 
t-statα  Low 

E(R) 
Medium 

E(R) 
High 
E(R) 

High-
Low R  

t-statR 
High-

Low α3 
t-statα 

Panel A.1: Idiosyncratic volatility 
Low ivol -0.77 -0.11 0.51 1.27 (3.76) 0.83 (2.54)  -0.98 -0.06 0.64 1.62 (3.71) 1.17 (3.01) 
Medium ivol -1.46 -0.30 0.72 2.19 (5.58) 2.13 (5.46)  -1.86 -0.40 0.58 2.44 (4.07) 2.68 (5.37) 
High ivol -4.16 0.10 0.81 4.97 (9.59) 4.84 (9.99)  -5.82 0.12 0.65 6.47 (9.41) 6.56 (9.50) 
High-Low ivol       3.69 (5.51) 4.01 (6.92)         4.85 (5.55) 5.38 (6.69) 

Panel A.2: Illiquidity 
Low illiq -1.50 -0.44 0.88 2.39 (6.76) 2.00 (6.23)  -1.63 -0.24 0.82 2.45 (6.03) 2.21 (5.84) 
Medium illiq -1.86 -0.06 0.77 2.63 (6.67) 2.43 (6.04)  -1.92 0.12 0.50 2.43 (4.82) 2.35 (4.88) 
High illiq -3.02 0.18 0.38 3.40 (7.30) 3.35 (7.63)  -5.65 -0.11 0.53 6.19 (6.98) 6.30 (7.65) 
High-Low illiq    1.02 (1.65) 1.35 (2.40)     3.74 (3.74) 4.10 (4.37) 

Panel A.3: Bid-ask spread 
Low bidask -1.70 0.01 0.84 2.54 (7.79) 2.31 (6.36)  -2.21 -0.19 0.99 3.20 (8.20) 3.08 (7.48) 
Medium bidask -1.57 -0.29 0.64 2.21 (6.07) 1.97 (5.74)  -1.47 -0.03 0.54 2.01 (3.82) 1.94 (4.13) 
High bidask -3.12 -0.04 0.56 3.68 (7.79) 3.51 (7.81)  -4.61 -0.10 0.36 4.97 (5.50) 4.96 (6.43) 
High-Low bidask    1.13 (1.83) 1.20 (2.00)     1.77 (1.83) 1.88 (2.08) 

Panel A.4: Composite measure 
Low lim -1.07 -0.12 0.68 1.75 (5.16) 1.37 (4.27)  -1.30 -0.13 0.66 1.96 (5.15) 1.67 (4.56) 
Medium lim -1.97 -0.18 1.02 2.99 (8.26) 2.93 (7.85)  -2.50 0.05 0.85 3.35 (5.08) 3.42 (5.62) 
High lim -3.36 -0.03 0.32 3.67 (6.64) 3.47 (7.16)  -5.29 -0.37 0.24 5.53 (6.06) 5.54 (6.82) 
High-Low lim       1.92 (2.88) 2.10 (3.55)         3.57 (3.76) 3.87 (4.33) 
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Panel B: Average cryptocurrency capitalization and market proportions 

  Average market cap ($ bil)   Average market proportion (%) 
 Low 

E(R) 
Medium 

E(R) 
High 
E(R) 

 Low 
E(R) 

Medium 
E(R) 

High 
E(R) 

Sum 

Panel B.1: Idiosyncratic volatility 
Low ivol 0.35 2.17 15.85  1.79 11.11 80.92 93.82 
Mid ivol 0.08 0.22 0.40  0.38 1.10 2.02 3.50 
High ivol 0.05 0.14 0.34  0.25 0.70 1.73 2.68 

Panel B.2: Illiquidity 
Low illiq 0.43 2.44 16.38  2.18 12.47 83.65 98.30 
Mid illiq 0.03 0.06 0.15  0.16 0.32 0.75 1.23 
High illiq 0.02 0.02 0.05  0.09 0.12 0.26 0.47 

Panel B.3: Bid-ask spread 
Low bidask 0.37 1.71 8.91  1.87 8.75 45.47 56.09 
Mid bidask 0.08 0.74 6.99  0.42 3.79 35.64 39.85 
High bidask 0.03 0.08 0.69  0.14 0.42 3.51 4.06 

Panel B.4: Composite measure 
Low lim 0.41 2.36 16.03  2.12 12.08 82.25 96.45 
Mid lim 0.04 0.13 0.37  0.22 0.64 1.90 2.75 
High lim 0.02 0.04 0.10   0.08 0.20 0.51 0.80 
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Table 9. Univariate Portfolio Sorts – Practical Perspective 

The table concerns practical aspects of the machine learning portfolio formed on cryptocurrency predictions. 
We sort the cryptocurrencies into quintiles based on predictions from 10 models: ordinary least squares (OLS), 
partial least squares (PLS), the least absolute shrinkage and selection operator (LASSO), elastic net (ENET), 
support vector machine (SVM), gradient boosted regression trees (GBRT), random forests (RF), feed-forward 
neural networks with one or two hidden layers (NN1, NN2), and forecast combination (COMB). High (Low) 
is the cryptocurrency quintile with the highest (lowest) return forecast, and High-Low is the long-short strat-
egy that buys (sells) the top (bottom) quintile. All strategies are value-weighted and rebalanced weekly. Panel 
A reports different risks and performance metrics for weekly returns on the High-Low portfolios: standard 
deviation, annualized Sharpe ratio, maximum weekly loss, and maximum drawdown over the study period. 
Panel B displays the average market capitalization (in $ billion) of cryptocurrencies in different quintiles, 
while Panel C shows their relative market proportion (in %). Finally, Panel D presents the average weekly 
portfolio turnover (in %)—interpreted as the share of the portfolio being replaced every week. The sample 
comprises 574 cryptocurrencies; the total study period is from July 1, 2017 to July 6, 2022; and the testing 
period starts on 17 January November 2018.  

  OLS PLS LASSO ENET SVM GBRT RF NN1 NN2 COMB 
Panel A: Risk profile of the long-short strategies 

Standard dev.(%) 5.58 5.83 6.14 6.15 6.65 6.64 6.57 5.80 5.67 6.34 
Sharpe ratio 5.03 2.73 3.54 3.52 3.20 4.78 4.77 4.60 5.19 5.37 
Max 1W loss (%) -12.21 -24.12 -24.98 -24.98 -33.43 -15.43 -11.12 -11.58 -16.40 -10.74 
Max DD (%) -32.23 -44.28 -46.95 -46.95 -58.83 -37.64 -35.29 -33.35 -40.53 -32.28 

Panel B: Average cryptocurrency capitalization ($ billion) 
Low 0.2 0.1 0.1 0.1 0.2 0.4 0.5 0.6 0.3 0.1 
2 0.6 0.3 0.1 0.1 0.4 0.7 1.0 1.2 0.7 0.3 
3 1.3 0.7 0.3 0.3 0.6 1.6 1.5 2.6 1.5 1.0 
4 2.5 2.4 1.0 1.0 2.2 2.9 3.4 3.5 2.8 1.9 
High 6.3 7.4 9.3 9.3 7.5 5.3 4.5 3.0 5.6 7.6 

Panel C: Market proportion (%) 
Low 1.7 1.0 1.0 1.0 1.7 2.1 3.3 9.1 2.7 0.8 
2 5.5 4.7 1.6 1.6 3.1 10.4 13.9 12.2 9.1 2.6 
3 12.9 10.0 5.1 5.1 6.6 18.4 15.3 22.8 14.1 10.8 
4 23.4 28.4 14.9 15.2 19.2 24.0 26.7 29.6 23.4 21.3 
High 56.6 55.9 77.4 77.0 69.4 45.1 40.7 26.3 50.6 64.5 

Panel D: Portfolio turnover (%) 
Low 47.2 41.8 46.1 46.2 60.1 50.1 50.8 58.0 55.1 46.8 
2 64.4 61.8 60.1 60.1 75.6 62.2 63.9 74.5 71.0 64.8 
3 67.7 64.0 61.7 61.8 75.4 67.5 67.7 75.9 72.0 67.9 
4 63.8 59.5 56.3 56.3 71.4 63.6 64.2 72.6 68.0 63.0 
High 39.1 36.1 32.5 32.6 50.7 42.2 42.7 52.2 46.8 37.2 
High - Low 86.3 77.9 78.6 78.8 110.8 92.3 93.5 110.2 101.9 83.9 
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Table 10. Trading Costs of Machine Learning Strategies  

The table presents the impact of trading costs on the performance of long-short cryptocurrency machine-learning 
portfolios. We consider 10 machine learning models: ordinary least squares (OLS), partial least squares (PLS), the 
least absolute shrinkage and selection operator (LASSO), elastic net (ENET), support vector machine (SVM), 
gradient-boosted regression trees (GBRT), random forests (RF), feed-forward neural networks with one or two 
hidden layers (NN1, NN2), and forecast combination (COMB). The strategies buy (sell) a quintile of cryptocur-
rencies with the highest (lowest) predicted return. All strategies are rebalanced weekly, and Panels A and B 
concern equal- and value-weighted portfolios—respectively. Gross return is the average weekly return on a long-
short portfolio. Break-even TC (trading cost) is the level of the one-way transaction costs at which the average 
returns decrease to zero. Net returns are estimated using two approaches: a) assuming a flat transaction fee that 
equals 30 (40) basis points for the long (short) positions (Net return, flat TC); and b) as a sum of half of the 
effective spread estimated using the methods of Corwin and Schultz (2012) and Abdi and Ranaldo (2017), and a 
flat fee of 10 basis points (Net return, variable TC). All the returns are reported in percentages, and the breakeven 
costs are expressed in basis points. The numbers in parentheses are t-statistics. The sample comprises 574 crypto-
currencies; the total study period is from July 1, 2017 to July 6, 2022; and the testing period starts on January 
17, 2018. 

  OLS PLS LASSO ENET SVM GBRT RF NN1 NN2 COMB 
Panel A: Equal-weighted portfolios 

Gross return 3.26 2.10 2.46 2.45 2.54 4.08 4.23 3.77 3.42 4.32 
 (10.03) (5.78) (7.40) (7.28) (8.70) (10.45) (10.90) (11.46) (11.63) (12.74) 

Break-even TC (bps.) 197 142 170 169 123 239 243 177 170 277 
Net return (flat TC) 2.68 1.58 1.95 1.93 1.81 3.49 3.62 3.02 2.71 3.77 

 (8.24) (4.35) (5.86) (5.75) (6.20) (8.92) (9.33) (9.19) (9.23) (11.12) 
Net return (variable TC) 1.04 0.35 0.74 0.72 -0.92 1.80 1.82 0.17 0.13 2.38 

 (3.22) (0.97) (2.24) (2.15) (-3.15) (4.60) (4.69) (0.53) (0.45) (7.02) 
Panel B: Value-weighted portfolios 

Gross return (%) 3.89 2.21 3.02 3.01 2.96 4.40 4.34 3.70 4.08 4.72 
 (8.25) (4.98) (6.71) (6.66) (6.48) (8.59) (8.75) (8.24) (10.46) (9.06) 

Break-even TC (bps.) 226 142 192 191 133 238 232 168 200 281 
Net return (flat TC) 3.28 1.66 2.45 2.44 2.17 3.74 3.68 2.93 3.36 4.13 

 (6.95) (3.74) (5.46) (5.41) (4.76) (7.31) (7.42) (6.51) (8.61) (7.92) 
Net return (variable TC) 2.01 0.70 1.22 1.19 -0.22 2.24 2.17 0.83 1.51 2.89 
  (4.26) (1.59) (2.72) (2.65) (-0.49) (4.37) (4.37) (1.85) (3.87) (5.54) 

 


