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Abstract

This paper examines and compares the constant mix and buy-and-hold portfolio strategies.
To this end, we examine and illustrate their performances using various criteria such as compar-

ison of their payo¤s, basic properties of their return cumulative distribution functions and their
performances with respect to Kappa measures. We also introduce the notion of compensating
variation to gauge their respective expected utilities. Our study reveals that, even if the constant

mix payo¤ is more often higher than the buy-and-hold payo¤ (the probability is around 66%,
at least in the GBM framework), this superiority is not very signi…cant. Indeed, for example,

when the constant mix is preferable, the compensating variation of the buy-and-hold is weak,
whereas, when the buy-and-hold, the compensating variation of the constant mix can be very

high. Therefore, when buy-and-hold strategy outperforms rebalancing one with respect to an
utility function, it is far more signi…cantly. These results are con…rmed by the empirical study
that we conduct.

JEL classi…cation: G11, C58, G41.
Keywords: Diversi…cation return; Constant mix portfolio; Buy-and-hold strategy; Compen-

sating variation.
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1 Introduction

There is an abundant literature on the comparative performances of constant mix (also called

rebalancing) and buy-and-hold portfolio strategies. However, as pointed out by Cuthbertson et

al (2015), facing the multitude of results established in various contexts (time periods, …nancial

parameter values, rebalancing rules...), it is di¢cult to synthesize the literature in order to reach a

de…nitive conclusion on this issue. Buetow et al (2002) investigate the e¤ects of various rebalancing

strategies on the risk and return of a multi-asset class portfolio. They argue that rebalancing the

portfolio can improve net cost performance while controlling risk. Taking account of transaction

costs, Donohue and Yip (2003) manage to identify tractable conditions that determine the no-trade

region, which enhances the e¤ectiveness of optimal rebalancing. Using a 30-year …nancial market

data set of the United States, the United Kingdom and Germany, Dichtl et al (2016) analyze both

strategies on stock-bond portfolios. They conclude that, even if the portfolio weight of stocks is

very low, a frequent rebalancing signi…cantly enhances risk-adjusted portfolio performance for all

analyzed countries and all risk-adjusted performance measures. Tsai (2001) considers …ve stock-

bond portfolios with a 20%, 40%, 60%, 80%, and 98% equity allocation, corresponding to di¤erent

risk pro…les of institutional investors. His conclusions are all in favour of an outperformance of the

constant mix strategy whatever the rebalancing strategy. Wise (1996) shows that a rebalancing

strategy outperforms a buy-and-hold one about two thirds of the time when the assets have the

same expected return, but, when buy-and-hold strategy outperforms rebalancing one, it is far more

signi…cantly. Additionally, Wise (1996) suggests that the comparison of both strategies may depend

on investor’s risk aversion. Quian (2014) provides a statistical comparison of both portfolio values

at maturity, especially their expected values and variances, for various assumptions about return

dynamics and portfolio weightings. For long-only portfolios, he shows that buy-and-hold strategy

induces higher expected value but also higher variance of terminal wealth. However, for long-only

portfolios, mean-reverting returns are more favorable for …xed-weight portfolios whereas it is the

converse for trending returns.

However, Hallerbach (2014) and Cuthbertson et al (2015) point out that it is necessary to

investigate whether the portfolio performances comes from the rebalancing process (in such case,

we refer to "rebalancing returns" )1 and/or from diversi…cation e¤ect ("diversi…cation returns")2.

Indeed, diversi…cation provides a bene…t in one period but this diversi…cation bene…t may vanish if

you do not rebalance. Additionally, Cuthbertson et al (2015) illustrate how the apparent advantages

of rebalanced strategies over in…nite horizons give an inaccurate impression of their performance

over …nite horizons.

It is commonly accepted that constant mix strategy reduces risk but incurs transaction costs and

may not provide a su¢ciently signi…cant performance when market rises. It has often been shown

1"Rebalancing return" (also called "rebalancing premium") is usually associated to long-horizon investment with
the notions of growth-optimal investing, volatility pumping and the Kelly criterion (see Kelly, 1956).

2The well-known term "diversi…cation return" has been introduced by Booth and Fama (1992).
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that rebalancing induces higher Sharpe ratios than buy-and-hold (see, for example, Boscaljon et al.,

2008). For the long-only portfolios (i.e. the weights lie between 0 and 1 as usually assumed for the

standard constant mix strategy), the constant mix strategy is a contrarian strategy, meaning that

it increases the position in the risky asset when it rises and decreases its position when it makes

money.3 As such, rebalancing induces a lower expected return and a lower variance. Its Sharpe

ratio can be also higher than the buy-and-hold’s one (see Wise, 1997; Quian, 2014).4Rebalancing

strategy is sometimes highlighted as a way to take better advantage of market ine¢ciencies (see e.g.

Sharpe (2010) who disagrees with this approach). Other authors argue that constant mix strategy

beats buy-and-hold over the long run, in particular when using the Kelly criterion (see Kelly, 1956).

The aim of this paper is to investigate the comparison of rebalancing (i.e. constant mix) portfolio

strategy5 with the buy-and-hold one in various portfolio optimization frameworks. Our contribution

is twofold:

- We begin by detailing their main respective properties. For this purpose, we introduce a

…nancial modelling based on di¤usion with jumps and various criteria to gauge their performances.

First, we compare their respective payo¤s for the one risky asset case. We prove that, for the

geometric Brownian motion case (GBM), they always intersect at two points. Between these two

values, the constant mix strategy provides a higher payo¤. We examine the probability of such

event, showing that it usually lies between 40% and 60%, according to …nancial market parameters

and to weight invested in the risky asset. We prove also that the di¤erence between constant mix

and buy-and-hold returns, namely the rebalancing return, is maximal at a value of the risky asset

that does not depend on its trend. We examine also the impact of jumps. We demonstrate that,

if all relative jumps have the same signs, the buy-and-hold return is higher than the rebalancing

return. This is due to the contrarian behavior of the rebalancing strategy, as illustrated by its

negative Gamma in the GBM case. Second, we compare their …rst four moments. As a by-product,

we extend previous results about the comparison of their expectations and variances, which have

been previously established only in the i.i.d. case ( see e.g. Cheng and Deets, 1971; Wise, 1996).

Indeed, we prove that the expectation of the rebalancing strategy is always smaller than that of

the buy-and-hold one, which is also true for their variances. This result is established for a jump-

di¤usion process where both drift and volatility are deterministic but not necessarily constant. In

this framework, we also show that both the skewness and the kurtosis of rebalancing strategy are

always smaller than that of the buy-and-hold one. Third, we study their respective cumulative

3See Perold and Sharpe (1988).
4Considering the period from 1995 to 2004, Harjoto and Jones (2006) shows that rebalancing strategy with an

incorporated no-trade interval of 15% induces both the highest average return and the lowest standard deviation
which also results in the highest Sharpe ratio. However, using data of main US indices over the time period from 1926
to 2009, Jaconetti et al (2010) show that buy-and-hold exhibits the highest average annualized return with a value of
9.1% after an investment period of 84 years, but also the highest volatility with a value of 14.4% due to an average
stock allocation of 84.1%.

5We only consider the standard constant mix strategy, namely the long only position corresponding to a weight
on the risky asset lying between 0 and 1 (for other cases with leverage e¤ects with or without portfolio insurance, see
Leland, 1980; Black and Perold, 1992; Bertrand and Prigent, 2005, 2013; Quian, 2012).
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distribution functions (cdf). In the GBM case, we prove that they intersect always at two points.

Then, we can show that none of these two portfolio strategies can dominate the other one at the

…rst-order stochastic dominance or even at the second-order. Fourth, we analyze their performances

using not only the Sharpe ratio but also the Kappa measures considered by Kaplan and Knowles

(2004). These latter performance measures include the Omega performance introduced by Keating

and Shadwick (2002) (see also Bernardo and Ledoit (2000) for a special case) and the Sortino ratio

(see Sortino and Price, 1994). As emphasized by for example Boscaljon et al. (2008), we show that

rebalancing induces higher Sharpe ratios than buy-and-hold. However, the di¤erence is small. For

the Sharpe Omega ratio, it is the converse: rebalancing induces smaller Sharpe Omega ratios than

buy-and-hold, due to the impact of loss aversion. Finally, we introduce the notion of compensating

variation to compare the two portfolio strategies by using the well-known expected utility criterion.

The compensating variation approach has been introduced by Hicks (1939), Nobel prize winner

in economics, and by De Palma and Prigent (2008, 2009) in …nance. It allows to quantitatively

measure the monetary loss of not receiving the best portfolio. Our …ndings illustrate that, when

the constant mix is preferable, the compensating variation of the buy-and-hold is weak, whereas,

when the buy-and-hold, the compensating variation of the constant mix can be very high. It means

that, when buy-and-hold strategy outperforms rebalancing one with respect to an utility function,

it is far more signi…cantly.6

- We provide empirical evidence of the robustness of most of previous theoretical results. Indeed,

assessment of long term …nancial investment through dynamic portfolio strategies relies mostly

on parametric Monte Carlo simulations of stochastic processes as soon as we relax the geometric

Brownian motion assumption to take account of more complex dynamics such as stochastic nature

of the volatility (Hull and White, 1987; Heston, 1993, . . . ). To overcome the drawbacks of any

parametric method such as the estimation risk and the uncertainty in the nature of the return

generating process, alternatives have been introduced in the academic literature. The so-called

statistical bootstrap method is a possible solution. It is a computer-intensive resampling procedure

which generates holding period return (possibly long term one) distribution from the sample monthly

(or weekly or daily) returns. In such framework, we can better …t actual …nancial data.

Our empirical analysis is based on monthly data that cover the sample period from January 1950

to July 2019. The US stock market is represented by the S&P 500 Total return index (dividends

included). From the 10-year Treasury constant maturity rate time-series, we approximate long

term bond total return using the usual loglinear approximation formula described in chapter 10 of

Campbell, Lo and MacKinlay (1997). The 1-month TBill return is from Ibbotson and Associates,

Inc. For all portfolio weights (from 1% to 99% in the SP 500), the mean return of the rebalancing

strategy is below the buy-and-hold mean return. The same property is true for the volatility. We

note also that the probability that the rebalancing strategy ends up with a higher portfolio value

than the buy-and-hold strategy is signi…cantly low, in particular for long time horizons. We also

compute a Sharpe ratio like measure which is simply the ratio of the mean return and of the volatility

6This has been noted by Wise (1996) but only when comparing the payo¤s.
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of the strategy return. This statistics is clearly in favor of the CM strategy. Considering higher

moments of strategy returns (i.e. skewness and kurtosis), the buy-and-hold strategy exhibits much

higher level of skewness and kurtosis than the rebalancing strategy. The Sharpe ratio is in favor of

the rebalancing strategy. We show also that most of the time the buy-and-hold strategy dominates

the rebalancing strategy in the compensating variation sense. Therefore, all these results are in

accordance with those established for the theoretical model.

The paper proceeds as follows. Section 2 describes the …nancial modelling of our theoretical

study. Section 3 provides the main theoretical results about comparison of constant mix and buy-

and-hold strategies in our general setting, using main performance criteria. Section 4 examines the

empirical application. Finally, Section 5 concludes. Most of the proofs are gathered in Appendix

which provides also several complementary results.

2 The …nancial market and the portfolio strategies

In what follows, we consider  …nancial assets  driven by a ¡dimensional standard Brownian

motion  = ()1·· and a multivariate point process  = ()1··:

 = (( ) + ( ) + ( )) (1)

where § and § are respectively the volatility and correlation matrices given by:

§ =

2
66664

1( ) 0 0 0

0 2( ) 0 0

0 0  0

0 0 0 ( )

3
77775

, § =

2
66664

1 12  1
12 1  

   ¡1
1  ¡1 1

3
77775


Functions ( ) = (( ))1·· and ( ) = (( ))1·· are de…ned on [0  ] £ R+ with

values in R (with, for all , ( )  0). They satisfy the usual conditions to guarantee the

existence, uniqueness and positivity of the solution of this stochastic di¤erential equation (see Jacod

and Shiryaev, 2003). Note that the relative jump of the risky asset  at any jump time  is given

by:
¢
¡

= ( ¡)

Recall that, when   and  are constant and  is a Poisson process, each process  is an

exponential of a process with independent and stationary increments, also called Lévy process (see

e.g. Merton, 1976, and for detailed explanations of dynamics with jumps, see Last and Brandt,

1995; Prigent, 2001; Cont and Tankov, 2004).

When  and  are constant and ( ) = 0, we recover the multidimensional geometric Brown-

ian motion. In that case, the variance-covariance matrix § of asset prices  is given by: § =
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¡


¢
1·· with

 = 00 exp
£¡
 + 

¢

¤ ¡

exp
£¡


¢

¤
¡ 1

¢


Since the risky asset prices are de…ned from the relations  = (+), we deduce

that:

 = 0 exp(( ¡ 122 )+ )

Therefore, we get:

 =  [0] ¡ (



¡ 12))

which allows to compute the portfolio values as functions of the risky assets, as illustrated in Relation

(5). Di¤usion processes with stochastic volatilities can be introduced as well but, by varying the

volatility level  for also di¤erent values of the drift , main features of portfolio strategies with

respect to volatility can be illustrated.

Using previous …nancial modelling, we deduce the buy-and-hold return 
 =

 

0

. For the

one risky asset case, at time 0, the investor chooses to invest the weight  on the risky asset and

(1 ¡) on the risk free asset with return  . Thus we have:


 = (1 ¡) +


0



from which we deduce:


 = (1¡)+ exp

·Z 

0

·
( ) ¡ 1

2
( )

2

¸
 +

Z 

0


¸ Y

·
(1 + ( ¡))  (2)

Therefore, the cumulative jumps are equal to 
Y

·
(1 + ( ¡)).

For the constant mix strategy, …rst consider the one risky asset case: at any time during the

management period [0  ], the investor chooses to invest the …xed weight  on the risky asset and

(1¡) on the risk free asset with return  . Thus, we deduce that the constant mix portfolio value

must satisfy:

 


¡
= (1 ¡)+ 


¡

= [(1 ¡ )+ ( )]+ ( ) + ( )

from which, using Ito’s formula, we deduce:


 =

 


0
= exp

·Z 

0

·
(1 ¡) +( ) ¡ 1

2
22

¸
 +

Z 

0


¸ Y

·
(1 + ( ¡)) 

(3)
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Note that the relative jumps of the constant mix portfolio at any jump time  are given by:

¢ 


 
¡

= ( ¡)

Thus, the cumulative jumps are equal to
Y

·
(1 +( ¡)).

When there are several risky assets, at time 0, the investor chooses to invest the initial weights

 on the risky assets  and (1 ¡
P

=1 ) on the risk free asset with return  . Thus we get:


 = (1 ¡

X

=1

)
 +

X

=1



0



For the constant mix strategy, at any time during the management period [0  ], the investor chooses

to invest the …xed weights  on the risky assets  and (1 ¡
P

=1 ) on the risk free asset with

return  . Therefore, we get:
 



¡
=

(1¡
X

=1

)+
X

=1





=

"
(1 ¡

X

=1

) +
X

=1

( )

#
+

X

=1

+
X

=1



Thus, using Ito’s formula, we deduce that the constant mix portfolio value satis…es:


 =

 


0
= (4)

exp

2
4

Z 

0

2
4(1 ¡

X

=1

) +
X

=1

( ) ¡ 1

2

X

=1


22 ¡

X





3
5 +

X

=1

Z 

0


3
5

£
Y

·1··

Ã
1 +

X

=1

( ¡)

!


For the multidimensional geometric Brownian motion case, since the Brownian motions are

functions of the risky asset prices, we can deduce7:


 = exp

2
4
2
4(1 ¡

X

=1

) ¡ 1

2

X

=1

(2 ¡ )
2
 ¡

X





3
5

3
5

Y

=1

µ

0

¶

 (5)

7For the geometric Brownian motion case, this formula appears in Perold and Sharpe (1988).
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3 Comparison of buy-and-hold and constant mix portfolios

In what follows, we compare the two portfolio strategies by using main performance criteria.

3.1 Payo¤ comparison

We begin by comparing the terminal payo¤s of both strategies in the GBM framework and for the

one risky asset case. Such framework allows to focus only on the rebalancing e¤ect. Therefore, the

stock index price dynamics is given by the following stochastic process:

 = [+ ] (6)

where  and  are constant (  0) and ( ) = 0. In that case, we deduce the two portfolio

returns 
 and 

 :


 =

 


0
= (1 ¡ ) + exp

·µ
 ¡ 1

2
2

¶
 + 

¸
 (7)


 =

 


0
= exp

··
(1 ¡) +¡ 1

2
22

¸
 +

¸
 (8)

Denote by  = 0 the risky asset return. We deduce:


 = (1 ¡) +   (9)


 = exp

··
(1 ¡ ) +

2

2

¡
 ¡ 2

¢¸


¸
( ) (10)

Therefore we have to compare 
 = (1¡)+ with exp

hh
(1 ¡) + 2

2

¡
 ¡ 2

¢i


i
( ) .

Note that 
 is always higher than (1 ¡ ) while 

 can reach 0 (for the theoretical point

of view). The rebalancing return 
 = 

 ¡ 
 is given by:


 = exp

··
(1 ¡) +

2

2

¡
 ¡2

¢¸


¸
( ) ¡  ¡ (1 ¡) 

In what follows, recall that we consider the standard case 0    1 corresponding to only long

strategy on the risky asset.

The two payo¤s intersect exactly at two values (1) and (2) of the risky return  .8 We note

also that the rebalancing return is  is maximal at

¤ = exp

·
 +

2

2


¸
 (11)

8For the special case  = 05, the two values (1) and (2) can be explicitly determined since they are solutions
of a polynomial equation of order 2.
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It does not depend on the trend  of the the risky return  .9

In what follows, to illustrate previous results, we choose the two following numerical base cases:

Case 1 :  = 006;  = 001;  = 015; = 5

Case 2 :  = 012;  = 004;  = 018; = 5

Figure (1) illustrates the comparison of the payo¤s for both numerical cases 1 and 2. They

always intersect at two points. Between these two values, the constant mix strategy provides a

higher payo¤.

0.5 1.0 1.5 2.0
Risky return

0.4

0.6

0.8

1.0

1.2

Payoff

0.5 1.0 1.5 2.0
Risky return

0.6

0.8

1.0

1.2

1.4
Payoff

Case 1 ( = 02) Case 2 ( = 02)

0.5 1.0 1.5 2.0
Risky return

0.5

1.0

1.5

Payoff

0.5 1.0 1.5 2.0
Risky return

0.5

1.0

1.5

Payoff

Case 1 ( = 08) Case 2 ( = 08)

Figure 1: Payo¤s of the two strategies as functions of the risky return for varying weight

9For the case   0 corresponding to be short on the risky asset (inverse leveraged fund), the diversi…cation return


 is a convex function w.r.t. the risky return  . The payo¤ of the constant mix strategy is higher than that of the

buy-and-hold strategy if and only the risky return  lies outside the interval

(1) (2)


.

For the case   1 corresponding to a leverage strategy, the diversi…cation return 
 is a convex function w.r.t.

the risky return  . The payo¤ of the constant mix strategy is higher than that of the buy-and-hold strategy if and

only the risky return  lies outside the interval

(1) (2)


.

For both previous cases, the diversi…cation return is minimal at ¤.
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We examine now the behavior of the rebalancing return. Since 0    1, the rebalancing

return 
 is a concave function w.r.t. the risky return  . The payo¤ of the constant mix strategy

is higher than that of the buy-and-hold strategy if and only the risky return  lies inside the

interval
£
(1) (2)

¤
. Figure 2 illustrates the rebalancing return as function of the risky return for

both numerical cases 1 and 2. We investigate four values for weight  invested on the risky asset,

namely  = 02; 04; 06 and …nally 08. We note that the numerical values of (1) and (2) do not

depend signi…cantly on the weight . For the …rst case, the probability of getting a return of the

constant mix strategy higher than that of the buy-and-hold is about 61% while for the second case,

it is about 55%.
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Risky return

0.30
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0.15
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w 0.2

0.5 1.0 1.5 2.0 2.5 3.0
Risky return

0.25
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0.15

0.10

0.05

Rebalancing return

w 0.8

w 0.6

w 0.4

w 0.2

Case 1 Case 2

Figure 2: Rebalancing return as function of the risky return for varying weight

Figure 3 illustrates the rebalancing return as function of the risky return for varying trend values,

namely  = 002; 004; 006; 0008; 01. We …x  = 05. We note that the interval
£
(1) (2)

¤
does

not depend signi…cantly on . Note also that, from Relation 11, we deduce that ¤ does not depend

on . However, the maximal value of the rebalancing return is increasing with respect to the trend.

Figure 4 illustrates the rebalancing return as function of the risky return for varying volatility

values, namely  = 01; 015; 02; 025; 03. We …x  = 05. We note that the interval
£
(1) (2)

¤

is "increasing" w.r.t. the volatility ; more precisely, the lower bound (1) is decreasing while the

upper bound (2) is increasing w.r.t. . Note that, from Relation 11, we deduce that ¤ is itself

increasing w.r.t. . Note also that, for example, for case 1, the probability of getting a return of

the constant mix strategy higher than that of the buy-and-hold is equal to about 61% for  = 015

while it is equal to about 68% for  = 025. For case 2, it is equal to about 47% for  = 015 while

it is equal to about 64% for  = 025.
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Figure 3: Rebalancing return as function of the risky return for varying trend
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Figure 4: Rebalancing return as function of the risky return for varying volatility
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Figure 5 illustrates the rebalancing return as function of the risky return for varying maturity

 , namely  = 1; 5; 10; 15; 30 years. We …x  = 05. For case 1, we note that the lower bound (1)

is decreasing while the upper bound (2) is increasing w.r.t.  . For numerical case 2, both bounds

are increasing w.r.t.  . Note also that, from Relation 11, we deduce that ¤ is itself increasing

w.r.t.  . Looking at the probability of getting a return of the constant mix strategy higher than

that of the buy-and-hold is also decreasing w.r.t.  , we get for example: for case 1, it is equal to

about 61% for  = 5 while it is equal to about 54% for  = 10; for case 2, it is equal to about 55%

for  = 5 while it is equal to about 44% for  = 10.
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Figure 5: Rebalancing return as function of the risky return for varying maturity

Examine now the probability that constant mix return is higher than buy-and-hold return.

Tables (1) and (2) illustrate the results for the GBM case for various …nancial parameters. Here we

consider also two cases a and b corresponding to interest rate values respectively equal respectively

to 1% and 3%. Looking at Tables (1) and (2), we note that the probability that constant mix return

is higher than buy-and-hold return is most of the time between 60% and 70%, more precisely around

66% as emphasized by Wise (1996). This probability is smaller than 05 only for low volatility and

high trend. It is increasing with respect to volatility  and decreasing with respect to trend . It is

also increasing with respect to the weight  invested on the risky asset. Finally, we remark that it

is slightly increasing with respect to the interest rate and decreasing with respect to time horizon

 .10

10Other detailed illustrations of such properties are available upon the authors on request.
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Table 1: Probability that constant mix return is higher than buy-and-hold return, T=5

 = 02  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 Case a Case b Case a Case b Case a Case b Case a Case b Case a Case b

15% 63.40% 67.75% 59.89% 66.06% 55.67% 63.40% 50.91% 59.89% 45.80% 55.67%
20% 66.77% 68.44% 65.08% 67.90% 62.86% 66.77% 60.18% 65.08% 57.10% 62.86%
25% 68.18% 68.57% 67.42% 68.57% 66.28% 68.18% 64.79% 67.41% 62.98% 66.28%
30% 68.75% 68.43% 68.51% 68.73% 68% 68.75% 67.23% 68.51% 66.21% 68.00%

 = 05  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 Case a Case b Case a Case b Case a Case b Case a Case b Case a Case b

15% 64.07% 67.97% 60.74% 66.51% 56.67% 64.07% 52.02% 60.74% 46.96% 56.67%
20% 67.27% 68.47% 65.79% 68.16% 63.78% 67.27% 61.28% 65.80% 58.35% 63.78%
25% 68.43% 68.34% 67.90% 68.58% 67.00% 68.43% 65.73% 67.90% 64.12% 67.00%
30% 68.68% 67.88% 68.68% 68.42% 68.42% 68.68% 67.88% 68.68% 67.09% 68.42%

 = 08  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 Case a Case b Case a Case b Case a Case b Case a Case b Case a Case b

15% 64.72% 68.17% 61.57% 66.94% 57.65% 64.71% 53.12% 61.57% 48.14% 57.65%
20% 67.72% 68.44% 66.48% 68.38% 64.68% 67.72% 62.37% 66.48% 59.60% 64.68%
25% 68.60% 68.02% 68.32% 68.51% 67.65% 68.61% 66.61% 68.32% 65.21% 67.65%
30% 68.50% 67.23% 68.75% 68.00% 68.72% 68.51% 68.43% 68.75% 67.87% 68.73%

Table 2: Probability that constant mix return is higher than buy-and-hold return, T=10

 = 02  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 Case a Case b Case a Case b Case a Case b Case a Case b Case a Case b

15% 58.88% 67.23% 52.52% 63.92% 45.33% 58.88% 37.84% 52.52% 30.52% 45.33%
20% 65.31% 68.62% 62.04% 67.54% 57.88% 65.31% 53.04% 62.04% 47.71% 57.88%
25% 68.10% 68.88% 66.57% 68.87% 64.36% 68.09% 61.51% 66.57% 58.12% 64.36%
30% 69.23% 68.61% 68.74% 69.19% 67.72% 69.23% 66.20% 68.74% 64.21% 67.72%

 = 05  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 Case a Case b Case a Case b Case a Case b Case a Case b Case a Case b

15% 60.13% 67.68% 54.02% 64.81% 46.97% 60.13% 39.51% 54.02% 32.12% 46.97%
20% 66.29% 68.67% 63.42% 68.07% 59.61% 66.29% 55.02% 63.42% 49.86% 59.61%
25% 68.60% 68.41% 67.55% 68.89% 65.76% 68.60% 63.31% 67.55% 60.25% 65.76%
30% 69.10% 67.51% 69.10% 68.57% 68.57% 69.10% 67.51% 69.10% 65.95% 68.57%

 = 08  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 Case a Case b Case a Case b Case a Case b Case a Case b Case a Case b

15% 61.35% 68.07% 55.53% 65.65% 48.65% 61.35% 41.23% 55.53% 33.78% 48.65%
20% 67.19% 68.62% 64.75% 68.50% 61.30% 67.19% 57.00% 64.75% 52.04% 61.30%
25% 68.95% 67.78% 68.38% 68.75% 67.05% 68.95% 65.02% 68.38% 62.33% 67.05%
30% 68.74% 66.20% 69.23% 67.72% 69.19% 68.74% 68.61% 69.23% 67.51% 69.19%
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In what follows, we focus on the impact of potential jumps. For the one risky asset case and for

a pure jump process, we deduce the value of the rebalancing return:


 =

exp [(1 ¡) ]
Y

·
(1 +( ¡)) ¡ (1 ¡ ) ¡

Y

·
(1 + ( ¡))

We note that, for  ' 0, for the buy-and-hold strategy, the cumulative jumps yield to (1 ¡
)+

Y

·
(1 + ( ¡)) while, for the constant mix portfolio, we get

Y

·
(1 +( ¡)).

Obviously,  is equal to 0 if there is only one period or if the weight  is equal to 1. Then, if

all relative jumps ( ¡) have the same sign, we have 
 · 0 or equivalently 

 · 
 .

Otherwise, we may have 
 ¸ 

 . Previous results are in accordance with what happens when

there is no jump. Indeed, looking at the Greek Gamma of the portfolio return in the GBM case, we

get:

¡ =





=  ( ¡ 1) exp

··
(1 ¡) +

2

2

¡
 ¡ 2

¢¸


¸
( )¡2 

Therefore, since 0 ·  · 1, we have ¡ · 0. Thus it means that, when the risky asset rises, you

have to sell, while, when it falls, you have to buy. It is exactly what happens with previous jump

case. This prevents in particular to bene…t signi…cantly from market rises.

When dealing with several risky assets, using Relation (4), we deduce that the rebalancing return

for the GBM case is given by:


 = 

Y

=1

µ

0

¶

¡ (1 ¡
X

=1

)
 ¡

X

=1



0

 (12)

with

 = exp

2
4
2
4(1 ¡

X

=1

) ¡ 1

2

X

=1

(2 ¡)
2
 ¡

X





3
5

3
5 

For the pure jumps case, we deduce:


 = exp [(1 ¡ ) ]

Y

·1··

Ã
1 +

X

=1

( ¡)

!

¡(1 ¡) ¡ 
Y

·1··

Ã
1 +

X

=1

( ¡)

!
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Therefore, for this latter case, the cumulative jumps yield to

(1 ¡ ) + 
Y

·1··

Ã
1 +

X

=1

( ¡)

!

while, for the constant mix portfolio, we get
Y

·1··

³
1 +

P
=1( ¡)

´
.

3.2 First four moments

We study now the …rst four moments of both strategies. We begin by establishing general results

about the comparison of their four moments, extending …rst previous results about expectation

and variance in the i.i.d. case (see e.g. Wise, 1996) and second providing the comparison of their

skewness and kurtosis.11 For this purpose, we use the risky dynamics considered in Relation (??),

which corresponds to a jump-di¤usion process where both drift and volatility are deterministic but

not necessarily constant, namely:

 = [( )+  + ( )]

where ( ) is a function de…ned on [0  ] £ R+ with values in R and  (  0) is a stochastic

process,  denotes a standard Brownian motion with respect to a given …ltration (F) and  is a

point process.

Comparison of expectations: assume that both the drift () and the volatility () are deter-

ministic. Assume also that  is a compound Poisson process with intensity . Denote by  the

common expectation of the relative jumps of the risky asset ¢
¡

= ( ¡)at jump times .

Then we get:


£



¤
= (1 ¡ ) + exp

·Z 

0
()+ 

¸
 (13)


£



¤
= exp

·
(1 ¡) + 

µZ 

0
()+ 

¶¸
 (14)

Therefore, by convexity of the exponential function, we deduce that 
£



¤
 

£



¤
.

Previous results extends the result of Cheng and Deets (1971) and Wise (1996) who compare

the performances of buy-and-hold and rebalancing strategies assuming that risky asset prices follow

random walks (i.e. are i.i.d.).

Comparison of variances:

Denote by 2 the common expectation of the squares of the relative jumps of the risky asset
¢
¡

= ( ¡)at jump times . Then we get:

 
£



¤
= 2 exp

·
2

µZ 

0
() + 

¶¸ ³

 
0
2()+2 ¡ 1

´
 (15)

11See Appendix B for proofs of all the results of this section.
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 
£



¤
= exp

·
2

µ
(1 ¡ ) + 

µZ 

0
()+ 

¶¶¸µ

2
 
0 2()+2 


¡ 1

¶


(16)

Therefore, we deduce that  
£



¤
·  

£



¤
.

Comparison of skewness and kurtosis:

Denote 2 =
R 
0 2(). When there is no jump, the skewness and excess kurtosis are respec-

tively equal to:


£



¤
=

q

2
 ¡ 1

³
2 + 

2


´
and 

£



¤
=

q


22 ¡ 1
³
2 + 

22

´
  (17)

and


£



¤
=

³
4

2
 + 23

2
 + 32

2
 ¡ 6

´
 (18)


£



¤
=

³
4

22 + 23
22 + 32

22 ¡ 6
´
 (19)

Looking at previous relations, we can see that, to compare both skewness and excess kurto-

sis, we have just to compare 
£



¤
and 

£



¤
for  = 1 since both functions

are increasing w.r.t.  while they are constant w.r.t.  for the BH strategy. We deduce that


£



¤
· 

£



¤
and 

£



¤
· 

£



¤
. Note also that they are

increasing w.r.t. the volatility () and the time horizon  . Table (3) illustrates the comparison of

both expectations and variances. We set  = 1% and  = 5 years. We consider three cases for the

weight invested on the risky asset, namely  = 02,  = 05 and  = 08. For each case, the …rst

lines of Table (3) correspond to expectations values.

As can be deduced form Relations (13), (14), (15), and (16), expectations are increasing with

respect to the interest rate , to the trend , to the time horizon  and to the weight  invested on

the risky asset provided that the trend is higher than the interest rate. Variances satisfy the same

properties. Additionally, they are both increasing with respect to the volatility . Note that the

expectations of both returns do not depend on the volatility .
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Table 3: Expectation and standard deviation of constant mix and buy-and-hold strategies

 = 02  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 CM BH CM BH CM BH CM BH CM BH

9.42% 9.78% 10.52% 11.10% 11.63% 12.78% 12.75% 13.93% 13.88% 15.47%
15% 7.35% 8.86% 7.42% 9.31% 7.49% 9.79% 7.57% 10.29% 7.64% 10.82%
20% 9.80% 12.08% 9.90% 12.70% 10.04% 13.35% 10.10% 14.04% 10.20% 14.76%
25% 12.27% 15.55% 12.39% 16.35% 12.52% 17.19% 12.64% 18.07% 12.77% 19.00%
30% 14.74% 19.36% 14.89% 20.35% 15.04% 21.40% 15.19% 22.50% 15.35% 23.65%

 = 05  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 CM BH CM BH CM BH CM BH CM BH

16.18% 16.76% 19.12% 20.05% 22.14% 23.51% 25.23% 27.15% 28.40% 30.97%
15% 19.62% 22.15% 20.12% 23.29% 20.63% 24.48% 21.15% 25.74% 21.68% 27.06%
20% 26.30% 30.21% 26.97% 31.76% 27.65% 33.38% 28.35% 35.09% 29.07% 36.89%
25% 33.12% 38.88% 33.96% 40.87% 34.82% 42.97% 35.70% 45.18% 36.60% 47.49%
30% 40.09% 48.40% 41.10% 50.88% 42.15% 53.48% 43.21% 56.23% 44.31% 59.12%

 = 08  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 CM BH CM BH CM BH CM BH CM BH

23.37% 23.74% 28.40% 29.01% 33.64% 34.55% 39.09% 40.37% 44.77% 46.49%
15% 33.71% 35.44% 35.08% 37.26% 36.51% 39.17% 38.00% 41.18% 39.55% 43.29%
20% 45.58% 48.33% 47.45% 50.81% 49.38% 53.42% 51.40% 56.15% 53.50% 59.03%
25% 58.05% 62.21% 60.42% 65.41% 62.88% 68.76% 65.45% 72.28% 68.12% 76.00%
30% 71.27% 77.44% 74.18% 81.41% 77.21% 85.58% 80.36% 89.97% 86.64% 94.583%

The multidimensional case. In what follows, we compare the expectations and variances of both

strategies. We examine also the impact of correlations. We assume that the drifts () and the

volatility () are deterministic and that there is no jump.

Recall that we have:


 = (1 ¡

X

=1

)
 +

X

=1



0




 =

exp

2
4

Z 

0

2
4(1 ¡

X

=1

) +
X

=1

 ¡ 1

2

X

=1


22 ¡

X





3
5 +

X

=1

Z 

0


3
5

Therefore, we get:


£



¤
= (1 ¡

X

=1

)
 +

X

=1

 exp

·Z 

0



¸
 (20)


£



¤
= exp

"
(1 ¡

X

=1

) +
X

=1



µZ 

0



¶#
 (21)
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Therefore, by convexity of the exponential function, we deduce that 
£



¤
 

£



¤
.

To compare the variances, consider the particular case with no riskless asset and  =  for

all  . In that case, to compare the variances, we have just to compare

X

=1

2

³

 
0 2 ¡ 1

´
+ 2

X

1··


µ
exp

·Z 

0


¸
¡ 1

¶

with
³



=1 
2
 (
 
0 2)+2


1·· 

 
0  ¡ 1

´


Using the convexity of ¡1, we have for any ()1·· satisfying  ¸ 0 and
P

=1  = 1,

exp

"
X

=1



#
¡ 1 ·

X

=1

 (exp [] ¡ 1)

Note that
X

=1

2 + 2
X

1··
 =

Ã
X

=1



!2

= 1

Therefore, we deduce that  
£



¤
·  

£



¤
. Note that, if we consider the

equally weighting case and assume that variances and correlations are equal, then the di¤erence

between the two variances converges to 0 as the number  of assets converges to in…nity.

Examine now the impact of correlations. Obviously, the correlation has no impact on the com-

parison of expected returns. For the variances, let us examine the di¤erence  
£



¤
¡

 
£



¤
for the case  = 2 and equal drifts. Denote:

¤ =
2

³R 
0 21

´
+ (1 ¡ )2

³R 
0 22

´

³R 
0 12

´
[1 ¡ 2(1 ¡)]

(22)

The di¤erence  
£



¤
¡ 

£



¤
reaches a minimum at ¤ if condition ¤ · 1

is satis…ed. Note that condition ¤ · 1 is equivalent to:

0
@

sZ 

0

21+ (1 ¡)

sZ 

0

22

1
A
2

·
Z 

0

12

The previous condition is not always satis…ed. It depends on the choice of the parameters , 1
and 2. Therefore, we must distinguish two cases:

Case 1: ¤ ¸ 1. In that case, the di¤erence  
£



¤
¡  

£



¤
is decreasing

with respect to the correlation .

Case 2: ¤  1. In that case, the di¤erence  
£



¤
¡ 

£



¤
is …rst decreasing

then increasing with respect to the correlation . It means that, at  = ¤, the advantage of the

constant mix strategy is all the weaker from the point of view of variance.
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3.3 Cumulative distribution function (CDF) of the two portfolio strategies

For the Brownian geometric case, we can determine explicitly the cumulative distribution functions,

which allows for example that there is no stochastic dominance of one strategy against the other

one even at the second order.

Denote by © the cdf of the standard Gaussian distribution, namely ©() = 1
2
p


R 
0 exp(¡22).

Using standard calculus, we get:


() = ©

·µ


µ
¡ (1 ¡)



¶
¡ (¡ 1

2
2)

¶


p


¸


() = ©

·µ
 () ¡

·
(1 ¡) +¡ 1

2
22

¸


¶

³


p


´¸

Thus to compare the cdfs of both portfolio strategies, it is necessary and su¢cient to compare³


³
¡(1¡)



´
¡ (¡ 1

2
2)

´


p
 with

¡
 () ¡

£
(1 ¡ ) + ¡ 1

2
22

¤


¢


³


p


´
.

This is equivalent to the comparison of 
³


³
¡(1¡)



´
¡ (¡ 1

2
2)

´
with

¡
 () ¡

£
(1 ¡) +¡ 1

2
22

¤


¢
.

Consider the following equation: …nd  such that



µ


µ
¡ (1 ¡ )



¶
¡ ( ¡ 1

2
2)

¶
=

µ
 () ¡

·
(1 ¡) + ¡ 1

2
22

¸


¶


This is equivalent to:



µ


µ
¡ (1 ¡)



¶
+

1

2
2

¶
=

µ
 () ¡

·
(1 ¡) ¡ 1

2
22

¸


¶


and also to:



µ
¡ (1 ¡)



¶
+

1

2
2(1 ¡) =  () ¡ (1 ¡ ) (23)

We note that the drift  plays no role in previous Equation 23.

We can prove that the two cdf curves intersect exactly at two points (See Appendix). This

property implies that none of the two portfolio strategies dominates the other one at the …rst order

stochastic dominance. There is also no stochastic dominance at the second order since:

1) We have: 


()  


() = 0 for   1 ¡  , implying that 
 cannot dominate


 at the second order

2) For any weight  satisfying 0    1, there exists a CRRA utility for which this weight is

optimal when maximizing the expected utility, , implying that 
 cannot dominate 

 at the

second order.

We still choose the two following numerical base cases: (1)  = 006;  = 001; = 015;  = 5,

(2)  = 012;  = 004; = 018; = 5.

Figure (6) illustrates the comparison of the cumulative distributions functions with the two

intersection points. We note that, for small and high  values, we have 
()  


().
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However, the two curves are rather close. Note that, for longer time horizons, the di¤erence

between the two is more pronounced.
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Figure 6: Comparison of cdf

3.4 Comparison by means of Sharpe ratio and Kappa performance measures

The Sharpe ratio is the very well known performance measure introduced by Sharpe (1996, 1994).

For a given asset return  and a riskfree return  , it is de…ned as follows:

 () =
EP [ ] ¡ p
 P []

 (24)

The Omega performance measure has been …rst introduced by Keating and Shadwick (2002) and

Cascon et al. ( 2003). It is designed to overcome the shortcomings of performance measures based

only on the mean and the variance of the distribution of the returns. Omega measure takes account

of the entire return distribution while requiring no parametric assumption on the distribution. The

returns both below and above a given loss threshold are considered. More precisely, Omega is

de…ned as the probability weighted ratio of gains to losses relative to a return threshold. The exact

mathematical de…nition is given by:

­() =

R 
 (1 ¡  ())

R 
  () 

 (25)

where  () is the cumulative distribution function of the asset return  de…ned on the interval

( ) with respect to the probability distribution P and  is the return threshold selected by the

investor. For any investor, returns below her loss threshold are considered as losses and returns

above as gains. At a given return threshold, the investor should always prefer the portfolio with

the highest value of Omega.

The Omega function exhibits the following properties:
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² First, as shown for example in Kazemi et al. (2004), Omega can be written as:

­() =
EP

£
( ¡)+

¤

EP
£
(¡)+

¤  (26)

It is the ratio of the expectations of gains above the threshold  to the expectations of the losses

below the threshold .12

Kazemi et al. (2004) de…ne the Sharpe Omega measure as:

­ () =
EP [ ] ¡ 

EP
£
(¡)+

¤ = ­() ¡ 1 (27)

Note that if EP []  , the Sharpe Omega will be negative, otherwise it will be positive.

² For  = EP [], ­() = 1

² ­() is a monotone decreasing function.

² ­() = ­ () if and only if  =  

Typically, consider a strategy which consists in investing 100% of the initial amount in the risky

asset. In that case, the portfolio payo¤ is equal to the stock payo¤  at time  which is modelled

by a geometric Brownian motion. Therefore, here we have  = 0 exp[(¡ 22) +  ], where

 has the Gaussian distribution N (0  ). Then, EP [] = 0 exp[ ] does not depend on the

volatility. Thus, if 0 exp[ ]   then the Sharpe Omega is an increasing function of the volatility

 (due to the Vega of the put option). If 0 exp[ ]  , the Sharpe Omega is a decreasing function

of the volatility .

The level must be speci…ed exogenously. It varies according to investment objective and indi-

vidual risk aversion. As proved by Unser (2002), we are often only interested in an evaluation of

outcomes which are “risky”, i.e. their values are smaller than a given target, thus re‡ecting the

attitude towards downside risk. Examples would be an in‡ation rate for pension incomes, or the

rate of a benchmark …nancial index (see Bertrand and Prigent (2011) for an application to portfolio

insurance). Omega performance measure and portfolio insurance. Such downside risk measures have

been examined for instance in Ebert (2005), and are linked to the measures proposed by Fishburn

(1977, 1984).

12Kazemi et al. (2004) note that, by multiplying both numerator and denominator by the discount factor, Omega
can be considered as the ratio of the prices of a call option to a put option written on  with strike price  but both
evaluated under the historical probability P instead of the risk neutral one. For example, if the risky asset  follows
a GBM, then, mathematically speaking, the Omega value of a whole investment in  is the ratio of the Black-Scholes
call value upon the put value with strike  and value of the drift of  instead of the riskless return.
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In fact, the Sharpe Omega measure is one of the Kappa measures considered in Kaplan and

Knowles (2004). These latter ones are de…ned by: for  = 1 2 ,

 () =
EP [] ¡ 

³
EP

h£
(¡)+

¤i´1


 (28)

For  = 1, we get the Sharpe Omega measure and, for  = 2, we recover the Sortino ratio.

Zakamouline (2010) proves that Kappa measures correspond to performance measures based on

piecewise linear plus power utility functions. To prove such result, consider the following utility

function:

() = ( ¡)+ ¡ (
£
(¡ )+

¤
+

©



£
(¡ )+

¤
)

with ©  1 and  a nonzero integer. Then, as shown in Zakamouline (2014), the investor’s capital

allocation problem yields to the following relation:

[¤( )] =
 ¡ 1



Ã
[ ] ¡

([(¡  )+])
1


! 
¡1



where [¤( )] denotes the utility of the optimal allocation. Therefore, [¤( )] is an increasing

transformation of the Kappa(n) ratio, which proves that this latter one is based on the utility .

Note that  is convex on ] ¡ 1 ] if and only if  = 1. This corresponds to the Omega measure,

which is a limiting case when  ! 1. Therefore, the Omega measure is linked to the maximization

of an expected utility with loss aversion, as introduced by Tversky and Kahneman (1992).

Tables (4) and (5) display respectively the Sharpe ratio and the Sharpe Omega ratio of both

portfolio strategies (we choose  = 0%). We set  = 1% and  = 5 years. We consider three cases

for the weight invested on the risky asset, namely  = 02,  = 05 and  = 08. As emphasized by

for example Boscaljon et al. (2008), rebalancing induces higher Sharpe ratios than buy-and-hold.

However, the di¤erence is small. Obviously, the Sharpe ratio is increasing with respect to the trend

 and decreasing with respect to the volatility . Note also that the Sharpe ratio of the buy-and-

hold strategy does not depend on the weight . The Sharpe ratio of the rebalancing strategy is

slightly decreasing with respect to the weight . Contrary to the Sharpe ratio case, rebalancing

induces smaller Sharpe Omega ratios than buy-and-hold strategy. This is due to the impact of

loss aversion which is taken into account by the Sharpe Omega ratio. However, for high values of

the weight (08 for example), the two Sharpe Omega ratios are quite close. Indeed, recall that, for

 = 1, the two strategies are equal. The Sharpe Omega ratio is increasing with respect to the trend

 and decreasing with respect to the volatility . It is slightly decreasing with respect to the weight

.
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Table 4: Sharpe ratio of constant mix and buy-and-hold strategies

 = 02  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 CM BH CM BH CM BH CM BH CM BH

15% 0.58 0.52 0.72 0.64 0.87 0.75 1.00 0.85 1.14 0.95
20% 0.44 0.38 0.54 0.47 0.65 0.55 0.75 0.63 0.86 0.70
25% 0.35 0.30 0.43 0.36 0.52 0.43 0.60 0.49 0.68 0.54
30% 0.29 0.24 0.36 0.29 0.43 0.34 0.50 0.39 0.57 0.44

 = 05  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 CM BH CM BH CM BH CM BH CM BH

15% 0.56 0.52 0.69 0.64 0.82 0.75 0.95 0.85 1.07 0.95
20% 0.42 0.38 0.52 0.47 0.61 0.55 0.71 0.63 0.80 0.70
25% 0.33 0.30 0.41 0.36 0.49 0.43 0.56 0.49 0.63 0.54
30% 0.27 0.24 0.34 0.29 0.40 0.34 0.46 0.39 0.52 0.44

 = 08  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 CM BH CM BH CM BH CM BH CM BH

15% 0.54 0.52 0.66 0.64 0.78 0.75 0.89 0.85 1.00 0.95
20% 0.40 0.38 0.49 0.47 0.58 0.55 0.66 0.63 0.74 0.70
25% 0.31 0.30 0.38 0.36 0.45 0.43 0.52 0.49 0.58 0.54
30% 0.25 0.24 0.31 0.29 0.37 0.34 0.42 0.39 0.47 0.44

Table 5: Sharpe Omega ratio of constant mix and buy-and-hold strategies

 = 02  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 CM BH CM BH CM BH CM BH CM BH

15% 32.24 42.45 49.84 66.04 77.61 103 122 164 194 264
20% 12.23 15.18 17 21.01 23.34 29.10 32.26 40.40 44.70 56.26
25% 6.76 8.17 8.82 10.67 11.47 13.88 14.86 18.03 19.25 23.41
30% 4.48 5.35 5.65 6.74 7.08 8.45 8.83 10.56 11 13.17

 = 05  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 CM BH CM BH CM BH CM BH CM BH

15% 8.84 9.13 13.66 14.13 21.02 21.76 32.36 33.57 50.06 52.03
20% 4.49 4.63 6.34 6.56 8.86 9.17 12.30 12.74 17.00 17.65
25% 2.89 2.99 3.90 4.04 5.18 5.37 6.80 7.07 8.90 9.25
30% 2.10 2.18 2.75 2.86 3.54 3.69 4.51 4.71 5.70 5.95

 = 08  = 5 00%  = 6 00%  = 7 00%  = 8 00%  = 9 00%
 CM BH CM BH CM BH CM BH CM BH

15% 6.36 6.41 9.91 9.99 15.30 15.44 23.56 23.78 36.34 36.71
20% 3.44 3.47 4.94 4.98 6.96 7.03 9.70 9.81 13.46 13.62
25% 2.29 2.32 3.15 3.18 4.23 4.28 5.61 5.69 7.37 7.48
30% 1.71 1.73 2.28 2.31 2.97 3.02 3.82 3.88 4.86 4.94
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3.5 Optimal portfolio for the basic example (GBM case)

Consider the risky asset dynamics de…ned by: (see Appendix for the multidimensional case)




= +   (29)

with constant parameters  and  (  0). Denote:

 =  ¡ 1

2
2;  =

 ¡ 


(Sharpe ratio) (30)

 = ¡1

2
2 +




 ;  =




;  = (0)



We consider the risk-neutral probability measure Q to price options. The ¡algebra F is

generated by the Brownian motion  . We deduce that the probability density function (pdf) of
Q
 is a function ( ) of the terminal value of the risky asset price with respect to the -algebra

generated by  . This function is given by:

() = ¡

For the standard decision criterion, the utility  is also supposed to be concave, meaning that the

investor is risk averse. Let denote by  the inverse function of the marginal utility, i.e.  = ( 0)¡1.

Using Cox and Huang (1989) result, we deduce that the optimal portfolio is equal to:

 ¤( ) = 
£
  ¡

¤
 (31)

where  is the Lagrange parameter associated to the budget constraint.

Assume for example that the utility function is a power function () = 1¡

1¡ with a constant

relative risk aversion   0 and  6= 1. Then, we have:  0() = ¡and () = 
¡1
 .

For the GBM case, the optimal solution for the CRRA case is given by:

 ¤( ) = 
¡ 1
 




  (32)

where the power 
 of  is equal to the Sharpe type ratio13  = ¡

2
multiplied by the inverse of the

relative risk aversion . The ratio 
 corresponds to the Merton ratio. Applying budget constraint,

the coe¢cient  is equal to:

 =
0





·¡
¡

¢ ¡1


¸ with 

·¡
¡

¢ ¡1


¸
= exp

µ
1

2
2

1 ¡ 

2

¶
 (33)

Therefore, the optimal portfolio is a power of the terminal risky asset value. Note that  ¤( ) =

13We call it "Sharpe type ratio" since it is equal to the Sharpe ratio when we consider the standard deviation
instead the variance.
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¤( ) is increasing. This property is satis…ed for all concave utilities, as soon as the density  is

decreasing, for instance within the Black-Scholes asset pricing framework. The concavity/convexity

of the optimal payo¤ is determined by the comparison between the relative risk-aversion  and the

ratio  = ¡
2

, which is the Sharpe ratio divided by the volatility  called the Merton ratio14:

i) ¤ is concave if   ; ii) ¤ is linear if  = ; iii) ¤ is convex if   .

Remark 1 (Condition on weight) The optimal portfolio corresponds to a constant mix strategy with

weight ¤ = 
 . To get condition 0 · ¤ · 1, the relative risk aversion  must be higher than . To

get condition 0 · ¤ · 1, the relative risk aversion  must be higher than the ratio  = ¡
2

, which

is the Sharpe ratio divided by the volatility  called the Merton ratio.

3.6 Compensating variation (monetary loss)

Several …nancial institutions have understood the importance to evaluate the investor’s risk aversion

although there are di¢culties to rigorously link those measures to investment recommendations. To

the best of our knowledge, one of the reasons is that those evaluations often do not provide a quanti-

tative evaluation of investor risk aversion. However, Ben-Akiva et al (2002) propose an econometric

approach to gauge the investors’ risk aversion. Introduced by Hicks (1939) in economics and by

De Palma and Prigent (2008, 2009) in …nance, the compensating variation allows to quantitatively

measure the monetary loss of not receiving his own optimal portfolio. We introduce this notion to

compare the two portfolio strategies.

3.6.1 Compensating variation

Consider an investor with utility function parametrized by , time horizon  and initial investment

0. Assume that he faces the choice between two strategies 1 and 2. Denote by 1 his …rst

portfolio value at maturity and by 2 the second one. Assume that he prefers the …rst one.

Then, we search the initial investment value b0 necessary to reach the same utility level if he

chooses strategy 2. Such condition leads to the following indi¤erence condition:

[(1;0)] = [(2; b0)] (34)

The ratio b00, called the compensating variation, provides a quantitative (monetary) measure

of the compensation for the less good strategy 2.15

14See e.g. Prigent (2007).
15 In De Palma and Prigent (2008), it is shown that the compensating variation can be also related to the certainty

equivalent notion.
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3.6.2 Compensating variation in the GBM framework

In what follows, we provide numerical examples of the compensating variations for various cases

for the standard GBM framework. Our two numerical base cases are (1)  = 006;  = 001; =

015; = 5, (2)  = 012;  = 004; = 018; = 5.

We compute the compensating variation for the CRRA case. Note that it encompasses the

logarithmic utility case corresponding to the Kelly criterion and the expected growth rate. Using

the indi¤erence condition (34), we get:

 
0

 
0

=

0
@


h¡
(1 ¡) + exp

£¡
 ¡ 1

2
2
¢
 + 

¤¢1¡i


h
exp

££
(1 ¡) +¡ 1

2
22

¤
 +

¤1¡i
1
A

1
1¡



When the previous ratio is higher than 1, it means that the buy-and-hold is preferable, while,

when this ratio is smaller than 1, it means the converse. Since we consider here a time horizon

equal to 5 years, we can compare the the compensating variation values to implicit management

cost applied on this time period. For example, if the compensating variation is equal to 110, we

can consider that the investor bears an implicit cost of about 2% per year if not having her optimal

portfolio weight. Indeed, note that, for the CRRA case in the GBM framework, for each weight

, there exists a relative risk aversion  such that the constant mix strategy corresponding to the

given weight  is optimal. Indeed, as mentioned previously, we have:  = 1

¡
2

. Thus, in that

case, we have to compensate the Buy-and-Hold strategy to get the same expected utility level,

implying that the ratio  
0

 
0

is smaller than one. Note that, if we consider another utility function,

for example a CARA utility de…ned by () = ¡¡ where  corresponds to the constant

absolute risk aversion, then the constant mix is never optimal (see Appendix for the compensating

variation in the CARA case). As illustrated by Figure (7), when the constant mix is preferable,

the compensating variation of the buy-and-hold is weak, whereas, when the buy-and-hold, the

compensating variation of the constant mix can be very high. It means that, when buy-and-hold

strategy outperforms rebalancing one with respect to an utility function, it is far more signi…cantly.

Indeed, when the constant mix is preferable, the minimum compensating variation is around 0.98

(which means approximately that the investor bears an implicit cost equal to 04% per year).

When the buy-and-hold strategy is preferable, the maximum compensating variation can reach

20% (approximately, 4% per year). We can check also that when the weight is close to 0 or 1, the

compensating variation is close to 1. Indeed, for very small or very high values of the weight ,

the rebalancing and the buy-and-hold strategies are close. The higher the trend, the higher the

compensating variation when the buy-and-hold strategy is preferable. The higher the volatility, the

higher the compensating variation when the buy-and-hold strategy is preferable. Finally, as function

of the time horizon, the compensating variation is increasing. For small time horizon ( = 1 year),

it is quite close to 1, meaning that there is almost no compensation. Indeed, in that case, the two

strategies are very close.
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Figure 7: Compensating variations.
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4 Empirical analysis

In what follows, our objective is to compare Buy-and-Hold (BH) and Constant Mix (CM) strategies

for two …nancial indices representative of the stock market on one side and on a safer asset on the

other side. For this purpose, using actual data, we rely on the stationary block bootstrap method

of Politis and Romano (1994). In order to estimate the optimal block length of block bootstrap

methods for dependent data, we use the automatic block-length of Politis and White (2004) and

more precisely the correction made by Patton et al. (2009). We compare the two strategies using

US monthly data that cover the sample period from July 1963 to December 2019. The US stock

market is represented by the S&P 500 Total return index (dividends included). From the 10-year

Treasury constant maturity rate time-series, we approximate long term bond total return using

the usual loglinear approximation formula described in chapter 10 of Campbell, Lo and MacKinlay

(1997). The 1-month T-Bill return is from Ibbotson and Associates, Inc. In Table 6, we present the

statistics for US monthly returns over the whole sample period while, in Table 7, we provide the

correlations within the US …nancial assets.

Table 6: Statistics for US Market Returns (1963:07 - 2019:12)
SP500 T-Bill Bond

Mean 0.87% 0.38% 0.56%
Volatility 3.49% 0.26% 1.96%
Skewness -0.752 0.635 0.789
Kurtosis 6.206 3.720 7.103
Min -20.19% 0.00% -7.64%
Max 12.32% 1.35% 11.39%
p-value JB Test 0.001 0.001 0.001

Notes: This table presents the main descriptive statistics of the monthly returns of S&P 500 and US Bond
and T-Bill from from July 1963 to December 2019.

Table 7: Correlation US Market (1963:07 - 2019:12)

T-Bill Bond S&P 500
T-Bill 1.000 0.015 -0.024
Bond 0.015 1.000 0.088
S&P 500 -0.024 0.088 1.000

Notes: This table presents the correlations within the US …nancial assets from July 1963 to December 2019.

For the bootstrap analysis, we perform 106 resamples of 60, 120 and 240 months BH and CM

portfolio strategies. Table 8 (resp. 9) displays various statistics for the BH and CM strategies for

S&P 500 and T-Bill assets (resp. for S&P 500 and Bond).
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Table 8: BH and CM Statistics SP 500/T-Bill Portfolios

Panel A 60 months
w(SP 500)

0.010 0.027 0.126 0.226 0.326 0.425 0.525 0.625 0.724 0.824 0.924 0.990
P(CM>BH) 0.423 0.424 0.425 0.427 0.429 0.431 0.433 0.435 0.437 0.439 0.441 0.442
Mean(CM) 0.261 0.267 0.304 0.343 0.384 0.426 0.469 0.515 0.562 0.612 0.663 0.699
Mean(BH) 0.262 0.269 0.314 0.358 0.403 0.447 0.492 0.537 0.581 0.626 0.670 0.700
Std(CM) 0.072 0.072 0.085 0.115 0.155 0.201 0.251 0.305 0.363 0.425 0.492 0.538
Std(BH) 0.071 0.072 0.094 0.136 0.185 0.237 0.289 0.342 0.396 0.450 0.504 0.540
SR(CM) 0.051 0.136 0.553 0.743 0.813 0.837 0.845 0.844 0.840 0.834 0.826 0.820
SR(BH) 0.063 0.166 0.599 0.740 0.786 0.803 0.811 0.815 0.817 0.818 0.819 0.819
Skew.(CM) 0.417 0.403 0.222 0.106 0.107 0.159 0.232 0.314 0.401 0.491 0.583 0.646
Skew.(BH) 0.415 0.394 0.403 0.538 0.606 0.635 0.647 0.653 0.655 0.656 0.656 0.656
Kurto.(CM) 3.587 3.540 3.237 3.167 3.155 3.161 3.195 3.260 3.358 3.491 3.659 3.791
Kurto.(BH) 3.580 3.507 3.386 3.660 3.781 3.820 3.831 3.831 3.827 3.822 3.817 3.813
Panel B 120 months

w(SP 500)
0.010 0.027 0.126 0.226 0.326 0.425 0.525 0.625 0.724 0.824 0.924 0.990

P(CM>BH) 0.342 0.343 0.346 0.349 0.353 0.356 0.359 0.363 0.366 0.369 0.373 0.375
Mean(CM) 0.590 0.606 0.701 0.804 0.914 1.032 1.158 1.294 1.440 1.597 1.765 1.884
Mean(BH) 0.594 0.616 0.748 0.880 1.011 1.143 1.275 1.407 1.538 1.670 1.802 1.889
Std(CM) 0.130 0.131 0.159 0.222 0.306 0.409 0.527 0.662 0.815 0.988 1.184 1.328
Std(BH) 0.130 0.133 0.208 0.324 0.451 0.581 0.714 0.847 0.980 1.114 1.248 1.338
SR(CM) 0.070 0.187 0.755 1.005 1.085 1.102 1.095 1.077 1.053 1.027 1.000 0.981
SR(BH) 0.102 0.265 0.804 0.922 0.955 0.967 0.972 0.975 0.977 0.977 0.978 0.978
Skew.(CM) 0.429 0.419 0.310 0.267 0.319 0.416 0.532 0.660 0.794 0.935 1.083 1.185
Skew.(BH) 0.425 0.408 0.775 1.045 1.137 1.173 1.188 1.195 1.198 1.200 1.200 1.200
Kurto.(CM) 3.486 3.461 3.255 3.193 3.232 3.343 3.526 3.785 4.125 4.556 5.089 5.509
Kurto.(BH) 3.474 3.414 4.327 5.142 5.414 5.513 5.553 5.570 5.576 5.578 5.578 5.577

Panel C 240 months
w(SP 500)

0.010 0.027 0.126 0.226 0.326 0.425 0.525 0.625 0.724 0.824 0.924 0.990
P(CM>BH) 0.216 0.216 0.220 0.225 0.229 0.233 0.238 0.242 0.247 0.252 0.257 0.260
Mean(CM) 1.529 1.578 1.894 2.254 2.663 3.129 3.660 4.265 4.957 5.748 6.653 7.328
Mean(BH) 1.559 1.658 2.249 2.841 3.432 4.024 4.615 5.207 5.798 6.390 6.981 7.376
Std(CM) 0.296 0.300 0.386 0.569 0.836 1.188 1.634 2.194 2.892 3.761 4.841 5.702
Std(BH) 0.299 0.329 0.787 1.345 1.917 2.494 3.073 3.653 4.234 4.815 5.396 5.784
SR(CM) 0.098 0.260 1.022 1.325 1.391 1.372 1.322 1.261 1.195 1.129 1.065 1.022
SR(BH) 0.199 0.479 0.952 0.997 1.008 1.012 1.014 1.015 1.015 1.016 1.016 1.016
Skew.(CM) 0.480 0.473 0.423 0.454 0.571 0.732 0.918 1.122 1.345 1.587 1.852 2.045
Skew.(BH) 0.473 0.566 1.763 1.985 2.040 2.059 2.067 2.071 2.073 2.074 2.075 2.075
Kurto.(CM) 3.493 3.473 3.359 3.394 3.593 3.954 4.495 5.248 6.262 7.611 9.398 10.905
Kurto.(BH) 3.466 3.741 9.486 10.682 10.976 11.078 11.120 11.140 11.150 11.155 11.157 11.158
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Table 9: BH and CM Statistics SP 500/Bond Portfolios

Panel A 60 months
w(SP 500)

0.010 0.027 0.126 0.226 0.326 0.425 0.525 0.625 0.724 0.824 0.924 0.990
P(CM>BH) 0.511 0.512 0.513 0.515 0.516 0.518 0.519 0.521 0.522 0.524 0.526 0.527
Mean(CM) 0.408 0.412 0.437 0.463 0.490 0.518 0.548 0.578 0.610 0.642 0.676 0.700
Mean(BH) 0.408 0.413 0.443 0.473 0.502 0.532 0.562 0.591 0.621 0.651 0.680 0.700
Std(CM) 0.256 0.253 0.244 0.244 0.256 0.278 0.309 0.348 0.393 0.444 0.500 0.540
Std(BH) 0.255 0.253 0.243 0.247 0.263 0.290 0.325 0.366 0.411 0.458 0.508 0.541
SR(CM) 0.588 0.610 0.737 0.842 0.910 0.940 0.940 0.923 0.896 0.867 0.838 0.819
SR(BH) 0.591 0.617 0.764 0.873 0.931 0.947 0.936 0.913 0.886 0.859 0.834 0.818
Skew.(CM) 0.889 0.895 0.924 0.916 0.850 0.749 0.655 0.594 0.571 0.582 0.618 0.653
Skew.(BH) 0.893 0.904 0.930 0.901 0.852 0.807 0.773 0.744 0.718 0.695 0.674 0.661
Kurto.(CM) 4.564 4.583 4.672 4.642 4.460 4.206 3.972 3.807 3.719 3.704 3.752 3.816
Kurto.(BH) 4.573 4.604 4.687 4.588 4.406 4.239 4.114 4.024 3.956 3.902 3.857 3.832

Panel B 120 months
w(SP 500)

0.010 0.027 0.126 0.226 0.326 0.425 0.525 0.625 0.724 0.824 0.924 0.990
P(CM>BH) 0.475 0.476 0.479 0.482 0.484 0.487 0.490 0.493 0.496 0.499 0.502 0.504
Mean(CM) 0.982 0.993 1.065 1.141 1.221 1.306 1.396 1.491 1.592 1.698 1.811 1.890
Mean(BH) 0.984 0.999 1.092 1.184 1.277 1.369 1.461 1.554 1.646 1.738 1.831 1.892
Std(CM) 0.513 0.510 0.499 0.509 0.543 0.601 0.682 0.784 0.907 1.048 1.210 1.328
Std(BH) 0.512 0.507 0.500 0.529 0.591 0.675 0.775 0.885 1.002 1.124 1.249 1.334
SR(CM) 0.781 0.809 0.971 1.100 1.179 1.207 1.195 1.160 1.115 1.066 1.017 0.985
SR(BH) 0.787 0.825 1.022 1.140 1.178 1.168 1.136 1.099 1.063 1.030 1.001 0.983
Skew.(CM) 1.060 1.059 1.055 1.039 0.996 0.943 0.907 0.906 0.942 1.009 1.102 1.175
Skew.(BH) 1.066 1.072 1.051 1.029 1.058 1.111 1.156 1.183 1.195 1.197 1.192 1.188
Kurto.(CM) 5.196 5.189 5.163 5.084 4.922 4.733 4.599 4.566 4.649 4.851 5.176 5.463
Kurto.(BH) 5.216 5.232 5.142 5.008 5.079 5.256 5.408 5.498 5.537 5.542 5.529 5.514

Panel C 240 months
w(SP 500)

0.010 0.027 0.126 0.226 0.326 0.425 0.525 0.625 0.724 0.824 0.924 0.990
P(CM>BH) 0.406 0.407 0.412 0.417 0.421 0.426 0.431 0.436 0.442 0.447 0.452 0.456
Mean(CM) 2.929 2.975 3.266 3.585 3.935 4.320 4.743 5.208 5.720 6.284 6.906 7.356
Mean(BH) 2.947 3.022 3.473 3.924 4.375 4.826 5.277 5.728 6.179 6.630 7.081 7.382
Std(CM) 1.466 1.464 1.483 1.568 1.737 2.000 2.366 2.841 3.436 4.165 5.047 5.732
Std(BH) 1.461 1.454 1.549 1.835 2.240 2.711 3.220 3.751 4.295 4.849 5.410 5.786
SR(CM) 0.974 1.007 1.191 1.329 1.402 1.410 1.371 1.305 1.228 1.149 1.071 1.022
SR(BH) 0.990 1.046 1.273 1.321 1.283 1.227 1.173 1.127 1.089 1.058 1.032 1.017
Skew.(CM) 1.397 1.387 1.350 1.328 1.309 1.305 1.336 1.411 1.533 1.699 1.908 2.071
Skew.(BH) 1.405 1.400 1.342 1.499 1.727 1.893 1.992 2.047 2.076 2.091 2.096 2.097
Kurto.(CM) 6.875 6.824 6.622 6.486 6.358 6.299 6.411 6.770 7.438 8.483 10.018 11.402
Kurto.(BH) 6.916 6.890 6.551 7.539 9.081 10.215 10.891 11.268 11.472 11.577 11.626 11.640
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For all portfolio weights (from 1% to 99% in the S&P 500), the mean return of CM strategy is

below the one of the BH strategy. The same is true for the volatility. Note also that the probability

that the CM strategy ends up with a higher portfolio value after 20 years than the BH strategy, is

between 11.3% and 14.4%, a very low value. We also compute the Sharpe ratio. This statistics is

clearly in favor of the CM strategy. We also consider higher moments of strategy returns: skewness

and kurtosis. The BH strategy exhibits higher level of skewness and kurtosis than the CM strategy.

Note that in this case a high level of kurtosis associated with a high value for the skewness is

not necessarily a bad thing since the extreme returns are essentially positive. Such results about

comparison of the …rst four moments are quite similar to those proved by Wise (2006) in the

geometric Brownian motion framework and to our results in Section 3 for more general di¤usion

processes.

To visualize how the shape of the distribution of returns of both strategies matters, we plot

their probability distribution functions (pdf) in Figures 8 and 9 for a time horizon of 120 months16.

This allows to illustrate in particular why the buy-and-hold strategy exhibits much higher level of

skewness and kurtosis than the constant mix strategy.

16 In Appendix, we provide additional empirical results about the pdf of both strategies for both 60 and 120 months.
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Figure 8: Pdf of CM and BH Portfolios US Stock T-Bill (120 months)

Figure 9: Pdf of CM and BH Portfolios US Stock Bond (120 months)
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Based on all previous metrics analyzed so far, it is not straightforward to say which strategies will

be the best for investors. Of course, this comparison depends on the chosen comparison criterion.

If we examine the cumulative distributions functions (cdf), we …nd that there is no stochastic

dominance at the second order and the two cdf curves are rather close, especially for short time

horizons.

Therefore, to better take account of the whole distribution of returns as well as investors risk

aversion, we examine now the compensating variation (CV) approach. To get condition 0 · ¤ · 1,

the relative risk aversion  must be higher than the Merton ratio (see Remark 1). But, as shown

in Section 3, even for this favourable case, the constant mix is not very signi…cantly dominant with

respect to the compensating variation. Note also that, if we consider another utility function, for

example a CARA utility de…ned by () = ¡¡ where  corresponds to the constant absolute

risk aversion, then the constant mix is never optimal.

Figure 10 displays the CV as a function of the weights invested in the risky asset (S&P 500)

and of the risk aversion parameter . As deduced from the theoretical model, we can see that the

BH strategy dominates the CM in the CV sense most of the time (i.e., blue area on …gures). Note

also that, when the constant mix is preferable, the compensating variation of the buy-and-hold is

weak, whereas, when the buy-and-hold is preferable, the compensating variation of the constant

mix can be very high. It means that, when buy-and-hold strategy outperforms rebalancing one

with respect to an utility function, it is far more signi…cantly. Indeed, for example for a ten years

investment period, when the constant mix is preferable, the minimum compensating variation is

around 098 (which means approximately that the investor bears an implicit cost equal to 04%

per year). When the buy-and-hold strategy is preferable, the maximum compensating variation can

reach 80% (approximately, 10% per year).

We can check also that when the weight is close to 0 or 1, the compensating variation is close to

1. Indeed, for very small or very high values of the weight , the rebalancing and the buy-and-hold

strategies are obviously close.17

17The results for the French market are qualitatively the same as those of the US market see Appendix).
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Figure 10: Compensating variations of the BH strategy versus the CM one. Note: When the CV is
higher than 1, it means that the BH strategy dominates the CM one. The color of the area where
the BH strategy dominates the CM in the CV sense is blue (red area when it is the converse)
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5 Conclusion

We have examined and compared the rebalancing (constant mix) and buy-and-hold portfolio strate-

gies. We have considered various criteria such as comparison of payo¤s, of return cumulative distri-

bution functions and performance measures such as the Sharpe ratio and Kappa measures. We have

also introduced the notion of compensating variation to gauge their respective expected utilities.

Our study reveals that, even if the probability that the constant mix payo¤ is generally higher than

the buy-and-hold payo¤ (often around 66%, at least in the GBM framework), this superiority is not

very signi…cant. Indeed, for example, when the constant mix is preferable, the compensating varia-

tion of the buy-and-hold is weak, whereas, when the buy-and-hold is preferable, the compensating

variation of the constant mix can be very high. Therefore, when buy-and-hold strategy outperforms

rebalancing one with respect to an utility function, it is far more signi…cantly. These results are

con…rmed by the empirical study of the two strategies based on US monthly data that cover the

sample period from July 1963 to December 2019.
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6 Appendix

In this Appendix, we detail proofs of main comparison results.

6.1 Proof of the intersection of payo¤s and computation of the maximal rebal-
ancing return

We have to examine the following equation: …nd  ¸ 0 such that

 =  + (1 ¡) 

where  = exp
hh

(1 ¡ ) + 2

2

¡
 ¡ 2

¢i


i
is strictly positive.

Introduce the function  de…ned by:

 () =  ¡  ¡ (1 ¡ ) 

We get:

0 () = ¡1 ¡ 

implying that:

0 (¤) = 0 () ¤ =

µ
1



¶ 1
¡1



Since we have 0 (¤) = ¤¡1 ¡ = 0, we deduce that ¤ = ¤ thus

 (¤) = (1 ¡)
£
¤ ¡ 

¤


Case 0    1 (Long-only)

In that case, we get:

 (¤)  0 () ¤ ¸  ()
µ

1



¶ 1
¡1

  

Recall that  = exp
hh

(1 ¡) + 2

2

¡
 ¡2

¢i


i
. Thus:

µ
1



¶ 1
¡1

= exp

·
¡ 1

¡1

·
(1 ¡ ) +

2

2

¡
 ¡2

¢¸


¸

= exp

·
 + 

2

2


¸


Consequently we get
¡
1


¢ 1
¡1   which implies that  (¤)  0. Now, we note that  (0) =

¡(1¡)  0 and lim!1  () = ¡1. Finally, using intermediate value theorem for continuous

functions jointly with strictly monotony of function  on both subintervals [0 ¤] and [¤+1[,

we deduce that there exist exactly two values of the risky asset return such that the rebalancing
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return  is null, meaning that the two payo¤s intersect. We note also that the rebalancing return

is  is maximal at ¤ = exp
h
 + 2

2 
i
.18

6.2 Impact of jumps

Recall that, when the risky asset dynamics is a pure jump process, we get:


 =

exp [(1 ¡) ]
Y

·
(1 + ( ¡)) ¡ (1 ¡ ) ¡

Y

·
(1 + ( ¡)) 

For  = 0, we have to compare
Y

·
(1 + ( ¡)) with (1¡)+ 

Y

·
(1 + ( ¡)).

We have:


 ¸ 0 ()

Y

·
(1 +( ¡)) ¸ (1 ¡ ) + 

Y

·
(1 + ( ¡))  (35)

First case: Assume that all relative jumps are negative. Then inequality (35) is equivalent to:

Y

·
(1 +( ¡)) ¡ 1

Y

·
(1 + ( ¡)) ¡ 1

· 

Then, when all relative jumps are negative, we get (1 + ( ¡)) ¸ (1 + ( ¡)) for

all , implying that

Y

·

(1+(¡))¡1

Y

·

(1+(¡))¡1
¸ 1 ¸  since 0 ·  · 1.

It means that 
 · 0 or equivalently 

 · 
 .

18Even if we consider the long only case, we can prove that we get similar results for the two other cases:
Case   0 (short, inverse leveraged)
In that case, we get  (¤)  0 and also lim!0+  () = +1 and lim!1  () = +1. Thus we deduce also

that there exist exactly two return values of the risky asset at which the two payo¤s intersect. We note also that the
rebalancing return is  is minimal at ¤ = exp


 + 2

2


.

Case   1 (leveraged)
In that case, we get  (¤)  0 and  (0) = ¡(1¡)  0 and lim!1  () = +1. Thus we deduce also that

there exist exactly two return values of the risky asset at which the two payo¤s intersect.
We note also that the diversi…cation return is  is minimal at ¤ = exp


 + 2

2


.
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Second case: Assume that all relative jumps are positive. Then inequality (35) is equivalent to:

Y

·
(1 +( ¡)) ¡ 1

Y

·
(1 + ( ¡)) ¡ 1

¸ 

Then, when all relative jumps are positive, we get (1 +( ¡)) · (1 + ( ¡)) for

all , implying that

Y

·

(1+(¡))¡1

Y

·

(1+(¡))¡1
· 1. To examine the sign of the rebalancing return, we

use the following lemma:

Lemma 2 Let ()¸1 be a sequence of real numbers with  ¸ 1for all . Let 0 ·  · 1. Then,

we have: Y

·
((1 ¡) +) · (1 ¡ ) + 

Y

·


Proof. (By recurrence)

- For  = 2, we have:

(1 ¡) +12 ¡ ((1 ¡ ) + 1) ((1 ¡) +2)

= (1 ¡) +12 ¡ (1 ¡)2 ¡  (1 ¡) (1 + 2) ¡212

= (1 ¡) £ [1 + 12 ¡ (1 + 2)] 

Now consider the function 2() = 1 + 2 ¡ ( + 2) = 1 ¡ 2 + (2 ¡ 1) on [1+1[. Since

2¡1 ¸ 1 2() is increasing on [1+1[ with 2(1) = 0. Thus 2() ¸ 0 on [1+1[. Therefore,

2(1) ¸ 0 which is equivalent to:

(1 ¡ ) + 12 ¸ ((1 ¡) +1) ((1 ¡ ) + 2) 

- Assume that Y

·
((1 ¡) +) · (1 ¡ ) + 

Y

·


Then, we get:

Y

·+1
((1 ¡ ) + ) · ((1 ¡ ) + +1)

2
4(1 ¡ ) + 

Y

·


3
5 

Since both +1 and
Y

·
 are higher than 1, we can apply the property which is true for  = 2
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and we get the result:

Y

·+1
((1 ¡) +) ·

2
4(1 ¡) +

Y

·+1


3
5 

Since 1 + ( ¡) = (1 ¡ ) +  (1 + ( ¡)), applying previous lemma with  = 1 +

( ¡), we deduce that 
 · 0 or equivalently 

 · 
 .

Third case: (one example of CM dominance with jumps)

Assume that there exist two periods with one period corresponding to a rise and one period

corresponding to a drop. For the BH strategy, we get a return equal to (1 ¡) +. For the CM

strategy, we get a return equal to ((1 ¡ ) + ) ((1 ¡ ) + ) with   1and 0    1. Consider

the function () = 1 +  ¡ ( + ) = 1 ¡  + ( ¡ 1) on [1+1[. Since 0    1, () is

decreasing on [1+1[ with 2(1) = 0. Therefore, () · 0 which is equivalent to:

(1 ¡ ) +  · ((1 ¡) +) ((1 ¡) +) 

We deduce that 
 ¸ 0 or equivalently 

 ¸ 
 .

6.3 Comparison of four moments

- In what follows, we begin by proving Relations (13) and (14). To compute the return expectations

of both strategies, we use the following lemma:

Lemma 3 Suppose that the dynamics of process  satis…es:




=  ()+  () +  (36)

where  denotes a standard Brownian motion with respect to a given …ltration (F) , where

both the drift () and the volatility () are deterministic and  is a compound Poisson process

with intensity  and  the common expectation of the relative jumps of the risky asset ¢
¡

=

( ¡)at jump times . Then we get:

 [ ] = 0 exp

·Z 

0

()+ 

¸


Proof. Using Ito’s lemma, we deduce that:

 = 0 exp

·Z 

0

µ
() ¡ 1

2
2 ()

¶
 +

Z 

0

 ()

¸ Y

·
(1 + ( ¡))  (37)

Then, by independence of the di¤usion and the jump components, we get:

 [ ] =
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0

2
4exp

·Z 

0

µ
() ¡ 1

2
2 ()

¶
 +

Z 

0

 ()

¸
£

2
4 Y

·
(1 + ( ¡))

3
5
3
5 =

0 exp

·Z 

0
()

¸
£ 

2
4 Y

·
(1 + ( ¡))

3
5 

To compute 

2
4 Y

·
(1 + ( ¡))

3
5, we use the following decomposition:



2
4 Y

·
(1 + ( ¡))

3
5 =

1X

=0



"
Y

=0

(1 + ( ¡)) jN = 

#
 [N = ]

= exp (¡)
1X

=0

(1 + )
( )

!

= exp (¡) exp ((1 + ) )

= exp ( ) 

Therefore, applying previous lemma when  =  
 or when  =  

 , we get respectively:


£



¤
= (1 ¡ ) + exp

·Z 

0
()+ 

¸



£



¤
= exp

·
(1 ¡) + 

µZ 

0
()+ 

¶¸
 (38)

- To compute the return variances of both strategies, we use the following lemma:

Lemma 4 Suppose that the dynamics of process  satis…es:




=  ()+  () +  (39)

with same assumptions as previously. Denote by 2 the common expectation of the squares of the

relative jumps of the risky asset ¢
¡

= (¡)at jump times . Then we get:

  [ ] =

2
0 exp

·
2

µZ 

0
() + 

¶¸
[
 
0 2()+2 ¡ 1]

Proof. We have:

  [ ] = 
£
2


¤
¡ 2 [ ] 
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We note that:

1)

2 [ ] = 2
0 exp

·
2

Z 

0

()

¸
£ exp (2) 

2)


£
2


¤
=

= 2
0

2
4exp

·
2

Z 

0

µ
() ¡ 1

2
2 ()

¶
+ 2

Z 

0
 ()

¸
£

Y

·
(1 + ( ¡))2

3
5

= 2
0 exp

·
2

Z 

0
()

¸
exp

·Z 

0
2()

¸
£

2
4 Y

·
(1 + ( ¡))2

3
5 

Thus we must compute 

2
4 Y

·
(1 + ( ¡))2

3
5. We have:



2
4 Y

·
(1 + ( ¡))2

3
5 =

1X

=0



"
Y

=0

(1 + ( ¡))2 jN = 

#
 [N = ]

= exp (¡)
1X

=0

h
 (1 + )2

i ( )

!

= exp (¡) exp ((1 + 2 + 2)  )

= exp ((2 + 2)  ) 

Applying previous results, we get:

  [ ] =

2
0 exp

·
2

µZ 

0

() + 

¶¸
[
 
0 2()+2 ¡ 1]

Thus, we deduce:

 
£



¤
= 2 exp

·
2

µZ 

0
() + 

¶¸ ³

 
0 2()+2 ¡ 1

´
 (40)

 
£



¤
= exp

·
2

µ
(1 ¡ ) + 

µZ 

0
()+ 

¶¶¸µ

2
 
0
2()+2 


¡ 1

¶


(41)

To compare the two variances, denote  =
R 
0 ()+  and 2 =

R 
0 2()+ 2 . We

have:

 
£



¤
= 2 exp [2 ]

³

2
 ¡ 1

´
 (42)
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 
£



¤
= exp [2 ((1 ¡ ) +  )]

³


22 ¡ 1
´
 (43)

1) First we note that:

exp [2 ] ¸ exp [2 ((1 ¡) +   )] 

Indeed,  ¸ (1 ¡ ) +   =  +  ( ¡  ) for 0 ·  · 1 as soon as  ¸  (usual

assumption).

2) Second, we have:

2
³

2
 ¡ 1

´
¸ 

22 ¡ 1

Indeed, introduce the function () = 
³


2
 ¡ 1

´
¡

2
 +1 on [0 1]. We have 0() =

³


2
 ¡ 1

´
¡

2 
2 and 0() = 0 ()

³


2
 ¡ 1

´
= 2 

2  Then, note that 0() =
³


2
 ¡ 1

´
¡ 2 

2 is

decreasing w.r.t.  in [0 1] and 0(0) =
³

2
 ¡ 1

´
¡ 2 ¸ 0, 0(1) = ¡1  0. Thus, there exist

one and only one ¤ in [0 1] such that 0(¤) = 0. Finally, since (0) = (1) = 0, we deduce

that () ¸ 0 on [0 1]. By applying previous result to  = 2, we get 2
³


2
 ¡ 1

´
¸ 

22 ¡ 1.

Therefore, using (1) and (2), we prove that  
£



¤
·  

£



¤
.

- We examine now the computation of skewness and kurtosis.

When there is no jump, we apply the following general results about skewness and excess kurtosis

of a Lognormal distribution, namely: if  =  where  follows a Gaussian distribution N
¡
2

¢

then:

 [] =
p

2 ¡ 1

³
2 + 

2
´
 (44)

 [ ] =
³
4

2
+ 23

2
+ 32

2 ¡ 6
´
 (45)

Thus, the skewness and excess kurtosis are respectively equal to:


£



¤
=

q

2
 ¡ 1

³
2 + 

2


´
 (46)


£



¤
=

q


22 ¡ 1
³
2 + 

22

´
 (47)

and


£



¤
=

³
4

2
 + 23

2
 + 32

2
 ¡ 6

´
 (48)


£



¤
=

³
4

22 + 23
22 + 32

22 ¡ 6
´
 (49)
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The multidimensional case:

To compare the variances for varying correlations, we note that we have:

 
£



¤
=

X

=1

2 exp

·
2

µZ 

0


¶¸³

 
0 2 ¡ 1

´

+2
X

1··
 exp

·Z 

0

£
 + 

¤


¸µ
exp

·Z 

0


¸
¡ 1

¶
 (50)

 
£



¤
=

exp

"
2

Ã
(1 ¡

X

=1

) +
X

=1



µZ 

0



¶!#³



=1 
2
 (
 
0 2)+2


1·· 

 
0  ¡ 1

´


(51)

Therefore, when all drifts  are equal with no riskless asset and  = 2, we have only to compare

2
³

 
0 21 ¡ 1

´
+ (1 ¡)2

³

 
0 22 ¡ 1

´
+ 2(1 ¡)

µ
exp

·Z 

0
12

¸
¡ 1

¶

with


2(
 
0
21)+(1¡)

2  
0
22+2(1¡)

 
0
12 ¡ 1

This is equivalent to the comparison of

2
 
0 21 + (1 ¡)2 

 
0 22 + 2(1 ¡ ) exp

·


Z 

0
12

¸

with


2(
 
0
21)+(1¡)

2  
0
22+2(1¡)

 
0
12

Let us denote:

() =

2
 
0 21 + (1 ¡)2 

 
0 22 + 2(1 ¡ ) exp

·


Z 

0
12

¸

¡


2(
 
0 21)+(1¡)

2  
0 22+2(1¡)

 
0 12

We have:

0() =
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2(1 ¡)

Z 

0
12 exp

·


Z 

0
12

¸

¡

2(1 ¡)

Z 

0
12 

2(
 
0 21)+(1¡)

2(
 
0 22)+2(1¡)

 
0 12

Thus:

0() = 2(1 ¡)

µZ 

0
12

¶
£

µ
exp

·


Z 

0
12

¸
¡ exp

·
2
µZ 

0
21

¶
+ (1 ¡ )2

µZ 

0
22

¶
+ 2(1 ¡ )

Z 

0
12

¸¶


Therefore, we get the following equivalences:

0() ¸ 0 ()



Z 

0
12 ¸ 2

µZ 

0
21

¶
+ (1 ¡ )2

µZ 

0
22

¶
+ 2(1 ¡ )

Z 

0
12 ()

 ¸ ¤ =
2

³R 
0 21

´
+ (1 ¡ )2

³R 
0 22

´

³R 
0 12

´
[1 ¡ 2(1 ¡ )]



Consequently, the di¤erence  
£



¤
¡  

£



¤
reaches a minimum at ¤ if con-

dition ¤ · 1 is satis…ed. Note that condition ¤ · 1 is equivalent to:

0
@

sZ 

0
21+ (1 ¡)

sZ 

0
22

1
A
2

·
Z 

0
12

The previous condition is not always satis…ed. It depends on the choice of the parameters , 1
and 2.

Therefore, we must distinguish two cases:

Case 1: ¤ ¸ 1. In that case, the di¤erence  
£



¤
¡  

£



¤
is decreasing

with respect to the correlation .

Case 2: ¤  1. In that case, the di¤erence  
£



¤
¡ 

£



¤
is …rst decreasing

then increasing with respect to the correlation . It means that, at  = ¤, the advantage of the

constant mix strategy is all the weaker from the point of view of variance. In that case, the minimum

value of the di¤erence of the two variances is given by:

 
£



¤
¡  

£



¤
= exp

·
2

µZ 

0


¶¸
 (¤)
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with

 (¤) = 2
 
0 21+(1 ¡ )2 

 
0 22¡[1 ¡ 2(1 ¡)] exp

2
4
2

³R 
0 21

´
+ (1 ¡)2

³R 
0 22

´

[1 ¡ 2(1 ¡)]

3
5 

6.4 Proof of intersection of the cumulative distribution functions

- Note that for   (1 ¡ ) , 


() = 0 while 
() is strictly positive. Thus 


()¡


() is negative.

- For   (1 ¡) , let us examine the following function:

() = 

µ
¡ (1 ¡ )



¶
+

1

2
2(1 ¡ ) ¡ ( () ¡ (1 ¡ ) ) 

We get:

0() =


¡ (1 ¡)
¡ 1




=
( ¡ 1) + (1 ¡)

[¡ (1 ¡ ) ]

Thus we have:

0() = 0 () ¤ =  

Note that:

(¤) =
1

2
2(1 ¡)

We have also

lim
!+1

()  0

Consequently, using intermediate value theorem for continuous functions jointly with strictly monotony

of function  on both subintervals [0 ¤] and [¤+1[, we deduce that there exist exactly two values

of the risky asset return such that the two cdf curves intersect: one on ](1 ¡ )   [; the other

one on ] +1[.

6.5 Optimal CPPI portfolio for the expected utility criterion

In what follows, we consider  …nancial assets  described from a multidimensional Brownian

motion:

 = ( + )

where  = ()1·· is a ¡dimensional Brownian motion with correlation matrix given by:

§ = [ ]1··.
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Denote:

§ =

2
66664

1 0 0 0

0 0

0 0

0 0 0 

3
77775


The variance-covariance matrix § of asset prices  is given by: § =
¡


¢
1·· with

 = 00 exp
£¡
 + 

¢

¤ ¡

exp
£¡


¢

¤
¡ 1

¢

Indeed, we have:

 = 0 exp

·µ
 ¡ 1

2
2

¶
 + 

¸


 = 0 exp

·µ
 ¡ 1

2
2

¶
+ 

¸


from which we get:

 =

00 exp

·µ
 ¡ 1

2
2 +  ¡ 1

2
2

¶
+  + 

¸
=

00 exp

·¡
 +  + 

¢
 ¡ 1

2

¡
2 + 2 + 2

¢
 +  + 

¸

Thus:

E [] = 00 exp
£¡
 +  + 

¢

¤


Consequently, we get:

 =  (;) = E [] ¡ E []E []

= 00 exp
£¡
 + 

¢

¤ ¡

exp
£¡


¢

¤
¡ 1

¢

In what follows, we show how the Brownian motion is function of the risky asset prices. Since

the risky asset prices are de…ned from the relations:

 = ( + )

we deduce that:

 = 0 exp(( ¡ 122 )+ )

Therefore, we get:

exp() = 0 exp(¡( ¡ 122 ))
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and …nally:

 =  [0] ¡ (



¡ 12))

In what follows, we use the following notations (see Jacod and Shiryaev, 2002). For any two

semimartingales  and  , [ ] denotes the quadratic variation of the processes  and  . The

process h i denotes the predictable compensator of these processes. Recall that we have:

[ ] = h i +
X

·
¢¢

where ¢ and ¢ denote the jumps of the processes and h i is de…ned from the following con-

dition: the respective martingales parts  and  of and  are such that
¡


 
 ¡ h i

¢


is a (local) martingale.

We have also: (integration by part formula)

 ( ) =  +   +  [ ] 

The process E() denotes the Dade-Doléans stochastic exponential, de…ned from the stochastic

di¤erential equation (SDE):

E() = E()

Note that, for continuous semimartingales , we get:

E() = E(0) exp

·
 ¡ 1

2
hi

¸


Assuming that § and § are invertible, the …nancial market is arbitrage-free and complete. The

risk-neutral probability Q exists and is unique. It is de…ned from its Radon-Nikodym density  with

respect to the objective probability P.

Using the martingale representation theorem for the Brownian …ltration, this density is associ-

ated to  market risk premia, 1   and is given by:

 = E
·
Q
P

jF

¸
= E

2
4¡

X

=1



3
5 

where E() is the Dade-Doléans stochastic exponential and with  satisfying:

§§¤ =  ¡ I (52)

where:  = []1·· and ¤ = []1··.

The previous result is established by using the Girsanov’s theorem. Each of the  basic assets

 must satisfy the following condition: when they are discounted by the nominal money market

account , they must be martingales with respect to the risk-neutral probability Q. This is equiva-
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lent to the fact that when they are multiplied by the Radon-Nikodym density  and divided by ,

they must be martingales with respect to the historical probability P. Note that we have:

 = E [( ¡ ) + ]E

2
4¡

X

=1



3
5 

which is also equal to (Yor’s formula):

E

2
4( ¡ )  +  ¡

X

=1

 ¡ 

0
@

X

=1



1
A 

3
5 

The fact that the processes () are martingales with respect to P is equivalent to the

following property: their bounded variation components are equal to 0. This later condition implies

the four following equalities: for all  = 1  ,

( ¡ ) ¡ 

0
@

X

=1



1
A = 0

which leads to Equation (52).

Then, we determine the Radon-Nikodym density as function of the risky asset prices as follows:

 = E
"
¡

X

=1



#

= exp

"
¡12

Ã
X

=1



!
 ¡

X

=1



#

= exp

"
¡12

Ã
X

=1



!


#
exp

"
¡

X

=1

µ



¶


#

= exp

"
¡12

Ã
X

=1



!


#
Y

=1

(0)


¡



exp

µ



( ¡ 122 )

¶


Now, we can determine the optimal portfolio for HARA utility function de…ned by:

() = ( ¡ 0)
(1¡)  (1 ¡ ) 

with  6= 1 and  denotes a guaranteed proportion of the initial investment 0. This implies that

the inverse  of the marginal utility is given by:

() =  0¡1() = 0 + ¡1 
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Using the seminal result of Cox-Huang (1989), we deduce that the optimal portfolio value is equal

to:

 ¤ = ( ) = 0 + 
¡1
 

where  is a constant deduced from the budget constraint:

0 = ¡E [ ¤ ] = 0
¡ + ¡E

h

¡1


i


Therefore, the portfolio value  ¤ is a function of the basic assets  given by:

0 +  exp

"
12

1



Ã
X

=1



!


#
Y

=1

( 0)


1






exp

µ
¡1






( ¡ 122 )

¶
 (53)

In what follows, we determine the amounts invested on each respective basic asset . As seen

in (53), the portfolio value  ¤ at maturity  is given by:

 ¤ = 0 + ( )
Y

=1

(0)


1







with

( ) =  exp

"
12

1



Ã
X

=1



!


#
Y

=1

exp

µ
¡1






( ¡ 122 )

¶

From the martingale property, the portfolio value  at any time  satis…es:

 ¤ = ¡(¡)E [ ¤ jF ] 

Thus, we have:

 ¤ = ¡(¡)0 + ( )
Y

=1

(0)


1






E

"
Y

=1

( )


1






jF

#


It means that the portfolio value  ¤ is a function of the basic assets  at time , given by:

 ¤ = ¡(¡)0 + ()
Y

=1

(0)


1







with

() = ()E

"
Y

=1

( )


1






jF

#


from which we deduce the result.
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Proof. We examine now the term E
·

Q
=1

()


1






jF

¸
. We have:

  = exp
£
¤



¡
( ¡ 122 )( ¡ ) +  ( ¡)

¢¤

= exp
h
¤

 ( ¡ 122 )( ¡ ) + 12 (¤
 )
2 2 ( ¡ )

i

£ exp
h
¡12 (¤

 )
2 2 ( ¡ ) +¤

  ( ¡ )
i


Thus:

E

"
Y

=1

( )
¤
 jF

#
= exp

h
¤

 ( ¡ 122 )( ¡ ) + 12 (¤
 )
2 2 ( ¡ )

i


To determine the optimal portfolio shares, …rst we determine the SDE satis…ed by the optimal

portfolio value. We have:

 ¤ =  + ()

Ã
Y

=1

(0)
¤


!
+

Y

=1

(0)
¤
 0()

We have to identify the factors that multiply the terms . For this purpose, we note that:



Ã
Y

=1


¤




!
=

X

=1

0
@¤



2
4

Y

=1 6=

¤




3
5

¤
¡1

 

1
A + 

where  is a bounded variation process. Therefore, we have also:



Ã
Y

=1


¤



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Since the portfolio value satis…es:

 ¤ ¡  = ()
Y

=1

(0)
¤
 

we deduce that:

 ¤ =
X

=1

¤
 [ ¤ ¡ ]




+ {

where { is a bounded variation process. Finally, by identifying the factors of 


, we conclude that

the optimal portfolio shares are given by:

¤ = ¤
 [ ¤ ¡ ] = ¤


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We note that, for the GBM case, the optimal portfolio corresponds to a multidimensional CPPI

(see Bertrand and Prigent, 2005, 2011) where amounts respectively invested on the basic assets are

proportional to the same cushion with respective constant multiples ¤
 =

³
1




´
:

 ¤ =  + 

with

 = ¡(¡)0 (the ‡oor),

 = ()
Y

=1

(0)
¤
 (the cushion),

and

¤
 =

µ
1






¶


This latter formula generalizes the standard one-dimensional CPPI multiple for which we have

¤ =
³
1

¡
2

´
, since, for  = 1, we get exactly this result using the relation  = ¡

 . Usual …nancial

parameters values yields to  ¸ 0 for all .

Finally, recall that the constant mix strategy corresponds to  = 0 with all weigths satisfying:

 = ¤
 =

µ
1






¶


Therefore, to get the condition "for all , 0 ·  · 1" corresponding to the usual constant mix case

(i.e. no leverage), the relative risk aversion  must satisfy:

 ¸ =1

µ



¶

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6.6 Estimates of the pdf of the two strategies based on US data

In this appendix, we provide additional results about the estimates of the pdf of the two strategies

based on US data. We consider two time horizons, namely 60 and 240 months. Results are in

accordance with those of Figures 8 and 9 for a time horizon of 120 months.

Figure 11: Pdf of CM and BH Portfolios US Stock T-Bill 60 months

Figure 12: Pdf of CM and BH Portfolios US Stock T-Bill 240 months
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Figure 13: Pdf of CM and BH Portfolios US Stock Bond 60 months

Figure 14: Pdf of CM and BH Portfolios US Stock Bond 240 months
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6.7 Compensating variation of the two portfolio strategies in the GBM frame-
work for the CARA case

In what follows, we provide numerical examples of the compensating variations in the standard

GBM framework for the CARA case.

Our two numerical base cases are (1)  = 006;  = 001;  = 015; = 5, (2)  = 012;  =

004; = 018;  = 5.

A CARA utility is de…ned by () = ¡¡ where  corresponds to the constant absolute

risk aversion.

We compute the compensating variation for the CARA case. Using the indi¤erence condition

(34), we get:



·
exp

·
¡ 

0

µ
(1 ¡ ) + exp

·µ
 ¡ 1

2
2

¶
 + 

¸¶¸¸
=



·
exp

·
¡ 

0 exp

··
(1 ¡ ) + ¡ 1

2
22

¸
 + 

¸¸¸


We set  
0 = 1. We search the value of  

0 for which previous equalitiy holds. When it

is higher than 1, it means that the buy-and-hold is preferable, while, when it is smaller than 1, it

means the converse. Since we consider here a time horizon equal to 5 years, we can compare the

the compensating variation values to implicit management cost applied on this time period. For

example, if the compensating variation is equal to 110, we can consider that the investor bears an

implicit cost of about 2% per year if not having her optimal portfolio weight.

Looking at Figure 15, we can see that the compensating variations are similar to those of the

CRRA case (see Figure 7). When the constant mix strategy is preferable (for relatively moderate

risk aversion levels), the compensating variation of the buy-and-hold is weak, whereas, when the

buy-and-hold, the compensating variation of the constant mix can be very high.
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Figure 15: Compensating variations for the CARA case.
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6.8 Compensating variation of the two portfolio strategies for the French case

In what follows we investigate also the French market to examine the robustness of our results for

the US market. In Table 10, we summarize the main statistics for the French monthly returns over

the whole sample period.

Table 10: Statistics for French Market Returns (1985:03 - 2015:09)

MSCI TR Bond Short Rate
Mean 0.93% 0.70% 0.39%

Volatility 5.71% 1.82% 0.28%
Skewness -0.35 0.04 0.43
Kurtosis 3.83 3.35 1.99

Min -21.82% -4.23% 0.00%
Max 22.27% 6.76% 1.00%

p-value JB Test 0.25% 33.24% 0.10%

In Figure 10, the CV of the BH versus the CM are displayed for the French market and for

portfolios invested in Stock and Bond and in Stock and TBill, both for a ten and a twenty years

period on investment. The red area on each …gure represents con…guration of risk aversion and

portfolio weight for which the CM has a higher expected utility, is preferred with respect to the CV

criterion. We can see that, for most of the parameter con…gurations, the BH strategy is preferred

to the CM, as for the US case.
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Figure 16: Compensating variations of the two strategies (French case)
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