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Abstract

We tend to think of contagion as something bad, as a small initial shock amplifying into a
systemic crisis, as a financial distress propagating from one bank to another, or as a spread
of infectious disease. This paper focuses on good contagion that can facilitate policy propa-
gation. We develop multi-layer network based contagion centrality measures and apply them
to analyse the European Central Bank’s interest rate policy transmission. Understanding
how network contagiousness, and network structure more generally, can influence the policy
transmission is useful for this policy’s future successful implementations. The findings indi-
cate that policy transmits most efficiently in severe bearish contagion and least efficiently in
intense bullish contagion environments. This finding is attributed to the level of attention
that markets pay to central bank announcements during turmoil and calm periods. The
introduced measures can also be used as indicators of systemic importance and as an early
warning system of contagion risk.
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1 Introduction

Inflation as well as interest rates have been low during the second decade of the twenty-first.
The European Central Bank (ECB), along with other major central banks, has employed
both conventional and unconventional measures to bring inflation back to its 2% target. In
conjunction with long term refinancing operations (LTRO) and quantitative easing (QE),
the ECB has cut the main refinancing rate down to zero in order to loosen the private sector
borrowing constraints and stimulate credit growth (Van Riet, 2017), and ultimately drive
inflation up. The ECB was also the first central bank to break the zero lower bound of
nominal interest rates when it set the deposit facility rate to negative 10 basis points in
June 2014 and reduced it further in the following months. This measure aimed to discourage
banks from holding too much cash with the ECB, and to encourage lending and investment
into the real economy instead. The policy measures undertaken might or might not have
always worked as intended or fully transmitted to the economy due to various factors. One
of those factors is network structure and the focus of this paper is to study whether and how
the network contagiousness can influence the policy transmission.

The Global Financial Crisis 2008 has revealed that not only did we have very limited knowl-
edge of the network structure of the financial system, but also an inadequate comprehension
of how exactly that network structure can affect the shock propagation in the system. A
question that received particular attention in the literature was whether more connections
amplify the initial shock by creating more channels or moderate it by allowing for risk-
sharing. This paper’s perspective is somewhat opposite to the analysis of crisis propagation
where the aim is to make the network robust. We analyse the network properties that make
the network prone and facilitate policy transmission.

Specifically, we consider transmission of ECB’s monetary policy into the desired inflation tar-
gets in Eurozone countries through the asset prices channel. According to this channel, an
expansionary monetary policy, for instance, an interest rate cut, causes an increase in asset
prices, for instance, stock prices, which in turn raises the wealth value of the households and
enables them to increase their consumption. Higher consumption raises aggregate demand
and leads to higher consumer good prices, i.e. to inflation. Putting this into a network
context, the monetary policy announcement is an initial shock affecting the asset prices in
all network nodes (countries). When contagion level and interconnectedness in the network
are high, the direct impact of that initial shock can amplify due to network feedback effects.

The contribution of this paper is three-fold. First, the paper introduces new contagion
centrality measures which incorporate heavy-tailedness, copula dependence structure and
multi-layer network effect. The multi-layer interactions are important and a single layer
analysis in isolation might underestimate the overall contagion risk in the system. Indeed, as
Buldyrev et al. (2010) demonstrate, the multi-layer network analysis can “destabilize basic
assumptions” of (single-layer) network theory. For example, one of the key assumptions in
the network theory is that scale-free networks (real-world networks with heavy-tailed degree
distribution) are robust to random failures. Their hub-spoke structure guarantees that even
if a major hub defaults, the network can still function due to the presence of other hubs.
Buldyrev et al. (2010) show that in the multi-layer case, on the contrary, the networks with
narrow degree distribution are more resilient to random failures.

The introduced measures have several important uses. The measures can be used for the
identification of the systemically important nodes. They can also be applied to analysing the
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efficiency of policy transmission across the network and thereby identifying the favourable
environment for that policy’s future implementation. And finally, they can describe the evo-
lution of the dependence and contagion structure of the multi-layer network over time and
act as an early warning system of contagion risk. The analysis indicates that the bearish
contagion intensifies during turmoil periods, as it did both during the Global Financial Crisis
2008 and the European Debt Crisis 2010. The bullish contagion, on the contrary, escalates
in the post-crisis periods as economies recover after the turmoil.

Second, this paper contributes to the literature on monetary policy transmission. Cook and
Hahn (1989) empirically test whether changes in federal funds’ rates can affect the bond
rates. Bernanke and Kuttner (2005) study the effect of the Federal Reserves’ monetary pol-
icy on the equity prices. More recently, Leombroni et al. (2021) consider the impact of the
ECB’s communications on the bond yields in Europe. Ozdagli and Weber (2017) and refer-
ences herein consider the impact of the intersectoral input-output network on the monetary
policy transmission into equity prices.

This paper differs from those studies in that it analyses monetary policy transmission into the
inflation targets through the asset prices network rather than into the asset prices themselves.
We find that policy transmission is more effective in high bearish and low bullish contagion
environments. This finding may have behavioural foundations. In the bearish environment,
generally associated with crises, the uncertainty is high and the markets’ attention is focused
on central bank’s policy announcements. In the bullish environment, generally associated
with booms, the overoptimism and lack of attention can make the policy transmit slower.

Third, the paper adds to the literature on network origins of tail risk. Gabaix (2011) shows
that idiosyncratic shocks to individual firms can contribute to aggregate shocks if the firm-
size distribution is heavy-tailed. Acemoglu et al. (2017) address this question in a network
setting and demonstrate that the idiosyncratic shocks to the network nodes may lead to ag-
gregate macroeconomic fluctuations given that the nodes’ degree distribution is sufficiently
heterogeneous. This paper not only studies the propagation of shocks in the network, but
also sheds light on the origins of those idiosyncratic shocks in the first place. The results
indicate that the network effect captured by contagion centrality is indeed a determinant of
tail risk that individual network nodes are exposed to.

The rest of the paper is organised as follows. Section 2 describes the methodology and is
divided into three parts. First part 2.1 presents the new multi-layer contagion measures.
Parts 2.2 and 2.3 describe the methodology of policy efficiency and tail risk analyses, respec-
tively. In Section 3, the data used in the analysis are described. Section 4 discusses the main
results. Finally, Section 5 concludes.

2 Methodology

2.1 New Multi-Layer Contagion Measures

In this subsection we introduce the multi-layer contagion centrality, which is an extension of
a single-layer contagion centrality introduced in Abduraimova (2019). We start by formally
defining the multi-layer network.1

Definition 1. A multi-layer network G (or a graph) is a triplet G = (V, E ,L), consisting

1For a review on multi-layer network theory refer to Boccaletti et al. (2014)
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of a set of nodes V = {vλ1 , ...vλN} (consistent in all layers), a set of unordered pairs (edges)

of distinct nodes E = {(vλi , vλ̃j )}, where i, j ∈ {1, ..., N}, and a set of layers L, where each

layer is denoted by λ ∈ L = {1, ...,Λ}. Nodes vλi and vλ̃j are connected if there exists link

(vλi , v
λ̃
j ) ∈ E between them.

Note that this is a general definition of a multi-layer network, where a link between any
nodes in any layers is possible. In this paper we consider a network where any two nodes
can connect within the same layer (intra-layer) and each node is connected only with its own
counterpart in a different layer (inter-layer) but not with a distinct node. Thus, we define
the following three subsets of intra-layer (Eλ) and inter-layer (Ec and EA) links:

• Eλ - a subset of links between nodes within the same layer λ: Eλ = {(vλi , vλj )}, Eλ ⊂ E ,
i ∈ {1, ..., N}, j ∈ {1, ..., N}, i 6= j, λ ∈ {1, ...,Λ};

• Ec - a subset of links connecting counterparts of the same node in distinct layers:
Ec = (vλi , v

λ̃
i ), Ec ⊂ E , i ∈ {1, ..., N}, λ ∈ {1, ...,Λ}, λ̃ ∈ {1, ...,Λ}, λ 6= λ̃;

• EA - a subset of links between distinct nodes across distinct layers: EA = {(vλi , vλ̃j )},
EA ⊂ E , i ∈ {1, ..., N}, j ∈ {1, ..., N}, i 6= j, λ ∈ {1, ...,Λ}, λ̃ ∈ {1, ...,Λ}, λ 6= λ̃; this is
an empty set in this paper setting EA = ∅.

Networks can be generally divided into two types: Relation-based networks, where links con-
stitute actual relationships between nodes (for which data are not always publicly available),
such as trade volumes between countries, financial bilateral exposures between institutions
and so on; and Similarity-based networks, where links characterise the extent of co-movement
between random variables (usually based on the public market data) associated with the
nodes or any other similarity measure, such as correlation. In this paper, the latter network
type is considered in a two-layer setting allowing to capture policy transmission during the
periods of extreme downward and upward movements in equity index returns and sovereign
bond interest rates.

Each node vλi ∈ V is associated with some risk ri,λ in each network layer λ ∈ L. Risk ri,λ

is a random variable of financial returns, e.g. equity returns, bond rates, exchange rates,
etc. Denote the probability of a shock transmission from node i to node j in layer λ by the
conditional probability2

P (rj,λ ≤ −z|ri,λ ≤ −z), for large z > 0, (1)

and similarly the likelihood of a boom transmission from node i to node j by the conditional
probability

P (rj,λ > z|ri,λ > z), for large z > 0. (2)

Denote by C(ui,λ, uj,λ), where ui,λ, uj,λ ∈ [0, 1], the copula corresponding to the joint cu-
mulative distribution function (cdf) of ri,λ and rj,λ.3 We assume continuity of cdf’s of the
considered random variables which implies uniqueness of the corresponding copulas describ-
ing their dependence structure. Let U i,λ and U j,λ stand for uniform (on [0, 1]) random

2Negative values of ri,λ are interpreted as losses, and positive values as gains.
3For a review on copula theory refer to Joe (2014), McNeil et al. (2015), Nelsen (2007) and Choroś et al.

(2010).
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variables with cdf C(ui,λ, uj,λ) = P (U i,λ ≤ ui,λ, U j,λ ≤ uj,λ). Formally:

for every pair ri,λ and rj,λ there exist U i,λ and U j,λ uniformly distributed on [0, 1]

such that C(ui,λ, uj,λ) = P (U i,λ ≤ ui,λ, U j,λ ≤ uj,λ).
(3)

Then, for large z ’s the probabilities in (1) and (2) are close to the lower (4) and upper (5)
tail dependence coefficients in the layer λ, respectively:

τL,λij = lim
z→+∞

P (rj,λ ≤ −z|ri,λ ≤ −z) = lim
u→0

P (U j,λ ≤ u|U i,λ ≤ u) = lim
u→0

C(u, u)

u
, (4)

τU,λij = lim
z→+∞

P (rj,λ > z|ri,λ > z) = lim
u→1

P (U j,λ > u|U i,λ > u) = lim
u→1

1− 2u+ C(u, u)

1− u
. (5)

In this paper we focus on the case of a two-layer network with two layers represented by stock
market returns and bonds. For convenience and simplicity of notation, the equity returns
layer will be denoted by λ = R and corresponding risk of node i in that layer by Ri, and the
bond interest rates layer will be denoted by λ = B and corresponding risk of node i in that
layer by Bi.
In sum, the financial network in the current paper is defined as follows:

• Nodes: European countries (see Section 3 on the data description for the full list of
countries and more details), each of which is characterised by two random variables of
financial risks Ri and Bi in layers λ ∈ {R,B}.

• Links: undirected weighted edges (vλi , v
λ̃
j ) = (vλ̃j , v

λ
i ) characterised by the tail depen-

dence coefficients τ tail,Rij and τ tail,Bij in lower and upper tails (tail ∈ {L,U}) of distri-

butions of equity returns Ri and Rj , as well as of bond rates Bi and Bj , respectively.

• Layers: equity network layer and bond network layer. Equity network layer is based on
the country’s stock market index returns and denoted by λ = R. Bond network layer
is based on the 10Y benchmark sovereign bond interest rates and denoted by λ = B.

The dynamic component is captured by taking snapshots of the network over time. While
nodes and layers are constant across time periods, the links (represented by the tail depen-

dence coefficients) are time-varying. The tail dependence coefficient τ tail,λi,j (t) between nodes

vλi and vλj in layer λ at time t is estimated using random variables Ri and Rj in the equity

layer and Bi and Bj in the bond layer over the time interval (t−TW , t], where TW is a length
of the window used for estimation. The choice of the window length is flexible. However,
the number of observations should be sufficiently large as estimation is based on the extreme
values (tails) only. A window of TW = 260 daily observations (approximately one year) is
used in this paper. All variables and notations with parameter (t) correspond to a network
realisation at time t.

For financial or economic variables associated with two markets, their tail dependence coef-
ficient represents the conditional probability of (an adverse - crisis, or a positive - economic
policy) shock propagation from one market to the other and is a function of their copula. We
consider Symmetrized Joe-Clayton copula (SJC) to model that dependence. The SJC copula
allows for asymmetric dependence in the lower and upper tails of the distribution of the
random variables dealt with. We follow Patton (2006) to define Symmetrized Joe-Clayton

5



copula CSJC for each network layer λ = {R,B}:

CSJC(ui,λ, uj,λ) = 0.5 · (CJC(ui,λ, uj,λ)+

+ CJC(1− ui,λ, 1− uj,λ) + ui,λ + uj,λ − 1).
(6)

In Equation 6 the copula CJC is Joe-Clayton copula defined as:

CJC(ui,λ, uj,λ) =

= 1− (1− {[1− (1− ui,λ)κ]−γ + [1− (1− uj,λ)κ]−γ − 1}−
1
γ )

1
κ ,

where κ =
1

log2(2− τ
U,λ
ij )

and γ = − 1

log2(τ
L,λ
ij )

,

(7)

and τL,λij ∈ (0, 1) and τU,λij ∈ (0, 1) are the tail dependence coefficients as per (4) and (5).

2.1.1 Multi-Layer Contagion Distance and Contagion Centrality

Denote by “market” superscript the market state in which contagion is being analysed. It
characterises the nature of contagion. There could potentially be several market states, for
instance, crisis, boom, normal conditions. In a general case of a network with more than two
layers, the number and definition of the states will depend on the number and type of the
layers considered. In this paper we define two possible market states for the network with
two layers. The first state is the “bullish” market that is associated with higher inflation,
policy rate cuts, soaring (or high) equity prices and decreasing bond interest rates. The
second state is the “bearish” market that is, on the contrary, associated with lower inflation,
policy rate hikes, sinking (or low) equity prices and increasing bond interest rates. Contagion
in the “bullish” and “bearish” markets will be referred to as bullish and bearish contagion,
respectively (a formal definition follows below).

Definition 2. Multi-layer contagion distance dM,market
cont (i, j, t) from node vλi to node vλj

of the multi-layer network at time t is the distance on the path γi,j(t) connecting nodes vλi
and vλj that
(1) minimises the length H(γi,j(t)) of the path γi,j(t) and
(2) maximises the log probability of shock transmission along the path γi,j(t):

min
γi,j(t)

H(γi,j(t))−

 ∑
(ic,ic−1)∈Eγi,j(t)

log τmarketcc−1 (t)


 , (8)

The length H(γi,j(t)) is the number of links (or steps) on the path γi,j(t) and Eγi,j(t) is a
set of links constituting the path γi,j(t). The path γi,j(t) consists of nodes Vγi,j(t) = {i =
iHγ , ..., i0 = j} and links Eγi,j(t) = {(i = iHγ , iHγ−1), ..., (i1, i0 = j)}.

The shock can travel across the layers tracking the shorter distance: on each step (ic, ic−1) ∈
Eγi,j(t) of the path γi,j(t), the layer λ with maximum shock transmission probability, i.e.

maximum tail dependence coefficient τmarketcc−1
(t), is chosen.4 Formally, τmarketcc−1

(t) on each

4We remind that links are represented by tail dependence coefficients in this paper. Therefore, τmarketcc−1 in
(8) corresponds to link (ic, ic−1) ∈ Eγi,j(t) and the set of all links on the path Eγi,j(t) = {τmarketHγHγ−1, ..., τ

market
10 }

to Eγi,j(t) = {(i = iHγ , iHγ−1), ..., (i1, i0 = j)}.

6



step (ic, ic−1) ∈ Eγi,j(t) for market ∈ {bullish, bearish} is defined as:

τ bullishc,c−1
(t) = max{τU,Rcc−1

(t), τL,Bcc−1
(t)},

τ bearishc,c−1
(t) = max{τL,Rcc−1

(t), τU,Bcc−1
(t)},

(9)

where τL,Rcc−1(t), τU,Rcc−1(t), τL,Bcc−1(t) and τU,Bcc−1(t) are the tail dependence coefficients in individual
network layers on each step (ic, ic−1) ∈ Eγi,j(t) on the path γi,j(t) in the network realisation
at time t:

τL,Rcc−1
(t) = lim

z→+∞
P (Rj < −z|Ri < −z),

τU,Rcc−1
(t) = lim

z→+∞
P (Rj > z|Ri > z),

τL,Bcc−1
(t) = lim

z→+∞
P (Bj < −z|Bi < −z),

τU,Bcc−1
(t) = lim

z→+∞
P (Bj > z|Bi > z).

(10)

Thus, the bullish contagion distance dM,bullish
cont (i, j, t) between nodes vλi and vλj is based on

the tail dependence coefficients on the path γi,j(t) in the upper tail of the nodes’ equity re-

turns distribution τU,Rcc−1(t) and in the lower tail of the nodes’ bond rates distribution τL,Bcc−1(t),

on each step (ic, ic−1) ∈ Eγi,j(t). Similarly, the bearish contagion distance dM,bearish
cont (i, j, t)

between nodes vλi and vλj is based on the tail dependence coefficients on the path γi,j(t) in

the lower tail of the nodes’ equity returns distribution τL,Rcc−1(t) and in the upper tail of the

nodes’ bond rates distribution τU,Bcc−1(t).
We use the Dijkstra path search algorithm to obtain a (N − 1)x(N − 1) matrix of contagion

distances. The matrix is symmetric and each element dM,market
cont (i, j, t) represents the conta-

gion distance between node vλi and node vλj at time t in a given market state. The following
assumptions are imposed on the path of shock propagation:

• a shock can propagate from node vλi to other nodes vλj in the same network layer λ;

• a shock can propagate from node vλi to its own counterpart node in other layers vλ̃i ;

• a shock transition from node vλi to its own counterpart in a different layer vλ̃i does not
count as a step (has zero cost);

• a shock cannot propagate directly from node vλi in layer λ to a different node vλ̃j in a

different layer λ̃ (this is only possible through node vλi ’s counterpart in layer λ̃), i.e.

through vλ̃i .

Let µM,bullish
i (t) and µM,bearish

i (t) as well as σM,bullish
i (t) and σM,bearish

i (t) be the sample
means and the sample standard deviations of multi-layer contagion distances from node i to
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the remaining N-1 nodes at time t in “bullish” and “bearish” markets, respectively:

µM,bullish
i (t) =

∑N−1
j=1,j 6=i d

M,bullish
cont (i, j, t)

N − 1
,

µM,bearish
i (t) =

∑N−1
j=1,j 6=i d

M,bearish
cont (i, j, t)

N − 1
,

σM,bullish
i (t) =

√∑N−1
j=1,j 6=i(d

M,bullish
cont (i, j, t)− µM,bullish

i (t))2

N − 2
,

σM,bearish
i (t) =

√∑N−1
j=1,j 6=i(d

M,bearish
cont (i, j, t)− µM,bearish

i (t))2

N − 2
.

(11)

We define Multi-layer Contagion Centrality as the reciprocal of the concentricity score of
multi-layer contagion distances, so that a more important and more central node has a
higher value of centrality measure.

Definition 3. Multi-layer contagion centrality CCM,market
i of node vi is a network

centrality measure based on the multi-layer contagion distances dM,market
cont (i, j) in market =

{bullish, bearish} and computed as the reciprocal of the concentricity score of those contagion
distances:

CCM,bullish
i =

1√
(µM,bullish
i )2 + (σM,bullish

i )2
,

CCM,bearish
i =

1√
(µM,bearish
i )2 + (σM,bearish

i )2
.

(12)

Further, denote by CCM,market the contagion centrality of the whole network (note that there
is no subscript i as opposed to an individual node i centrality) inmarket = {bullish, bearish}.
The contagion centrality CCM,market describes the overall contagion level in the network and
is defined similar to contagion centrality CCM,market

i of an individual country. However, the
sample mean µM,market and the sample standard deviation σM,market are estimated using all
contagion distances in the network (as opposed to µM,market

i and σM,market
i , which only use

contagion distances from node i):

µM,bullish(t) =

∑N−1
i=1

∑N−1
j=1,j 6=i d

M,bullish
cont (i, j, t)

N − 1
,

µM,bearish(t) =

∑N−1
i=1

∑N−1
j=1,j 6=i d

M,bearish
cont (i, j, t)

N − 1
,

σM,bullish(t) =

√∑N−1
i=1

∑N−1
j=1,j 6=i(d

M,bullish
cont (i, j, t)− µM,bullish(t))2

N − 2
,

σM,bearish(t) =

√∑N−1
i=1

∑N−1
j=1,j 6=i(d

M,bearish
cont (i, j, t)− µM,bearish(t))2

N − 2
.

(13)
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Definition 4. Network contagion centrality CCM,market is a network centrality measure
of the whole network based on the multi-layer contagion distances dM,market

cont (i, j) in market =
{bullish, bearish} and computed as the reciprocal of the network concentricity score of those
contagion distances:

CCM,bullish =
1√

(µM,bullish)2 + (σM,bullish)2
,

CCM,bearish =
1√

(µM,bearish)2 + (σM,bearish)2
.

(14)

Contagion centrality and distances in Definitions 3 and 4 correspond to a network realisation
at time t, while the time scripts (t) are omitted for easier readability.

2.2 Policy Efficiency Analysis

An important aspect in policy efficiency analysis is how the efficiency is defined and measured.
In this paper the policy is said to have successfully transmitted if it led to an intended
change in the inflation rate within a particular transmission period. Formally, monetary
policy transmission indicator MPsuccess(i, t,∆) of a policy rate announcement on date t
over the transmission period ∆ in country i is defined as follows:

MPsuccess(i, t,∆) =

{
1, if rate change leads to intended inflation change;

0, otherwise.
(15)

If a policy rate cut (hike) on announcement date t leads to an increase (decrease) in in-
flation rate in country i by the end of the transmission period, i.e. at time t + ∆, then
MPsuccess(i, t,∆) equals one. It equals zero otherwise. If the indicator refers to the in-
flation rate in the Eurozone as a whole, rather than in an individual country, the subscript
i is replaced by EZ: MPsuccess(EZ, t,∆). We consider six transmission periods: ∆ = {3
months, 6 months, 9 months, 12 months, 18 months, 24 months}. Since the announcement
can take place on any day of the month and inflation data are only available on a monthly
basis, the transmission period is extended to ∆ + 1 for the announcements that were made
in the second half of the month to ensure the period is not too short compared to those of
the beginning of the month announcements.

The transmission efficiency of ECB’s interest rate policy is analysed using a logit regression
on two different aggregation levels: network level and individual country level.

Aggregate Network-Level Analysis
The aggregate level analysis is concerned with policy transmission to the whole network and
is further divided into two parts.

• Aggregate Eurozone logit regression
We consider a time series regression, where the contagion centrality CCMEZ,t corre-
sponds to the whole network of the analysed Eurozone countries (Definition 4) and
MPsuccess(EZ, t,∆) is constructed using the Eurozone composite inflation rate. We
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use three models:

P
(
MPsuccess(EZ, t,∆) =1)|CCMEZ,t

)
= F (α1 + β1CC

M
EZ,t) (16)

P
(
MPsuccess(EZ, t,∆) =1)|CCMEZ,t, CUTt

)
= F (α2 + β2CC

M
EZ,t + γ2CUTt) (17)

P
(
MPsuccess(EZ, t,∆) =1)|CCMEZ,t, CUTt

)
=

= F (α3 + β3CC
M
EZ,t + γ3CUTt + δ3CC

M
EZ,t × CUTt)

(18)

where F (X) is, hereafter, the cumulative standard logistic distribution function defined
in terms of exponential function F (X) = 1

1+exp(−X) ; t = {1, ..., 45}, and thus there are
45 observations; CUTt is an indicator variable that is equal to one if the policy rate
change at time t was a cut and to zero if it was a hike; CCMi,t ×CUTt is an interaction
term between contagion centrality and CUTt indicator variable.

• Eurozone countries panel logit regression
We also consider an all-country panel regression with time and country fixed ef-
fects. Contagion centralities CCMi,t (Definition 3), as well as policy success indicator
MPsuccess(i, t,∆), correspond to an individual country i. The regression model is
the following:

P
(
MPsuccess(i, t,∆)) = 1)|CCMi,t , CUTt, Controlsi, Controlsp

)
=

= F (α4 + β4CC
M
i,t + γ4CUTt + δ4CC

M
i,t × CUTt + Controlsi + Controlsp)

(19)

where i = {1, ..., 15}, t = {1, ..., 45}, and thus there are 675 observations; Controlsi
are the country fixed effects for 15 countries; Controlsp are the period fixed effects for
5 time periods indicating during which period p the policy announcement t was made.
Note that indicator variable for one country and for one period are omitted to avoid
dummy variable trap. The exact start and end dates of each period are outlined in
Section 4.1.

Country-Level Analysis
The country-level analysis is concerned with the efficiency of policy transmission to the
individual countries based on their contagiousness and network position.

• Individual country regressions
We consider a time series regression for each country i separately. Contagion centralities
CCMi,t (Definition 3) as well as MPsuccess(i, t,∆) correspond to an individual country
i. We use two models with and without an interaction term:

P
(
MPsuccess(i, t,∆) = 1)|CCMi,t , CUTt

)
= F (α5 + β5CC

M
i,t + γ5CUTt) (20)

P
(
MPsuccess(i, t,∆) = 1)|CCMi,t , CUTt

)
=

=F (α6 + β6CC
M
i,t + γ6CUTt + δ6CC

M
i,t × CUTt) (21)

where t = {1, ..., 45}, and thus there are 45 observations in each regression.
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2.3 Contagion and Tail Risk

In this section we focus on the relationship between contagion risk and tail risk in a multi-
layer network setting. We follow the instrumental variable (IV) regression approach proposed
in Abduraimova (2019) to examine whether multi-layer network contagion can give rise to
tail risk in the individual layers of the network. We note that the tail risk is associated with
a country in a distinct individual layer. Thus, there is a tail index estimate for each country
in the equity returns layer, as well as in the bond interest rates layer.5 The contagion risk
of each country is based on multi-layers, rather than on a single layer. There is a contagion
centrality estimate for each country in the bearish market as well as in the bullish market.
Ultimately, there are four regression models for each network layer λ ∈ {R,B}, two for the
lower tail index:

Tail IndexL,λi,p = α1 + β1CC
M,bullish
i (p) + γ1Eurozonei + Controlsp + ηi,p (22)

Tail IndexL,λi,p = α2 + β2CC
M,bearish
i (p) + γ2Eurozonei + Controlsp + εi,p (23)

and two for the upper tail index:

Tail IndexU,λi,p = α3 + β3CC
M,bullish
i (p) + γ3Eurozonei + Controlsp + ui,p (24)

Tail IndexU,λi,p = α4 + β4CC
M,bearish
i (p) + γ4Eurozonei + Controlsp + ei,p (25)

where i corresponds to a country, i ∈ {1, ..., 15}, p corresponds to the five periods defined

above. Tail IndexL,λi,p and Tail IndexU,λi,p are the tail index estimates for country i during pe-

riod p in the lower and upper tails of layer λ, respectively. CCM,bullish
i (p) and CCM,bearish

i (p)
are the bullish and the bearish contagion centralities of country i during period p, respec-
tively. Eurozonei is an indicator variable that equals one if country i is in the Eurozone and
zero, otherwise. Controlsp are fixed effects for time periods.

Contagion centrality and tail index are estimated variables. Moreover, they are both esti-
mated using the same data on equity returns and could be subject to the same estimation
noise. This could lead to endogeneity and simultaneity bias. We employ the IV regression ap-
proach to address the endogeneity issue and define the instrument for each layer λ ∈ {R,B}
as the variable’s absolute deviation as follows:

IV R
i,p =

√∑Tp
t=1 |Ri,t − R̄i|
Tp − 1

, (26)

IV B
i,p =

√∑Tp
t=1 |Bi,t − B̄i|
Tp − 1

, (27)

where p ∈ {pre-GFC, GFC, post-GFC, Euro DC, post-Euro DC},
Tp is the length of period p,
Ri,t and Bi,t are the return on equity index and sovereign bond rate of country i at time t,
respectively, and
R̄i and B̄i are the mean return on equity index and mean bond rate of country i over
t ∈ {1, ...Tp}.

5We also differentiate lower and upper tail indices within each network layer.
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The first stage regression outcomes hence are:

ĈC
M,bullish
i (p) = ρ̂1 + φ̂1IV

λ
i,p (28)

for regression models (22) and (24), and

ĈC
M,bearish
i (p) = ρ̂2 + φ̂2IV

λ
i,p (29)

for regression models (23) and (25). The second stage regressions (22), (23), (24) and (25)

are run using the fitted values ĈC
M,bullish
i (p) and ĈC

M,bearish
i (p).

It is important to note that in addition to potential endogeneity problem, we also face an
“error-in-variables” problem that arises due to regressor or regressand (or both as in this
paper) being estimated themselves. To tackle this problem we apply a t-statistic robust
inference approach developed by Ibragimov and Müller (2010). This approach does not
require consistent estimation of coefficient’s variance for a statistical inference and, thus, is
not subject to the estimation noise in the explained or explanatory variables. It has also been
proven to always work for significance levels up to 8.326%. The approach is implemented by
partitioning the sample into q not necessarily equal-size groups, estimating the coefficient of
interest for each of the groups individually, and conducting a standard t-test based on the
q observations. In this paper, we consider q = 3 groups: core Eurozone countries (Austria,
Belgium, Germany, Finland, France, Netherlands), periphery Eurozone countries (Greece,
Ireland, Italy, Portugal, Spain) and the European countries that are not part of the Eurozone
(Denmark, Switzerland, Sweden, the UK).

3 Data

We analyse a network of 11 Eurozone (EZ) countries for which consistent data are available
over the considered period from January 1, 1998 until May 31, 2019: Austria, Belgium,
Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain. We
also examine a wider network of European states for which data are available throughout the
period: (1) European Union (EU) network - EZ countries, Denmark, Sweden, and the UK;6

(2) EU countries and Switzerland (which is highly integrated with the European economies
although is not part of either EU or EZ).

To construct the monetary policy transmission success indicator, the data on inflation rates
and on policy rate announcements are required. We use the Harmonised Index of Consumer
Prices (HICP) for the inflation rates of 15 countries, as well as of the composite EZ19
(Eurozone 19) and EU28 (European Union 28) from the World Economic Outlook (WEO)
database.

The ECB policy rate change announcements are obtained from the ECB statistics portal.
There were 47 announcements after the introduction of euro in January 1999, when at least
one of the policy rates was changed (main refinancing rate, deposit facility rate or marginal
lending facility rate). The main refinancing rate (MRR) is used as a policy rate in the
current analysis. It was first amended on the third announcement date on April 9, 1999 to
2.5% down from its initial set level of 3%; this leaves 45 announcements to study. On 4
announcement dates, the MRR was left unchanged. On those occasions, the direction of the

6The UK was part of the EU during the analysed period.

12



previous rate change is carried forward. Of 45 considered announcements, 24 are rate cuts
and 21 are rate hikes. Table 1 presents success ratios of policy rate changes over a 12 month
transmission period.7 The success ratio of cuts (hikes) is defined as the ratio of successful
cuts (hikes) over the total number of cuts (hikes).

Country Rate Cuts Rate Hikes

AUT 0.33 0.43
BEL 0.42 0.52
CHE 0.58 0.71
DEU 0.38 0.24
DNK 0.38 0.76
ESP 0.50 0.52
FIN 0.21 0.43
FRA 0.46 0.48
GBR 0.29 0.48
GRC 0.42 0.48
IRL 0.25 0.57
ITA 0.38 0.38
NLD 0.25 0.29
PRT 0.38 0.48
SWE 0.33 0.24

EZ 0.33 0.52

Table 1. Success Rates of Policy Rate Changes (12 months transmission period)

Daily stock market index returns and 10-year benchmark sovereign bond interest rates used
to construct the layers of the network are obtained from Datastream database. The tail
dependence coefficient, which is used to construct the links of the network, is estimated daily
on a rolling basis with the window of one year. Thus, the starting date of one year before
the euro came into existence on January 1, 1999, allows having a first network realisation on
the currency launch date.

4 Results

4.1 Global Financial Crisis 2008 and European Debt Crisis 2010

Contagion risk can evolve differently during crises as opposed to more tranquil times. Con-
tagion levels tend to increase during periods of turmoil in both tails of equity returns dis-
tribution. Contagion in the lower tail (bear stock markets) is generally higher than in the
upper one (bull stock markets). In the current paper we analyse the evolvement of contagion
during crises and calm periods using a multi-layer network approach which allows to gain
a more holistic view of contagion in bearish and bullish environments beyond stock market
contagion as compared to a single-layer network analysis. Two major crises have taken place
over the considered period, the Global Financial Crisis 2008 and the European Debt Crisis
2010. The start and end dates of both events and the corresponding five sub-periods are
defined as following:

1. Jan 1998 - July 2007, prior to the Global Financial Crisis 2008 (pre-GFC);
2. August 2007 - March 2009, during the Global Financial Crisis 2008 (GFC);
3. April 2009 - September 2009, after the Global Financial Crisis (post-GFC);

7Table 11 in Appendix 6.1 shows success ratios for all considered transmission periods.
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4. October 2009 - March 2012, during the European Debt Crisis 2010 (Euro DC);
5. April 2012 - May 2019, after the European Debt Crisis 2010 (post-Euro DC).

Table 2 presents contagion risk levels for the whole network of considered countries as well
as for sub-networks of countries: (1) GIIPS countries (Greece, Ireland, Italy, Portugal and
Spain) which will be referred to as periphery; (2) Core countries (Austria, Belgium, Germany,
Finland, France and the Netherlands) which are the non-periphery Eurozone countries; (3)
EZ countries which include all Eurozone countries considered (GIIPS and Core); (4) EU
countries which include EZ countries and three European Union countries that are not in
the Eurozone (Denmark, the UK and Sweden); and (5) All countries considered which include
the EU countries and Switzerland.8

The bullish contagion is considerably stronger than the bearish contagion as Table 2 shows.
This result might be driven by the ECB’s policy rates decreasing ever since the Global
Financial Crisis. We also observe a clear pattern in both bearish and bullish contagion
levels over different time periods for the Eurozone network as well as for the wider European
networks (EU and All countries’ groups). The bearish contagion environment appears to
intensify during the crisis periods compared to the pre- and post-crisis periods. This is an
intuitive finding as (1) the stock markets tend to go down synchronously, thereby increasing
contagion in the equity layer’s lower tail and (2) interest rates might rise as investors move
away from stock markets to safer assets like sovereign bonds, thereby increasing contagion
in the bond layer’s upper tail. The bullish contagion behaves in the opposite manner. It is
initially high in the run-up to the Financial Crisis 2008 when stock markets were rallying
around the world. During both crises we observe a reduction in bullish contagion levels which
are in turn followed by increases post-crises as markets recover.

Period pre-GFC GFC post-GFC Euro DC post-Euro DC Full Period

Bearish Contagion Centrality

GIIPS 0.452 0.611 0.587 0.553 0.490 0.503
Core 0.563 0.738 0.666 0.749 0.711 0.650
EZ 0.505 0.674 0.609 0.629 0.571 0.563
EU 0.517 0.688 0.606 0.632 0.565 0.569
All 0.522 0.690 0.607 0.635 0.567 0.573

Bullish Contagion Centrality

GIIPS 0.878 0.741 0.882 0.845 0.726 0.730
Core 0.915 0.871 0.834 0.820 0.910 0.926
EZ 0.899 0.743 0.840 0.706 0.787 0.766
EU 0.875 0.746 0.755 0.693 0.791 0.781
All 0.874 0.744 0.756 0.695 0.792 0.787

Table 2. Multi-Layer Contagion Centrality: Sub-Network Analysis

Sub-network analysis of core and periphery shows a certain divergence from the overall
network trends. The periphery sub-network (GIIPS) contagion, both bearish and bullish,
decreases during the European Debt Crisis and in the following period. Sovereign bond
rates are greatly dispersed for the GIIPS countries during these periods and stock markets
recovery has been slower than in core countries. The core sub-network shows similar to

8The individual country results can be found in Table 10 in the Appendix 6.1.
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overall Eurozone trends with the exception of the period between two crises when the bullish
contagion level continues its downward course.

4.2 Policy Efficiency Analysis

In this section we analyse the performance of contagion centrality in explaining the success-
ful transmission of the ECB’s interest rate policy at an overall network level, as well as at
an individual country level. Table 3 presents aggregate Eurozone results for various policy
transmission periods as per logit regressions (16) and (17). As the top panel demonstrates, in
the bearish contagion environment with plummeting stock markets and high interest rates,
the policy transmission is positively related to contagion degree.9 Thus, the policy is more
likely to transmit the higher the bearish contagion levels are. On the contrary, in the bullish
contagion environment with rallying stock markets and low interest rates, the policy trans-
mission and contagion levels are negatively related (bottom panel of Table 3). The lower the
bullish contagion degree, the better the policy transmits. This essentially means that mone-
tary policy transmits successfully during bearish markets contagion and not very effectively
during bullish markets contagion.

Period 9m 12m 18m 24m

Bearish Contagion Centrality

Constant -4.946 -4.994 -2.107 -2.297 -3.214 -3.267 -1.642 -1.737
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

CCM 7.720 8.455 3.253 4.652 5.060 5.699 3.081 3.960
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Cutt -0.682 -1.108 -0.565 -0.717
(0.002) (0.000) (0.007) (0.000)

R2 0.105 0.122 0.024 0.070 0.053 0.065 0.022 0.042

Bullish Contagion Centrality

Constant 1.547 2.416 2.508 5.212 2.999 4.120 2.742 4.271
(0.158) (0.047) (0.020) (0.000) (0.006) (0.001) (0.011) (0.000)

CCM -2.539 -3.340 -3.342 -5.880 -4.037 -5.073 -3.189 -4.575
(0.050) (0.016) (0.009) (0.000) (0.002) (0.000) (0.012) (0.001)

Cutt -0.371 -1.102 -0.474 -0.674
(0.079) (0.000) (0.023) (0.001)

R2 0.007 0.012 0.011 0.056 0.017 0.025 0.010 0.028

Observations 45

Table 3. Policy Efficiency: Overall Eurozone Regression (p-values in parentheses)

This finding could be attributed to overoptimism and euphoria in markets’ behaviour that
might prevail during bullish contagion periods. This could in turn destruct the markets from
the central bank’s policies making the policy transmit slower or not transmit at all. On the
contrary, during bearish contagion periods when markets and the wider economy are not
doing well, markets are more likely to pay attention to the central bank’s policy announce-
ments.

9The regression results for very short transmission periods of 3 and 6 months were statistically insignificant
or occasionally significant for some countries only. Those periods are probably not sufficiently long for the
policy to transmit. Therefore, only results for medium and longer term periods are presented.
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The results for an aggregate Eurozone regression model with an interaction term as per
Equation (18) are presented in Table 12 in Appendix 6.1.2. With addition of the interaction
term the statistical significance decreases, however, economically the results remain similar.

One should note that the p-values of the model parameter estimates reported in Table 3 (and
the following tables presenting the results of policy efficiency regressions) are based on the
standard errors that are subject to estimation noise in the contagion centrality measures and
need to be adjusted. Unfortunately, due to the small number of observations with binary
regressand taking on many zero values within q groups, the application of robust t-statistic
approaches for inference of logistic regressions appears to be infeasible. In addition, the
derivation of the limiting variance of parameter estimators in the model that would account
for the error in the estimation of contagion centrality measures appears to be a very difficult
problem. It is left for further research. On the other hand, the extremely small p-values
based on the unadjusted standard errors obtained for the model in Table 3 suggest that the
significance of the coefficients will be also obtained using the standard errors that account
for estimation error in contagion centrality.

Contractionary interest rate policy transmission could differ in nature from the expansionary
one. Indeed, we observe that the success percentage of the interest rate hikes is generally
higher than the success percentage of the interest rate cuts (Table 1).10 We control for that
difference by adding an indicator variable Cutt and the results remain statistically significant.
Furthermore, the sign of the Cutt regression coefficient estimate is negative (and significant)
as expected, confirming that rate cuts tend to transmit less efficiently than rate rises.

Monetary Policy Transmission

Bearish Contagion Bullish Contagion

Constant -0.295 4.858
(0.733) (0.002)

CCMi 1.963 -4.411
(0.110) (0.016)

Cutt -0.060 -8.589
(0.950) (0.001)

Cutt × CCMi -2.238 8.588
(0.162) (0.001)

Controlsi Y Y
Controlst Y Y

R2 0.149 0.161

Observations 675

Table 4. Policy Efficiency: Panel Regression (p-values in parentheses)

10The bank-lending channel (or credit channel more broadly) of monetary policy transmission to real
economy (which is not a focus of this paper) can explain the intuition behind the difference between success
rates of interest rate hikes and cuts. The bank lending channel is an amplification channel that works beside
the main interest rate channel (which is the focus of this paper). According to the credit view, the monetary
policy may transmit to the real economy by affecting banks’ loans (assets) and deposits (liabilities). Banks
could be slower in passing the lower interest rates on to the consumers than the higher rates, due to maturity
mismatch between their assets (longer-term generally) and liabilities (shorter-term generally).
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We further analyse the transmission of policy to the network by running logit panel regres-
sion (19) of country-level observations. As can be seen from Table 4, the findings discussed
above are validated for country-level policy transmission as well (p-values of contagion cen-
trality coefficient are just above 10% and just above 1% for bearish and bullish contagion,
respectively).11 Thus, contagion centrality can explain the successful transmission of interest
rate policy into inflation targets both for the Eurozone as a whole, as well as at a national
level.

Finally, we take a closer look at the individual countries’ contagiousness focusing on the dif-
ference between core and more peripheral countries of the European network. Once again,
we confirm the results obtained at the aggregate Eurozone level. Tables 5 and 6 present re-
sults for GIIPS countries and for selected core countries, respectively.12 Core and periphery
countries might have different levels of contagiousness and therefore may be located more
or less centrally in the contagion network. However, the relationship between contagion
centrality and monetary policy transmission efficiency remains consistent. Specifically, the
transmission is more successful in a strong bearish contagion environment (implying positive
relationship) and less successful during bullish contagion periods (implying negative rela-
tionship).
As can be observed from Table 2 in Subsection 4.3, the periphery GIIPS countries generally
tend to be less central in the bearish contagion network than the rest of the network. And
in the bullish contagion network, the GIIPS countries are relatively comparable with spikes
in contagiousness well above the core countries during the Euro Crisis and in the preceding
period. Connecting this observation with finding that policy transmission is more efficient
for more bear-contagious and for less bull-contagious markets, we conclude that the ECB’s
interest rate policy transmits more efficiently through the European network core rather than
the periphery.

Ireland stands out as an outlier gaining insignificant results for half of the times (Table 5).
Ireland has experienced high deflation during the years 2009-2010, reaching the bottom at
6.6% in October of 2009. Those periods’ observations are probably distorting the results for
this country, as when the inflation rates are in the negative space, monetary policy might
not work well or not work as expected.

Another observation that stands out in Table 5 is that the regression coefficient for the Cutt
indicator swaps sign for Greece for transmission periods of 18 and 24 months. This means
that interest rate cuts were more successful than interest rate hikes. We attribute this, how-
ever, to Greece receiving the emergency financial support in the form of bailouts starting in
2010.
The results also hold for the European countries that do not share the same currency, but
are strongly integrated with the Eurozone (Table 6). This could be due to strong economic
integration among the countries or equally due to world central banks implementing highly
similar policies to address the two major turmoils that happened during the considered 20
year period.

11The panel regression results for 12 months transmission periods are presented. Results for 9, 18, 24
months are similar.

12The presented results are as per Equation 20. And the regression results for the model equation 21 can
be found in Tables 13, 14 and 15 in Appendix 6.1.2. The interaction term itself is mostly not significant
and the significance of other coefficients decreases for some of the countries. However, the directions of the
coefficient signs generally remain consistent.
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Monetary Policy Transmission

Bearish Contagion Bullish Contagion

Period 9m 12m 18m 24m 9m 12m 18m 24m

Constant -2.755 -2.106 -0.578 -1.980 1.782 2.086 0.781 1.385

G
re

ec
e

CCMi 7.214 5.015 0.725 3.147 -2.140 -2.772 -1.360 -2.660
Cutt -1.511 -0.498 0.767 0.927 -1.142 -0.432 0.717 0.886

R2 0.170 0.074 0.030 0.074 0.055 0.026 0.034 0.067

Constant -0.787 -0.165 0.938 -0.648 1.643 0.337 2.713 4.546

Ir
el

a
n
d

CCMi 1.404 0.921 -0.497 2.763 -2.076 -0.059 -2.404 -4.573
Cutt -1.349 -1.458 -1.544 -1.622 -1.366 -1.389 -1.730 -1.696

R2 0.067 0.082 0.105 0.094 0.070 0.081 0.112 0.112

Constant -6.526 -3.204 0.472 -1.670 -3.505 -0.460 7.871 3.466

It
a
lyCCMi 10.334 4.726 -0.324 3.462 3.465 -0.029 -8.695 -3.648

Cutt -0.901 -0.228 -0.967 -0.975 -0.244 -0.027 -1.487 -0.988

R2 0.154 0.039 0.042 0.049 0.015 0.000 0.091 0.037

Constant -8.766 -5.539 -4.909 -9.090 4.493 6.437 6.830 4.275

P
o
rt

u
g
a
l

CCMi 17.303 10.900 10.590 18.589 -5.386 -7.668 -7.655 -4.901
Cutt -2.285 -1.239 -1.289 -1.451 -1.120 -0.866 -0.879 -0.347

R2 0.282 0.136 0.132 0.302 0.059 0.072 0.074 0.029

Constant -6.582 -3.749 -1.142 -1.741 3.399 5.778 3.374 0.695

S
p
a
inCCMi 11.498 6.623 2.816 4.238 -3.802 -6.536 -3.321 -0.002

Cutt -1.363 -0.342 -0.937 -1.048 -0.986 -0.400 -0.988 -0.860

R2 0.184 0.063 0.041 0.058 0.039 0.036 0.039 0.032

Observations 45

Table 5. Policy Efficiency: GIIPS Countries Regression (p-values in parentheses)

4.3 Contagion and Tail Risk

Tail index estimation results for full sample period are presented in Table 7.13 Equity re-
turns tail indices lie in the interval (2, 3), implying that the first and the second moments
of those countries’ equity returns are finite, while the third and the fourth moments are
infinite. Austria and Ireland have tail index estimates below 2 and for these two countries
even the variance might be infinite. Moreover, the tail indices in the lower tail appear to be
slightly smaller than in the upper tail. This means that the countries considered are slightly
more likely to experience tail events in the negative tail of the equity returns (stock market
crashes) than in the positive tail (stock market booms).

The results for the bond interest rates layer are strikingly different. Most of the countries
appear to have a considerably thin upper tail (with the tail index estimates being above 15)
and a profoundly heavy lower tail (with the tail index estimates being below 2). This raises
a question of whether power law distributions are a good fit for the bond interest rates in
the first place, which is left for the future research.

We now turn to the regression analysis results. Tables 8 and 9 present the estimation re-
sults for the instrumental variable (IV) and for the ordinary least squares (OLS) regression

13Results for five sub-periods, including crisis and non-crisis periods can be found in Appendix 6.1.3.
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Monetary Policy Transmission

Eurozone Countries non-Eurozone Countries

Bearish Contagion Bullish Contagion Bearish Contagion Bullish Contagion

Constant -7.915 7.152

G
er

m
a
n
y

0.136 10.163

S
w

it
ze

rl
a
n
d(0.000) (0.000) (0.824) (0.000)

CCMi 10.993 -9.641 1.365 -11.074
(0.000) (0.000) (0.188) (0.000)

Cutt 0.187 0.275 -0.623 -1.382
(0.419) (0.228) (0.002) (0.000)

R2 0.160 0.068 0.017 0.106

Constant -1.235 0.542

F
ra

n
ce

-7.939 1.743

U
K

(0.061) (0.730) (0.000) (0.086)
CCMi 1.850 -0.726 13.020 -2.344

(0.077) (0.684) (0.000) (0.067)
Cutt -0.157 -0.098 -1.463 -0.787

(0.423) (0.625) (0.000) (0.000)

R2 0.005 0.000 0.22 0.033

Constant -7.903 7.392
N

et
h
er

la
n
d
s

-6.216 1.062

S
w

ed
en

(0.000) (0.000) (0.000) (0.263)
CCMi 11.153 -9.525 8.586 -2.725

(0.000) (0.000) (0.000) (0.018)
Cutt -0.717 -0.544 0.144 0.380

(0.003) (0.021) (0.531) (0.079)

R2 0.114 0.043 0.11 0.02

Observations 45

Table 6. Policy Efficiency: Core Countries Regression (p-values in parentheses)

approaches along with t-stat robust inference approach p-values, respectively. We report
findings for Hill’s estimate tail index (similar conclusions could be drawn using log-log rank-
size estimate of the tail index).

Statistically significant regression results for the equity layer in Table 8 confirm that tail risk
might indeed arise from network contagion. The first conclusion we draw from these results
is that countries that are more contagion-central tend to be more prone to stock market
crashes and less so to stock market booms.14 Thus, network core countries might experience
fewer bubbles in their equity markets, however, they are still subject to market meltdowns.
Periphery, on the contrary, being located less central in the network, are more prone to tail
risk in the upper tail rather than in the lower tail. This does not mean that GIIPS group
countries, which are generally referred to as periphery, do not experience bear markets. As
Table 2 in Subsection 4.1 shows, the contagiousness of countries varies from period to period
and, for instance, during the European Debt Crisis the GIIPS countries have become more
central than both the overall Eurozone and the countries that we refer to as core generally.
Turning to tail risk in sovereign bond interest rates, more contagion-central countries appear
to be less vulnerable to it, both in the upper and lower tails. However, the results are not
statistically significant.

14Remember that lower tail index means heavier tails and more tail risk.
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Bearish Contagion Bullish Contagion

Equity Index Returns Layer Bond Interest Rates Layer

Country Lower Tail Upper Tail Lower Tail Upper Tail

AUT 1.889 2.495 0.510 19.572
BEL 2.129 2.382 0.645 20.488
CHE 2.141 2.465 1.305 12.766
DEU 2.310 2.425 0.202 21.519
DNK 2.296 2.543 0.213 18.168
ESP 2.345 2.489 1.740 16.045
FIN 2.120 2.090 0.283 20.833
FRA 2.229 2.367 0.622 20.141
GBR 2.124 2.255 1.302 17.210
GRC 2.123 2.286 4.269 1.962
IRL 1.975 2.376 1.488 3.044
ITA 2.391 2.345 2.580 16.953
NLD 2.091 2.189 0.209 19.700
PRT 2.218 2.501 1.251 2.634
SWE 2.264 2.204 0.446 21.527

EU 2.179 2.353 1.126 15.700
EZ 2.165 2.359 1.255 14.808

GIIPS 2.210 2.399 2.266 8.128
ALL 2.176 2.361 1.138 15.504

Hill’s tail index estimate, 10% truncation, full sample period results.
The country group (EU, EZ, GIIPS and ALL) values are simply the averages of

tail index estimates for countries within the group.

Table 7. Tail Risk: European Countries
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Bearish Contagion Bullish Contagion

Lower Tail Upper Tail Lower Tail Upper Tail

Equity Index Returns Layer

Intercept 5.489 1.332 9.459 -0.240
(0.331) (0.013) (0.070) (0.407)

CCMi -5.488 2.174 -8.981 3.558
(0.100) (0.043) (0.098) (0.043)

Hausman-Wu p-value 0.002 0.183 0.001 0.265
First Stage F-stat 6.554 6.554 12.130 12.130

Controls Y

Observations 75

Bond Interest Rates Layer

Intercept 1.266 -64.731 0.939 -122.160
(0.975) (0.497) (0.979) (0.500)

CCMi 0.731 128.600 0.943 165.790
(0.987) (0.505) (0.987) (0.505)

Hausman-Wu p-value 0.843 0.054 0.176 0.043
First Stage F-stat 16.740 16.740 11.450 11.450

Controls Y

Observations 75

Hill’s estimate tail indices with 10% truncation are used for both equity and bond layers.

Table 8. Contagion and Tail Risk: IV Regression (p-values in parentheses)

Bearish Contagion Bullish Contagion

Lower Tail Upper Tail Lower Tail Upper Tail

Equity Index Returns Layer

Intercept 3.172 2.394 3.258 2.015
(0.038) (0.090) (0.003) (0.235)

CCMi -1.467 0.288 -1.194 0.684
(0.020) (0.501) (0.591) (0.867)

Controls Y

Observations 75

Bond Interest Rates Layer

Intercept -17.047 -4.437 -92.615 -11.624
(0.338) (0.435) (0.300) (0.467)

CCMi 26.623 26.985 113.344 28.898
(0.592) (0.651) (0.265) (0.540)

Controls Y

Observations 75

Hill’s estimate tail indices with 10% truncation are used for both equity and bond layers.

Table 9. Contagion and Tail Risk: OLS Regression (p-values in parentheses)
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OLS results, as can be seen from Table 9, agree with IV results in terms of the directions
of regression coefficients’ signs, however, they do not gain any statistical significance except
for lower tail of equity returns in the bearish contagion environment. This highlights the
importance of applying the IV regression approach. As can be seen from Table 8 the in-
strument relevance condition is satisfied as indicated by significant first stage f -statistics.
The f -statistics for equity returns and bond rates layers tail risk are generally above the
“rule of thumb” threshold of 10. One exception is equity returns tail risk during the bearish
contagion with f -statistic being 6.554, which is still rather large. The instrument exogeneity
condition is satisfied for the lower tail of equity layer and for upper tail of bond layer as
demonstrated by Hausman-Wu pre-test p-values. Thus, absolute deviation appears to be a
valid instrument even though the link between contagion and tail risk is not always observed.

Final important point is that the inference based on OLS standard errors is significant at
10% for both layers in the two-stage regression approach as well as standard one-stage OLS
regression approach. Thus, standard techniques can lead to misleading conclusions under
the presence of estimation noise and robust approaches such as t-statistic approach should
be used instead.

5 Conclusion

We develop contagion centrality measures and apply them to analyse the transmission ef-
ficiency of ECB’s monetary policy in a multi-layer network setting. The main insight we
gain is that monetary policy transmits efficiently during intense bearish contagion times and
during weak bullish contagion times. We attribute this to the level of attention that markets
pay to the policy announcements in crisis and boom periods.

Furthermore, we analyse the relationship between contagion risk and tail risk. The countries
that are more centrally located in the contagion network appear to be less susceptible to
tail risk in their bond markets than the periphery countries (GIIPS countries generally).
The more central countries also tend to be more resilient to upper tail risk in stock markets
(bubbles), however, they are still prone to stock markets crashes.
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6 Appendix

6.1 Tables

6.1.1 Contagion Centrality Estimates

Period pre-GFC GFC post-GFC EDC post-EDC Full Period

Bearish Contagion Centrality

AUT 0.463 0.678 0.657 0.632 0.584 0.557
BEL 0.545 0.699 0.620 0.702 0.642 0.617
CHE 0.563 0.706 0.608 0.654 0.581 0.596
DEU 0.572 0.729 0.651 0.687 0.631 0.619
DNK 0.504 0.695 0.561 0.599 0.518 0.548
ESP 0.569 0.712 0.670 0.643 0.597 0.609
FIN 0.510 0.677 0.529 0.662 0.603 0.566
FRA 0.601 0.752 0.690 0.716 0.647 0.650
GBR 0.579 0.738 0.657 0.681 0.587 0.617
GRC 0.388 0.612 0.447 0.453 0.390 0.420
IRL 0.495 0.604 0.624 0.630 0.559 0.548
ITA 0.562 0.704 0.664 0.673 0.592 0.606
NLD 0.593 0.740 0.695 0.701 0.639 0.637
PRT 0.490 0.655 0.597 0.610 0.551 0.547
SWE 0.551 0.710 0.604 0.659 0.590 0.595

Bullish Contagion Centrality

AUT 0.894 0.775 0.780 0.699 0.835 0.833
BEL 0.894 0.793 0.787 0.722 0.826 0.837
CHE 0.867 0.733 0.767 0.700 0.796 0.823
DEU 0.893 0.774 0.724 0.742 0.835 0.830
DNK 0.890 0.772 0.667 0.670 0.824 0.831
ESP 0.894 0.779 0.821 0.713 0.819 0.814
FIN 0.895 0.777 0.816 0.737 0.827 0.830
FRA 0.894 0.801 0.827 0.732 0.836 0.830
GBR 0.768 0.757 0.675 0.709 0.769 0.803
GRC 0.861 0.611 0.742 0.543 0.673 0.561
IRL 0.847 0.636 0.762 0.673 0.820 0.806
ITA 0.892 0.763 0.823 0.736 0.728 0.787
NLD 0.893 0.792 0.822 0.752 0.839 0.832
PRT 0.893 0.748 0.764 0.662 0.715 0.739
SWE 0.871 0.752 0.663 0.716 0.812 0.825

Table 10. Multi-Layer Contagion Centrality: Individual Countries
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6.1.2 Monetary Policy Transmission

Policy Rate Cut Successes Policy Rate Hike Successes

Period 3m 6m 9m 12m 18m 24m 3m 6m 9m 12m 18m 24m

AUT 0.17 0.25 0.29 0.33 0.46 0.46 0.38 0.33 0.43 0.43 0.48 0.67
BEL 0.33 0.25 0.29 0.42 0.46 0.54 0.48 0.62 0.62 0.52 0.48 0.62
CHE 0.33 0.42 0.46 0.58 0.63 0.58 0.62 0.67 0.67 0.71 0.67 0.71
DEU 0.29 0.21 0.33 0.38 0.42 0.50 0.48 0.38 0.38 0.24 0.29 0.62
DNK 0.29 0.29 0.33 0.38 0.50 0.33 0.71 0.86 0.90 0.76 0.71 0.71
ESP 0.17 0.25 0.33 0.50 0.42 0.46 0.52 0.48 0.52 0.52 0.62 0.67
FIN 0.25 0.13 0.17 0.21 0.25 0.29 0.38 0.33 0.43 0.43 0.57 0.67
FRA 0.33 0.38 0.38 0.46 0.58 0.50 0.48 0.52 0.43 0.48 0.48 0.57
GBR 0.25 0.13 0.17 0.29 0.25 0.46 0.48 0.43 0.48 0.48 0.29 0.48
GRC 0.38 0.33 0.29 0.42 0.63 0.58 0.57 0.62 0.52 0.48 0.43 0.33
IRL 0.13 0.25 0.21 0.25 0.29 0.33 0.43 0.52 0.48 0.57 0.67 0.67
ITA 0.25 0.21 0.29 0.38 0.33 0.38 0.52 0.43 0.38 0.38 0.57 0.57
NLD 0.25 0.04 0.13 0.25 0.21 0.21 0.52 0.33 0.24 0.29 0.19 0.29
PRT 0.21 0.21 0.29 0.38 0.46 0.50 0.52 0.38 0.48 0.48 0.57 0.52
SWE 0.33 0.21 0.25 0.33 0.42 0.46 0.33 0.33 0.29 0.24 0.29 0.38

EU 0.25 0.17 0.25 0.29 0.38 0.38 0.52 0.43 0.57 0.57 0.62 0.71
EZ 0.25 0.25 0.33 0.33 0.38 0.46 0.48 0.38 0.38 0.52 0.43 0.57

Table 11. Success Rates of Policy Rate Changes by Transmission Period
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Period 9m 12m 18m 24m

Bearish Contagion Centrality

Constant -8.352 -2.588 -2.530 -1.088
(0.031) (0.192) (0.214) (0.563)

CCMi 14.378 5.218 4.307 2.686
(0.030) (0.164) (0.253) (0.453)

Cutt 5.848 -0.247 -2.782 -2.550
(0.221) (0.943) (0.468) (0.447)

Cutt × CCMi -11.258 -1.533 3.882 3.310
(0.166) (0.801) (0.555) (0.576)

R2 0.159 0.071 0.071 0.047

Bullish Contagion Centrality

Constant 2.849 15.941 12.179 16.388
(0.716) (0.084) (0.152) (0.085)

CCMi -3.838 -18.178 -14.364 -18.427
(0.670) (0.085) (0.143) (0.088)

Cutt -0.931 -14.641 -10.678 -15.544
(0.916) (0.148) (0.257) (0.131)

Cutt × CCMi 0.654 15.750 11.916 17.200
(0.949) (0.177) (0.277) (0.145)

R2 0.012 0.089 0.046 0.067

Observations 45

Table 12. Policy Efficiency: Eurozone Regression with Interaction Term (p-values in parentheses)
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Monetary Policy Transmission

Bearish Contagion Bullish Contagion

Period 9m 12m 18m 24m 9m 12m 18m 24m

Constant -3.604 -3.265 0.322 -0.899 -3.079 -1.679 0.039 0.586

G
re

ec
eCCMi 9.389 7.889 -1.536 0.513 4.033 2.009 -0.415 -1.632

Cutt 0.432 1.826 -1.233 -1.397 7.386 5.676 1.889 2.118
Cutt × CCMi -4.438 -5.431 4.774 5.498 -11.557 -8.098 -1.532 -1.618

R2 0.180 0.093 0.046 0.094 0.135 0.071 0.035 0.069

Constant -1.427 -0.699 1.600 -0.047 1.943 0.599 -3.148 -1.300

Ir
el

a
n
dCCMi 2.699 2.013 -1.825 1.515 -2.434 -0.372 4.608 2.386

Cutt 1.591 0.800 -3.937 -3.959 -1.836 -1.783 6.646 6.611
Cutt × CCMi -5.360 -4.138 4.365 4.257 0.578 0.480 -10.307 -10.199

R2 0.077 0.088 0.111 0.100 0.070 0.081 0.144 0.142

Constant -13.577 -4.923 2.115 0.049 -9.035 5.053 57.499 11.787

It
a
ly

CCMi 21.730 7.652 -3.200 0.420 9.790 -6.373 -64.933 -13.173
Cutt 10.486 3.241 -4.758 -5.263 7.096 -7.191 -58.018 -11.637

Cutt × CCMi -18.172 -5.745 6.359 7.139 -8.513 8.350 64.721 12.368

R2 0.220 0.052 0.059 0.070 0.024 0.009 0.286 0.056

Constant -18.110 -11.868 -4.839 -18.281 6.909 12.002 21.147 5.311

P
o
rt

u
g
a
l

CCMi 35.474 23.395 10.443 37.059 -8.221 -14.195 -24.253 -6.115
Cutt 12.676 10.125 -1.456 12.164 -4.472 -8.228 -18.552 -1.744

Cutt × CCMi -27.587 -21.228 0.313 -26.269 4.031 8.807 20.801 1.664

R2 0.357 0.220 0.132 0.366 0.062 0.087 0.137 0.029

Constant -5.921 -2.618 2.437 1.837 9.240 24.600 63.802 25.678

S
p
a
in

CCMi 10.361 4.674 -3.332 -1.957 -10.514 -28.106 -71.545 -28.420
Cutt -3.285 -3.198 -10.492 -10.441 -8.280 -22.848 -67.257 -30.045

Cutt × CCMi 3.089 4.733 15.672 15.502 8.496 25.973 75.329 33.519

R2 0.186 0.070 0.115 0.128 0.049 0.104 0.277 0.135

Observations 45

Table 13.
Policy Efficiency: GIIPS Regression with Interaction Term (bold font indicates 10% significance)
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Monetary Policy Transmission

9m 12m 18m 24m

Bearish Contagion Centrality

Constant -2.571 -2.259 -7.915 -8.702 -4.946 -5.010 -2.712 -0.042

G
er

m
a
n
y

CCMi 3.556 3.028 10.993 12.213 6.728 6.833 5.570 0.909
Cutt -0.430 -1.215 0.187 1.486 0.240 0.367 -0.878 -8.368

Cutt × CCMi 1.250 -1.987 -0.200 12.095

R2 0.023 0.024 0.160 0.160 0.081 0.081 0.063 0.113

Constant -1.658 -2.482 -1.235 -2.716 -2.499 -2.843 -1.040 -2.478

F
ra

n
ceCCMi 2.221 3.551 1.850 4.249 3.898 4.454 2.162 4.512

Cutt -0.327 1.439 -0.157 2.925 0.265 0.985 -0.390 2.590
Cutt × CCMi -2.747 -4.817 -1.128 -4.681

R2 0.009 0.012 0.005 0.014 0.030 0.031 0.011 0.019

Constant -7.467 -12.724 -7.903 -12.880 -9.232 -22.286 -6.450 -6.707

N
et

h
er

la
n
d
s

CCMi 10.041 18.052 11.153 18.783 12.261 31.606 8.882 9.286
Cutt -1.300 9.362 -0.717 7.831 -0.424 17.183 -0.862 -0.261

Cutt × CCMi -15.911 -12.851 -25.956 -0.904

R2 0.108 0.148 0.114 0.141 0.120 0.176 0.083 0.083

Bullish Contagion Centrality

Constant 0.271 3.219 7.152 15.312 -0.882 16.213 3.971 23.241

G
er

m
a
n
y

CCMi -0.872 -4.272 -9.641 -19.228 -0.039 -19.952 -4.009 -25.979
Cutt -0.243 -4.653 0.275 -10.694 0.578 -22.849 -0.650 -26.745

Cutt × CCMi 5.166 13.012 27.534 30.209

R2 0.002 0.006 0.068 0.083 0.014 0.095 0.020 0.113

Constant 3.505 1.886 0.542 13.933 -2.116 14.098 4.573 35.207
F

ra
n
ceCCMi -4.323 -2.478 -0.726 -15.980 2.301 -16.167 -4.879 -39.472

Cutt -0.384 1.928 -0.098 -18.639 0.516 -22.399 -0.465 -38.770
Cutt × CCMi -2.672 21.365 26.456 43.704

R2 0.011 0.012 0.000 0.045 0.011 0.078 0.015 0.136

Constant 2.507 1.311 7.392 -3.371 3.879 -1.979 1.161 0.744

N
et

h
er

la
n
d
s

CCMi -4.200 -2.829 -9.525 2.799 -6.105 0.607 -2.374 -1.897
Cutt -0.939 1.081 -0.544 16.276 -0.110 8.142 -0.502 0.135

Cutt × CCMi -2.365 -19.683 -9.606 -0.740

R2 0.031 0.031 0.043 0.080 0.018 0.027 0.010 0.010

Observations 45

Table 14. Policy Effi-
ciency: Eurozone Countries Regression with Interaction Term (bold font indicates 10% significance)
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Monetary Policy Transmission

9m 12m 18m 24m

Bearish Contagion Centrality

Constant -1.806 0.029 0.136 4.242 2.038 8.949 -0.174 6.066

S
w

it
ze

rl
a
n
d

CCMi 4.402 1.160 1.365 -5.677 -2.327 -13.831 1.911 -8.702
Cutt -1.031 -4.753 -0.623 -7.906 -0.114 -11.330 -0.642 -11.766

Cutt × CCMi 6.329 12.339 18.655 18.769

R2 0.062 0.076 0.017 0.071 0.010 0.115 0.020 0.133

Constant -5.937 -10.882 -7.939 -19.434 -6.285 -12.473 -4.070 -3.424

U
K

CCMi 9.717 17.840 13.020 31.587 8.721 18.282 6.621 5.548
Cutt -2.064 9.027 -1.463 15.974 -0.482 9.499 -0.299 -1.635

Cutt × CCMi -17.451 -27.560 -15.342 2.156

R2 0.199 0.269 0.220 0.330 0.097 0.147 0.065 0.066

Constant -6.841 -6.779 -6.216 -11.342 -5.079 -10.598 -7.636 -13.538

S
w

ed
enCCMi 10.075 9.973 8.586 16.804 7.150 16.154 12.274 21.957

Cutt -0.667 -0.800 0.144 7.472 0.323 8.253 -0.137 8.579
Cutt × CCMi 0.209 -11.679 -12.880 -14.175

R2 0.129 0.129 0.110 0.139 0.093 0.134 0.203 0.241

Bullish Contagion Centrality

Constant 4.459 0.203 10.163 10.514 9.274 13.802 4.604 21.819

S
w

it
ze

rl
a
n
d

CCMi -4.571 0.600 -11.074 -11.487 -10.323 -15.663 -4.470 -24.619
Cutt -1.162 9.053 -1.382 -2.010 -0.875 -8.675 -0.869 -26.882

Cutt × CCMi -13.051 0.775 9.605 31.758

R2 0.051 0.086 0.106 0.106 0.087 0.101 0.033 0.167

Constant -0.452 -2.776 1.743 3.038 1.044 4.862 -3.403 0.435
U

K
CCMi 0.455 3.414 -2.344 -3.997 -2.508 -7.448 4.213 -0.676
Cutt -1.517 3.979 -0.787 -3.256 -0.172 -7.034 -0.096 -7.367

Cutt × CCMi -7.010 3.147 8.803 9.218

R2 0.092 0.103 0.033 0.035 0.008 0.027 0.019 0.040

Constant -0.100 0.766 1.062 2.247 0.616 0.870 -0.420 -1.379

S
w

ed
enCCMi -0.994 -2.053 -2.725 -4.193 -1.869 -2.181 -0.079 1.083

Cutt -0.218 -2.251 0.380 -2.105 0.516 -0.009 0.316 2.326
Cutt × CCMi 2.544 3.129 0.657 -2.501

R2 0.003 0.005 0.020 0.023 0.019 0.020 0.005 0.007

Observations 45

Table 15. Policy Efficiency:
Non-Eurozone Countries Regression with Interaction Term (bold font indicates 10% significance)
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6.1.3 Tail Index Estimates

Period pre-GFC GFC post-GFC EDC post-EDC Full Period

Equity Returns Layer

AUT 2.065 2.853 2.265 2.556 2.335 1.889
BEL 2.047 2.408 3.251 2.400 2.276 2.129
CHE 2.031 2.180 2.707 2.142 2.097 2.141
DEU 2.273 1.834 2.257 2.517 2.269 2.310
DNK 2.300 2.168 2.332 2.403 2.119 2.296
ESP 2.381 2.214 2.432 2.612 2.356 2.345
FIN 2.235 2.444 2.520 2.501 2.451 2.120
FRA 2.301 1.886 2.325 2.277 2.338 2.229
GBR 2.256 2.374 1.890 2.485 2.416 2.124
GRC 2.104 2.121 2.991 3.218 2.141 2.123
IRL 2.078 3.148 2.532 2.170 2.245 1.975
ITA 2.208 1.891 2.375 2.312 2.444 2.391
NLD 2.088 1.798 2.902 2.343 2.271 2.091
PRT 2.114 2.030 2.054 2.330 2.438 2.218
SWE 2.407 2.613 3.059 2.066 2.336 2.264
EU 2.204 2.270 2.513 2.442 2.317 2.179
EZ 2.172 2.239 2.537 2.476 2.324 2.165

GIIPS 2.177 2.281 2.477 2.528 2.325 2.210
ALL 2.193 2.264 2.526 2.422 2.302 2.176

Bond Interest Rates Layer

AUT 10.941 21.818 73.897 14.351 0.705 0.510
BEL 10.939 23.975 97.691 10.568 0.936 0.645
CHE 7.947 14.135 57.655 5.017 3.547 1.305
DEU 10.377 33.767 17.280 14.068 0.257 0.202
DNK 9.530 22.067 43.725 9.480 0.265 0.213
ESP 9.675 20.821 106.833 42.013 2.496 1.740
FIN 10.169 6.260 92.343 13.234 0.346 0.283
FRA 10.927 21.328 95.888 15.886 0.933 0.622
GBR 12.929 13.842 17.210 15.223 1.798 1.302
GRC 10.766 32.489 60.102 8.478 3.861 4.269
IRL 6.900 55.535 33.065 21.848 2.642 1.488
ITA 11.088 54.533 66.879 24.861 5.028 2.580
NLD 11.351 24.842 64.352 10.987 0.258 0.209
PRT 10.878 18.407 78.984 28.171 1.680 1.251
SWE 8.394 11.071 25.048 13.865 0.601 0.446
EU 10.347 25.768 62.378 17.360 1.558 1.126
EZ 10.365 28.525 71.574 18.588 1.740 1.255

GIIPS 9.861 36.357 69.173 25.074 3.141 2.266
ALL 10.187 24.993 62.063 16.537 1.690 1.138

Table 16. Lower Tail Index: European Countries (Hill’s Estimate, 10% trunc.)
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Period pre-GFC GFC post-GFC EDC post-EDC Full Period

Equity Returns Layer

AUT 3.016 1.835 3.894 2.667 2.782 2.495
BEL 2.225 2.310 4.642 2.219 2.674 2.382
CHE 2.493 1.841 3.334 2.655 2.570 2.465
DEU 2.498 1.769 3.481 2.500 2.735 2.425
DNK 2.862 2.449 2.942 2.763 2.720 2.543
ESP 2.310 1.907 4.170 2.699 2.456 2.489
FIN 2.205 2.075 2.579 2.351 2.651 2.090
FRA 2.465 1.945 4.029 2.754 2.413 2.367
GBR 2.378 1.834 3.232 2.428 2.465 2.255
GRC 2.074 2.350 3.462 2.614 2.361 2.286
IRL 2.670 2.230 3.859 2.731 3.082 2.376
ITA 2.323 2.051 3.151 2.686 2.336 2.345
NLD 2.073 1.795 2.669 2.809 2.335 2.189
PRT 2.261 2.377 3.756 2.609 2.631 2.501
SWE 2.332 2.232 3.168 2.310 2.707 2.204
EU 2.406 2.083 3.502 2.581 2.596 2.353
EZ 2.374 2.059 3.608 2.604 2.587 2.359

GIIPS 2.327 2.183 3.680 2.668 2.573 2.399
ALL 2.412 2.067 3.491 2.586 2.594 2.361

Bond Interest Rates Layer

AUT 36.597 30.540 51.543 49.422 9.601 19.572
BEL 36.931 33.113 54.227 18.217 8.133 20.488
CHE 14.553 26.233 27.806 31.385 10.109 12.766
DEU 41.632 35.018 54.408 55.882 13.845 21.519
DNK 38.368 28.501 102.181 50.959 10.840 18.168
ESP 41.845 34.420 46.137 14.778 7.563 16.045
FIN 43.103 30.664 49.443 51.419 15.122 20.833
FRA 39.653 26.659 50.155 63.872 10.352 20.141
GBR 18.292 55.606 59.870 56.483 22.345 17.210
GRC 6.256 33.089 60.132 18.482 2.484 1.962
IRL 42.726 25.586 74.093 10.547 3.788 3.044
ITA 43.074 31.981 65.379 10.082 6.804 16.953
NLD 41.186 27.083 59.637 55.241 13.616 19.700
PRT 43.116 32.860 123.876 16.592 3.456 2.634
SWE 26.332 62.460 38.963 63.355 11.111 21.527
EU 35.651 34.827 63.575 38.238 9.933 15.700
EZ 37.829 31.001 62.639 33.139 8.615 14.808

GIIPS 35.403 31.587 73.924 14.096 4.819 8.128
ALL 34.244 34.254 61.190 37.781 9.944 15.504

Table 17. Upper Tail Index: European Countries (Hill’s Estimate, 10% trunc.)
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Period pre-GFC GFC post-GFC EDC post-EDC Full Period

Equity Returns Layer

AUT 0.73% 1.88% 1.64% 1.20% 0.80% 0.92%
BEL 0.79% 1.46% 1.06% 0.98% 0.68% 0.83%
CHE 0.84% 1.34% 0.80% 0.76% 0.62% 0.79%
DEU 1.12% 1.37% 1.23% 1.04% 0.78% 1.02%
DNK 0.83% 1.51% 1.25% 0.91% 0.74% 0.87%
ESP 0.97% 1.48% 1.08% 1.22% 0.89% 1.02%
FIN 1.43% 1.56% 1.42% 1.06% 0.73% 1.16%
FRA 1.00% 1.52% 1.13% 1.13% 0.78% 0.98%
GBR 0.80% 1.45% 0.93% 0.86% 0.60% 0.79%
GRC 1.09% 1.46% 1.39% 1.67% 1.32% 1.27%
IRL 0.76% 1.95% 1.44% 1.09% 0.73% 0.90%
ITA 0.90% 1.45% 1.26% 1.25% 1.02% 1.03%
NLD 1.01% 1.55% 1.14% 0.96% 0.68% 0.94%
PRT 0.71% 1.20% 0.84% 1.01% 0.83% 0.83%
SWE 1.11% 1.65% 1.30% 1.02% 0.73% 1.02%
EU 0.95% 1.53% 1.22% 1.10% 0.81% 0.97%
EZ 0.95% 1.53% 1.24% 1.15% 0.84% 0.99%

GIIPS 0.89% 1.51% 1.20% 1.25% 0.96% 1.01%
ALL 0.94% 1.52% 1.20% 1.08% 0.80% 0.96%

Bond Interest Rates Layer

AUT 0.60% 0.19% 0.18% 0.31% 0.62% 1.44%
BEL 0.61% 0.20% 0.13% 0.37% 0.75% 1.38%
CHE 0.45% 0.29% 0.13% 0.38% 0.41% 1.15%
DEU 0.53% 0.39% 0.12% 0.47% 0.52% 1.51%
DNK 0.60% 0.32% 0.10% 0.52% 0.50% 1.57%
ESP 0.61% 0.20% 0.15% 0.65% 1.39% 1.15%
FIN 0.60% 0.26% 0.13% 0.40% 0.55% 1.48%
FRA 0.56% 0.28% 0.11% 0.28% 0.65% 1.34%
GBR 0.37% 0.48% 0.14% 0.54% 0.46% 1.35%
GRC 1.13% 0.36% 0.35% 7.12% 3.56% 3.48%
IRL 0.58% 0.34% 0.26% 2.02% 1.45% 1.55%
ITA 0.57% 0.18% 0.16% 0.71% 1.07% 0.99%
NLD 0.57% 0.24% 0.12% 0.42% 0.60% 1.46%
PRT 0.61% 0.19% 0.22% 3.07% 1.93% 1.50%
SWE 0.62% 0.49% 0.13% 0.51% 0.57% 1.49%
EU 0.61% 0.29% 0.16% 1.24% 1.04% 1.55%
EZ 0.63% 0.26% 0.17% 1.44% 1.19% 1.57%

GIIPS 0.70% 0.25% 0.23% 2.72% 1.88% 1.73%
ALL 0.60% 0.29% 0.16% 1.19% 1.00% 1.52%

Table 18. The Absolute Deviation IV: European Countries
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