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1 Introduction

Since the seminal work of Black and Scholes (1973), the academic literature on the options

market has produced tremendous amount of work in the model specification of stock returns.

Studies in this literature typically focus on extending the Black-Scholes model by different

ways of relaxing the assumption that stock price follows geometric Brownian motion with

constant drift.1 However, the focus of the literature has been mainly placed on the pricing

of the options contract rather than the returns from option investments.2 Recent literature

has started to pay attention to the determinants of the cross-sectional differences of average

equity option returns. Papers along this direction include Goyal and Saretto (2009), Cao

and Han (2013), Vasquez (2017), Cao, Han, Tong, and Zhan (2017), Cao, Vasquez, Xiao,

and Zhan (2018), and Ruan (2020). However, findings of these papers are often based on

market imperfections, and thus do not have direct connections to the rich literature on option

pricing models. In this paper, we make an attempt to understand how departures from the

traditional assumption of geometric Brownian motion with constant drift as the stock price

process can be important determinants of expected option returns. Specifically, we focus on

the underlying stock’s return autocorrelation and establish both theoretical and empirical

relationship between the autocorrelation and expected equity option returns.

In this paper, we build upon the insight from the model studied by Lo and Wang (1995)

that incorporates non-zero stock return autocorrelation in the option pricing. Lo and Wang

(1995) suggests that investors can misprice an option if they use the unconditional variance

in the Black-Scholes formula if returns in fact have non-zero autocorrelation. Different from

them, we study how the underlying stock’s return autocorrelation can explain the cross

section of average equity option returns, rather than option prices. It is not entirely obvious

1Influential papers in this category includes Merton (1976), Heston (1993), Bates (1996), and Duffie, Pan,
and Singleton (2000).

2Existing literature has mainly focused on the investment problem on index options rather than cross-
section of equity options. See, e.g., Liu and Pan (2003) and Faias and Santa-Clara (2017).
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why autocorrelation can be an important determinant of expected option returns. This is

because while non-zero return autocorrelation implies the drift of the stock price process is

not constant, it has no impact on the pricing of options as pointed out by Grundy (1991)

and Lo and Wang (1995). Nevertheless, expected future payoffs and hence expected returns

of options can be heavily influenced by the non-constant drift of the stock price process. In

particular, we show that under the model of Lo and Wang (1995), the expected returns for

both calls and puts monotonically increase with the autocorrelation of the underlying stock’s

return.3

The monotonic relationship between the return autocorrelation and expected returns

on options is well supported empirically. Using equity option returns data from January

1996 to December 2018, we document the monotonic pattern in quintile portfolio returns

sorted by the underlying stock’s autocorrelation coefficients. The difference between the

highest autocorrelation portfolio and the lowest autocorrelation portfolio delivers a statis-

tically significant monthly return of 6.9% for call options and 5.7% for put options. We

also show that these results are not due to the other known drivers of cross-sectional equity

option returns and that they are robust to different holding periods, different methods to

compute autocorrelation, and different moneyness of the option contract. Moreover, it is

also robust to an alternative measure of serial dependence, namely the variance ratio of Lo

and MacKinlay (1988). Analyses based on Fama-MacBeth regressions further suggest that

our result is not driven by the known determinants of expected equity option returns. Our

measure of stock return autocorrelation remains statistically significant after controlling for

idiosyncratic volatility from Cao and Han (2013), realized stock return volatility from Hu

and Jacobs (2020), variance risk and illiquidity premium from Goyal and Saretto (2009),

term structure of implied volatilities from Vasquez (2017), ex-ante skewness from Boyer and

3This is in contrast to Hu and Jacobs (2020) where they find that expected call option return is decreasing
in volatility while expected put option return is increasing in volatility. Therefore, our result is unlikely driven
by the level of volatility.
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Vorkink (2014), and volatility-of-volatility from Cao, Vasquez, Xiao, and Zhan (2018) and

Ruan (2020).

We contribute to the theoretical literature on how expected returns of options are deter-

mined. Relative to the massive literature on pricing of options, there are few studies that

analyzed expected return of options. Under the Black-Scholes model, Rubinstein (1984)

derives the expected return of an option over a finite holding period. Coval and Shumway

(2001) computes the average returns of zero-beta straddles using index option data, where

the betas of the options are computed using the Black-Scholes model. Broadie, Chernov,

and Johannes (2009) computes expected hold-to-expiration returns of options under vari-

ous option pricing models, including the Black-Scholes, the Heston (1993) model, and the

stochastic volatility jump model suggested by Bates (1996). Boyer and Vorkink (2014) stud-

ies the option portfolio returns sorted by the ex-ante skewness of option returns computed

from the Black-Scholes model. Xiao and Vasquez (2016) uses the structural model of firm’s

capital structure to derive an analytical relationship between the firm’s leverage and equity

option returns. Also, Hu and Jacobs (2020) uses the Black-Scholes and the Heston model

to study the relationship between the underlying stock return volatility and expected option

returns. Our contribution is to derive the expected holding period return of options for the

class of models in Lo and Wang (1995) which incorporates stock return autocorrelation.

Recent empirical literature has identified some interesting variables that explain the cross-

sectional differences of average equity option returns. In particular, several studies have

focused on variables that measure the frictions of the underlying stock market and analyzed

their impact on the average equity option returns. For instance, Cao and Han (2013) shows

the relationship between the underlying stock’s idiosyncratic volatility and average delta-

hedged equity option returns while Cao, Vasquez, Xiao, and Zhan (2018) and Ruan (2020)

document the volatility uncertainty measured by volatility of volatility is related to average

delta-hedged equity option returns. In those papers, the cross-sectional differences in average
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option returns are attributed to market imperfections and financial intermediary constraints.

In addition, Cao, Han, Tong, and Zhan (2017) documents interesting findings that many

predictors of underlying stock returns can also explain the average delta-hedged equity option

returns. Instead of finding variables that capture various aspects of market frictions, our

study suggests that an often overlooked attribute of stock return dynamics, namely the

autocorrelation, can help to explain the cross-sectional differences of expected option returns.

Besides explaining the cross-sectional difference of average returns of equity options,

stock return autocorrelation can also provide valuable information for investors to improve

the performance of their portfolios. We demonstrate this by considering an optimal portfolio

problem that involves the risk-free asset, the S&P500 index, and a set of equity options.

We show that incorporating the information on stock return autocorrelation in constructing

the optimal portfolio leads to a significant improvement in out-of-sample Sharpe ratio and

certainty equivalent, even after taking into account of transaction costs.

The remainder of the paper is organized as follows. Section 2 provides the analytical

relationship between the stock return autocorrelation and expected option returns building

on the models developed in Lo and Wang (1995). Section 3 provides the empirical result

using the cross-sectional equity option returns data. Section 4 proposes and implements

an investment strategy that incorporates our empirical findings. Section 5 performs various

robustness checks and Section 6 concludes.

2 Stock Return Autocorrelation and Expected Option

Returns

Geometric Brownian motion with constant drift has been the standard assumption for stock

price process used in option pricing, for example, in the Black-Scholes model. However, this

stock price process implies that stock returns have zero autocorrelation. In order to accom-
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modate non-zero autocorrelations in returns, Lo and Wang (1995) considers the following

trending Ornstein-Uhlenbeck (O-U) process for log stock price:

d log(St) = (−γ(log(St)− µt) + µ)dt+ σdWt, (1)

where St is the stock price at time t, µ is the drift coefficient, σ is the diffusion coefficient,

γ ≥ 0 is the “speed of adjustment” parameter, and Wt is a standard Weiner process. Unlike

the original Black-Scholes model, which assumes that log-prices follow an arithmetic random

walk with independently and identically distributed Guassian increments, this log-price pro-

cess is the sum of a zero-mean stationary autoregressive Gaussian process and a deterministic

linear trend.

Defining

rk = log(St+k)− log(St) (2)

as the k-period continuously compounded return of the underlying stock, it can be readily

shown that under the trending O-U process in (1), rk ∼ N(kµ, kσ2
k), where

σ2
k =

σ2
(
1− e−kγ

)
kγ

. (3)

In addition, the k-period return exhibits a first-lag autocorrelation of

ρk(1) = −1

2
(1− e−kγ), (4)

where ρk(1) is a monotonic decreasing function of γ.

As noted by Grundy (1991) and Lo and Wang (1995), the risk-neutral dynamics of the

stock price remains the same as in the Black-Scholes model even though the stock price

follows the trending O-U process under the physical measure. Simple reasoning is that the

drift under the risk-neutral measure has to be equal to the risk-free rate r in order to avoid
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arbitrage. This means that call and put option prices remain the same as in the Black-

Scholes model even when the stock price follows the trending O-U process. We denote the

corresponding Black-Scholes call and put prices as

Ct = CBS(St, K, r, τ, σ) = StΦ(d1)−Ke−rτΦ(d2), (5)

Pt = PBS(St, K, r, τ, σ) = Ke−rτΦ(−d2)− StΦ(−d1), (6)

where K is the strike price, r is the continuously compounded risk-free rate, τ is the time-

to-maturity,

d1 =
log
(
St
K

)
+
(
r + σ2

2

)
τ

σ
√
τ

, (7)

d2 = d1 − σ
√
τ , (8)

and Φ(·) is the cumulative distribution function of a standard normal random variable.

It is important to emphasize that we need to use σ, i.e., the instantaneous volatility in

the above formulae to obtain the correct option prices. Using the volatility of rτ (i.e., στ )

in the Black-Scholes formula will lead to erroneous prices for the options. While γ or ρτ (1)

has no impact on the price of an option today, it plays an important role in determining the

expected future price of an option. In the following Proposition, we present the expected

future price of a general European derivative on the underlying stock when it follows the

trending O-U process in (1).

Proposition 1. Suppose the stock price follows the trending O-U process defined in (1).

Consider a general European derivative with its payoff at time t + τ being a deterministic

function of the stock price at time t+ τ . If the derivative has a current price of

Ht = Ht(St, σ), (9)
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then its expected price at t+ k for 0 < k ≤ τ is given by

Et[Ht+k] = erkHt(S
∗
t , σ

∗), (10)

where

S∗t = St exp

([
µ− r +

σ2
k

2

]
k

)
, (11)

σ∗2 =
kσ2

k + (τ − k)σ2

τ
. (12)

Proofs of all propositions are given in the Appendix. The result of this Proposition

is quite general; it covers all kinds of European derivatives, including calls, puts, binary

options and compound options. It can be also applied to other types of O-U processes

such as bivariate and multivariate O-U processes, which we discuss later in this section. It

suggests that as long as one has the ability to compute the derivative price today (either

analytically or numerically), one can easily compute its expected price at k-periods from

now by replacing St and σ in the pricing formula with S∗t and σ∗ and then multiplying the

price by erk. It should be noted that Rubinstein (1984) has derived the expected value of

the call and put options at times t + k under the assumption that the stock price follows a

geometric Brownian motion. Their result can be obtained as a special case of Proposition 1

when we set σk = σ.4

As a special case of Proposition 1, we can compute the expected payoff of a European

derivative at its maturity, and the result is summarized in the following corollary.

Corollary 1.1. Suppose the stock price follows the trending O-U process defined in (1). For

a general European derivative with current price of Ht = Ht(St, σ) and a time-to-maturity

4Rubinstein’s proof relies on direct integration of the Black-Scholes formula to obtain the expected return
of the option. It is difficult to generalize his proof to the case of more complex European derivatives.
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of τ , its expected payoff at maturity is given by

Et[Ht+τ ] = erτHt(S̃t, στ ), (13)

where

S̃t = St exp

([
µ− r +

σ2
τ

2

]
τ

)
. (14)

With the ability to compute the expected price of a derivative at any time before maturity,

we can compute the expected return of an option for different holding periods, including

expected hold-to-expiration return. For the European call and put with time-to-maturity

τ , we can use Proposition 1 to obtain their expected k-period (k ≤ τ) returns under the

trending O-U process as

E[RC
t (k)] =

Et[Ct+k]

CBS(St, K, r, τ, σ)
− 1 =

erkCBS(S∗t , K, r, τ, σ
∗)

CBS(St, K, r, τ, σ)
− 1, (15)

E[RP
t (k)] =

Et[Pt+k]

PBS(St, K, r, τ, σ)
− 1 =

erkPBS(S∗t , K, r, τ, σ
∗)

PBS(St, K, r, τ, σ)
− 1. (16)

With the explicit expressions of E[RC
t (k)] and E[RP

t (k)] available, we can analyze the

impact of stock return autocorrelation on expected option returns. Note that from (3) and

(4), we can see that ρk(1) and σk are monotonic increasing functions of each other. Therefore,

∂E[RC
t (k)]/∂ρk(1) has the same sign as ∂E[RC

t (k)]/∂σk. Similarly, ∂E[RP
t (k)]/∂ρk(1) has the

same sign as ∂E[RP
t (k)]/∂σk. In the following Proposition, we provide explicit expressions

of ∂E[RC
t (k)]/∂σk and ∂E[RP

t (k)]/∂σk.

Proposition 2. Suppose the stock price follows the trending O-U process defined in (1). The

partial derivatives of E[RC
t (k)] and E[RP

t (k)] with respect to σk are given by

∂E[RC
t (k)]

∂σk
=
erkS∗t kσk

Ct

[
Φ(d∗1) +

φ(d∗1)

σ∗
√
τ

]
, (17)

∂E[RP
t (k)]

∂σk
=
erkS∗t kσk

Pt

[
−Φ(−d∗1) +

φ(d∗1)

σ∗
√
τ

]
, (18)
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where φ(·) is the probability density function of a standard normal random variable and

d∗1 =
log
(
S∗
t

K

)
+
(
r + σ∗2

2

)
τ

σ∗
√
τ

. (19)

From (17), we can easily see that ∂E[RC
t (k)]/∂σk > 0, so expected return of a call option

is an increasing function of the first order autocorrelation of stock returns. For the case of

(18), we show in the proof of Proposition 2 that when k = τ and µ > 0, a sufficient condition

for ∂E[RP
t (k)]/∂σk > 0 is K ≤ S (i.e., the put option is at-the-money or out-of-the-money).

In principle, (18) can take negative values when the put is deep in-the-money. However, for

reasonable choices of parameters we often encounter, the partial derivative in (18) is positive.

As an example, Figure 1 plots the expected stock return, expected hold-to-expiration re-

turns for at-the-money (ATM) calls, puts and straddles as a function of first-order autocorre-

lation of stock returns under the trending O-U process, assuming µ = 0.1, r = 0.05, σ = 0.2,

and τ = 1/12. The τ -period expected return of the stock is given by exp
(
τµ+ τσ2

τ

2

)
− 1.

Although σ2
τ is an increasing function of the stock return autocorrelation, the impact of stock

return autocorrelation on the expected return of the stock is quite minimal, especially for a

short horizon like τ = 1/12. In contrast, the expected returns of the ATM calls, puts, and

straddles all display a monotonic increasing relation with the stock return autocorrelation

coefficient. When we compare the expected option returns between two extreme cases ρ = 0,

which corresponds to the Black-Scholes model, and ρ = −0.2, the difference is 11.28% for

call option while it is 11.77% for put options. This suggests that autocorrelation in stock

returns indeed has a significant impact on the expected returns of ATM options.

To gain a better understanding of why the autocorrelation of stock return has such a

large impact on the expected return of the options, we plot the distribution of St+τ for two

different cases (ρ = −0.2 and 0) in Figure 2, with the current stock price set to St = 1.

It is obvious that with a higher stock return autocorrelation, there is an increase in the
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volatility of the stock price at maturity. However, E[St+τ ] is hardly affected by the increase

in volatility because the larger positive outcome of St+τ tends to be offset by its larger

negative outcome, and the expected stock returns for the two cases are very close to each

other (0.969% vs. 1.005%). On the contrary, options benefit from extreme outcomes on only

one side and their expected payoffs are heavily affected by the volatility of the stock price at

maturity. In Figure 2, we use two vertical lines to indicate the expected payoffs for the stock,

conditional on that it is below or above $1, i.e., E[St+τ |St+τ < 1] and E[St+τ |St+τ > 1]. For

ATM options, these conditional payoffs are the most relevant quantities that determine their

expected payoffs. For example, the expected payoff of an ATM call option is equal to

E[Ct+τ ] = P [St+τ > 1](E[St+τ |St+τ > 1]− 1). (20)

When ρ = −0.2, the probability for the call to be in the money is 0.5648, and the expected

payoff conditional on the call being in the money is $1.0455 − $1 = $0.0455. This leads to

an expected payoff for the call option to be 0.5648 × $0.0455 = $0.02570. When ρ = 0,

the probability for the call to be in the money is 0.5574, and the payoff conditional on it

being in the money is $1.0512 − $1 = $0.0512. The expected payoff for the call option is

0.5574 × $0.0512 = $0.02854. Although the difference in the expected payoff for the call

options in these two cases is not large ($0.02570 vs. $0.02854), the call option is a highly

leveraged position and it is selling at a much lower price ($0.02512) than the stock. As a

result, the small difference in the expected payoffs for the call option leads to a large difference

of (0.02854− 0.02570)/0.02512 = 11.28% for the expected return of the call options. Similar

calculation also shows that the expected payoff of ATM put option also increases as the stock

return autocorrelation increases from −0.2 to 0. In summary, there are two main reasons

why the expected option return is heavily affected by the stock return autocorrelation. One

is due to the fact that an option benefits from extreme outcomes because of its asymmetric

payoff structure, and the other is the high leveraged position of an option magnifies those
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extreme outcomes further when returns are considered.

While Figure 1 suggests that autocorrelation of stock return is an important determinant

of expected returns of ATM options, it is of interest to understand whether the same pattern

continues to hold for options with different levels of moneyness. To this end, we plot expected

hold-to-expiration call and put option returns for different levels of moneyness (K/S = 0.95,

1, or 1.05). Instead of plotting the expected option return as a function of stock return

autocorrelation alone, we plot the expected option return as a function of stock return

autocorrelation and stock return volatility. This allows us to judge the relative importance

of these two determinants of expected option returns in different scenarios. Figure 3 suggests

that stock return autocorrelation is extremely important in determining the expected return

of out-of-the-money options (i.e., K/S = 1.05 for call and K/S = 0.95 for put), especially

when the volatility is low. In contrast, for in-the-money options, stock return autocorrelation

is an important determinant of their expected returns only when return volatility is high.

Hu and Jacobs (2020) suggests that stock return volatility is an important determinant of

expected option returns. In particular, they suggest that expected call option return is a

decreasing function of stock return volatility whereas the expected put option return is an

increasing function of stock return volatility. For the Black-Scholes case (i.e., ρ = 0), we

indeed observe such a pattern. However, when returns exhibit negative autocorrelation, we

find that the expected return of in-the-money put option (K/S = 1.05) is in fact a decreasing

function of volatility. While we find that stock return volatility is an important determinant

of expected option returns across various cases considered in Figure 3, the effect of stock

return autocorrelation is just as an important determinant of expected option return as the

stock return volatility.

Although the trending O-U process provides a simple analytical tool to embed autocor-

relation of stock returns into the option pricing framework, it has a limitation of being only

able to generate negative return autocorrelation. In practice, both negative and positive
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autocorrelation of stock returns are often observed in the cross-section. To overcome this

issue, Lo and Wang (1995) proposes a bivariate trending O-U process that can generate pos-

itive autocorrelation coefficients. In particular, Lo and Wang (1995) considers the following

special case of the bivariate trending O-U process:

d log(St) = (µ+ λXt)dt+ σdWt, (21)

dXt = −δXtdt+ σxdW
x
t , (22)

where the two Weiner processes Wt and W x
t are independent to each other. In this model,

λ controls the first-order autocorrelation coefficient and plays a similar role to γ in the

univariate trending O-U process. For this special case, σ2
k and ρk(1) have the following

expressions

σ2
k =

σ2

1− σqx

[
1− σqx

kδ
(1− e−kδ)

]
, (23)

ρk(1) =
σqx
δ

(1− e−kδ)2

2τ

[
1− σqx

kδ
(1− e−kδ)

] , (24)

where

σqx =
1

1 + ( δ
λ
)2 σ

2

σ2
x

. (25)

For fixed δ and σx, it is easy to show that both σ2
k and ρk(1) are increasing functions of σqx,

whereas the latter is a monotonic increasing function of λ. It turns out that for this bivariate

O-U process, we can apply Proposition 1 to obtain the expected future price of a European

option by simply replacing the expression of σk in (3) with the one in (23).

In Figure 4, we plot the expected stock return and expected hold-to-expiration returns for

ATM calls, puts, and straddles as a function of autocorrelation coefficient under the bivariate

trending O-U process, assuming µ = 0.1, r = 0.05, σ = 0.2, τ = 1/12, δ = 0.2, and σx = 0.1.
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The expected stock return is largely unaffected by the stock return autocorrelation, but

expected returns of ATM calls and puts again show a clear monotonic relationship with the

stock return autocorrelation coefficient for the case of the bivariate trending O-U process,

similar to the case of the univariate trending O-U process in Figure 1.

We plot in Figure 5 the expected hold-to-expiration returns of calls and puts as a function

of stock return autocorrelation and stock return volatility for different levels of moneyness

(K/S = 0.95, 1, or 1.05) under the bivariate trending O-U process. Similar to Figure 3

which is for the case of the univariate trending O-U process, we find that stock return auto-

correlation also has an important impact on expected returns of options under the bivariate

trending O-U process, especially for those out-of-the-money options on stocks with low re-

turn volatility. In most cases, the stock return autocorrelation is an important determinant

of expected option returns, and often more so than the stock return volatility.

Lastly, we also demostrate a monotonic relationship betwwen the stock return autocorre-

lation and expected option returns under the general bivariate trending O-U process. While

the two processes we considered so far, trending O-U process and the special case of bivaraite

trending O-U process, provide analytical tractability by allowing a closed-form solution, they

are limited to be able to generate only negative and positive autocorrelations, respectively.

The general form of bivariate trending O-U process we define below does not have this ana-

lytical tractability, but it allows us to generate both negative and positive autocorrelations:

d log(St) = (µ− γ(log(St)− µt) + λXt)dt+ σdWt, (26)

dXt = −δXtdt+ σxdW
x
t . (27)

We compute the expected option return under the general bivariate trending O-U process

using the simulation and plot its relationship with autocorrelations in Figure 6. Again,

the expected stock return is largely unaffected by the stock return autocorrelations, but

expected returns of ATM calls, puts, and straddles all show same monotonic relationship
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with the stock return autocorrelation, which now can take both negative and positive values.

The analytical results so far strongly support the relationship between the stock return

autocorrelation and expected option returns. However, this relationship may depend on

the particular choice of model specified in Lo and Wang (1995). The analytical result of

Proposition 1 suggests that what really matters for expected option returns is the difference

between the holding-period variance σ2
k and the instantaneous variance σ2. Therefore, we

also consider a less model-dependent approach by looking at the variance ratio statistic

studied in Lo and MacKinlay (1988)

V R =
σ2
k

σ2
. (28)

We will use the return autocorrelation as the main variable of interest throughout the paper.

We report the empirical results using variance ratio and discuss its performance relative

to the return autocorrelation in Section 5. Overall, the analytical exercise in this section

provides an insight that expected option returns should be an increasing function of the first-

order autocorrelation coefficient. In the next section, we test this relationship empirically

using equity option return data.

3 Empirical Evidence

3.1 Data and Variable Construction

We collect equity options data including best bid, best offer, implied volatility, expiration

date, strike price, and realized volatility from OptionMetrics database. The sample period is

from January 1996 to December 2018. When computing monthly option returns, we define

the beginning of the holding period of equity options to be the first trading day after the

standard monthly option expiration date (i.e., the third Friday of the expiration month), so
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that we are able to observe the largest portion of equity option trading every month. For

each month, we choose the individual equity options with the moneyness closest to 1 within

the range between 0.95 and 1.05, and with the time to maturity closest to 30 days within the

range between 25 and 40 days. The reason to choose 30-day ATM equity options is because

they are the most actively traded contracts in the equity option market.5 Following the

existing literature, we exclude observations that apparently violate no-arbitrage conditions,

have no trading volumes or open interests, have a quoted mid-price less than $0.125, and have

paid cash dividends during the holding period. The selected options will be held to expiration

and the portfolio is rebalanced every month.6 In our study, we consider three types of option

portfolios: the call option portfolio, the put option portfolio, and the straddle portfolio (i.e.,

a long position in both call and put options with the same strike price). The returns for

each of the three option positions are then defined below:

RC
i,t =

max(Si,t −Ki, 0)

Ci,t−1
− 1, (29)

RP
i,t =

max(Ki − Si,t, 0)

Pi,t−1
− 1, (30)

RStraddle
i,t =

max(Si,t −Ki, 0) + max(Ki − Si,t, 0)

Ci,t−1 + Pi,t−1
− 1, (31)

where i stands for firm i. One problem of using hold-to-expiration option returns is that

there are significant portions of options that expire out-of-the-money, leading to a highly

skewed return distribution as many of the return observations are equal to −1. The highly

skewed distribution may affect the performance of the statistical tests that rely on asymptotic

normality (e.g., t-test and Fama-MacBeth regression). Accordingly, following the empirical

options literature, we also look at the straddle portfolio which generates a less skewed return

5In Section 5 (robustness check), we show that our results also hold for alternative types of options such
as in-the-money and out-of-the money options.

6Note that the equity options are American style that can be exercised early. However, several studies (see,
for example, Broadie, Chernov, and Johannes (2007) and Boyer and Vorkink (2014)) argue that adjusting
for early exercise has minimal empirical implications. We therefore ignore the possibility of early exercise in
our empirical analysis.
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distribution (e.g., fewer observations of −1). Another advantage of using straddles is that

straddles are less sensitive to the returns of the underlying asset, as well as to the level

of volatility as in Hu and Jacobs (2020), therefore being able to reduce the effect of the

drift term and the level of volatility. As we have shown in Section 2, since the stock return

autocorrelation affects both expected call and put option returns in the same direction,

theoretically it should be able to explain expected straddle returns as well.

The underlying stock variables, such as stock return, stock price, trading volume, shares

outstanding, and share code, are collected from the CRSP database. The Fama-French five

factors and the risk-free rate are obtained from Kenneth French’s website. At the beginning

of the option holding period, we use a past 6-month (132 days) rolling window of daily return

observations to estimate the first-order autocorrelation of underlying stock’s return as

ρ̂i,t =

∑130
n=0(R

S
i,t−n − R̄S

i,t)(R
S
i,t−n−1 − R̄S

i,t)∑131
n=0(R

S
i,t−n − R̄S

i,t)
2

, (32)

where R̄S
i,t = 1

132

∑131
n=0R

S
i,t−n. A 6-month rolling window is reasonable since it can mitigate

short-term impacts from earnings announcement or major corporate events. The calculated

stock return autocorrelation is then used to sort stocks and options to form the correspond-

ing quintile portfolios. In order to show the robustness of our empirical results, we construct

several alternative measures of stock return autocorrelation at both daily and monthly fre-

quency. The results of the robustness checks are discussed in Section 5. A stock (or option)

is eligible to be included in the sample at certain month, if it has more than 100 daily obser-

vations during the past 6 months. To eliminate the effect of bid-ask bounce, especially from

penny stocks, we also exclude samples with stock prices less than $5.

Table 1 about here

Table 1 provides the summary statistics. During our sample period, we observe 1,022

firms on average for each month that has liquid options contracts traded. Panel A reports
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the average stock return autocorrelation coefficient being slightly negative at −0.007. Within

these firms, we see large variations in the stock return autocorrelation that the 25th percentile

of the observations is −0.038 while the 75th percentile of the observations is 0.030. Panel B

then reports the summary statistics of hold-to-expiration equity option returns in our sample.

As we discussed earlier, the option return is often −100% as many options expire out-of-

the-money. As options represent highly leveraged position, the positive side is also quite

extreme. The maximum returns for call, put, and straddle are 1,512%, 1,772%, and 740%,

respectively. The average monthly return of ATM call options is 5.3% while the average

monthly return of ATM put options is −16.5%, as stock returns are positive on average.

3.2 Portfolio Sorting

At the beginning of each portfolio holding period, we sort all eligible stocks, having obser-

vations of stock returns with call and put equity options, into quintiles based on their stock

return autocorrelations. Within each quintile, we compute both equal-weighted and value-

weighted (based on the underlying stock’s market capitalization) returns and then construct

a long-short portfolio between top and bottom quintiles for the following cases: call option

returns, put option returns, straddle returns, and stock returns. The reason for including

the underlying stock portfolio is to examine whether the explanatory power of the stock re-

turn autocorrelation on average option returns comes from its ability to explain the average

returns of the underlying stocks. We hold the portfolio until the expiration date of the op-

tions and calculate the corresponding holding period returns. Table 2 displays the empirical

results. In addition to computing the raw portfolio returns, we also calculate the alphas of

the portfolios based on the Fama-French five factor model from Fama and French (2015) to

check if our sorting only captures different risk exposures from the underlying stocks.

Given that the Fama-French five factor model focuses on explaining cross-sectional re-

turns of stock portfolios, it may not be suitable in capturing the nonlinearity of option
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returns. For this reason, we also consider an alternative nine factor model to capture the

nonlinear performance of portfolios. Seven of them are introduced by Fung and Hsieh (2001)

and they are bond trend-following factor, currency trend-following factor, commodity trend-

following factor, equity market factor, size spread factor, bond market factor, and credit

spread factor. In addition, we also include short-term interest rate lookback straddle and

stock index lookback straddle to capture the variance risk premium. All of these factors are

downloaded from David Hsiehs website.

Table 2 about here

In Table 2, we also use this nine factor model as an alternative benchmark to evaluate

the performance of portfolios sorted by the stock return autocorrelation. It confirms the

prediction of our Proposition 2 that expected return of an option is increasing in the stock

return autocorrelation. For example, the call options with the lowest underlying stock re-

turn autocorrelations (Low) underperform those with the highest underlying stock return

autocorrelations (High) by 6.9%/month. Similar evidence applies to put options and strad-

dles. As illustrated in Figures 1 and 4, the expected return of a stock is hardly affected by

its return autocorrelation. Consistent with this, we do not see significant difference in the

average returns between the portfolios of stocks with low and high return autocorrelations.

This suggests that the explanatory power of stock return autocorrelation on average option

returns is not due to its explanatory power on average returns of their underlying stocks. In

addition, the explanatory power of stock return autocorrelation cannot be fully explained by

realized volatility. If it is all driven by realized volatility, we should observe opposite effects

of stock return autocorrelation on call and put options (Hu and Jacobs (2020)), while in our

case, stock return autocorrelation positively explains the average returns of both call and

put options. In Table 2 Panel B, we show that our results hold for value-weighted portfolios,

implying that our empirical findings are not entirely driven by options of small firms. In

addition to raw option returns, we also consider the alpha of the long-short option (stock)
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portfolio based on the Fama-French five factor model and the hedge fund nine factor model.

The alphas of all long-short option portfolios are statistically significantly positive, implying

that our results cannot be explained by the common risk factors in the stock market or by

some nonlinear risk factors.

One may have concerns that the stock return autocorrelation captures known risk factors

that determine option returns such as: volatility (Hu and Jacobs (2020)), variance risk

premium (Goyal and Saretto (2009)), liquidity risk (Christoffersen, Goyenko, Jacobs, and

Karoui (2018)), ex-ante skewness (Boyer and Vorkink (2014)), or reflects some well-known

option mispricings such as idiosyncratic volatility (Cao and Han (2013)), implied volatility

term structure (Vasquez (2017)), or volatility-of-volatility (Cao, Vasquez, Xiao, and Zhan

(2018), Ruan (2020)). In order to avoid the case that the stock return autocorrelation only

captures the existing predictors documented in the literature (either risk or mispricing), we

extend our portfolio analysis through double sorting stocks by various characteristics first

and then by stock return autocorrelation. We then evaluate the performance of the long-

short portfolio sorted by stock return autocorrelation within each group. The empirical

results are provided in Table 3.

Following previous studies, we compute realized volatility using past 30-days of the un-

derlying stock’s daily returns. Variance risk premium is constructed by taking the difference

between the implied volatility of the ATM call option expiring in 30 days and the realized

volatility. Stock illiquidity is computed as the monthly average of the daily absolute returns

divided by daily trading volume following Amihud (2002). Idiosyncratic volatility is defined

as the standard deviation of the residuals from the Fama-French three factor model using

daily observations within each month. Implied volatility term structure is constructed by

taking the difference between the 90-day and 30-day implied volatility of the ATM call op-

tions. Ex-ante skewness of option return is computed following Boyer and Vorkink (2014).

Volatility-of-volatility is constructed by taking the standard deviation of the daily percentage
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change of 30-day implied volatility of the ATM call options within each month.

Table 3 about here

Table 3 confirms that the explanatory power of stock return autocorrelation on average

return of options cannot be fully explained by any existing risk factors or mispricing effects.

The increasing pattern of the high-low straddle portfolio returns corresponding to the stock

return autocorrelation exists in most of the bins sorted by the control variables. The results

in Table 3 are robust if we adjust the raw returns to alphas based on the Fama-French five

factor model, or if we look at call or put option portfolios.

3.3 Fama-MacBeth Regression

The Fama-MacBeth regression proposed by Fama and MacBeth (1973) provides an alterna-

tive way to test whether the explanatory power of stock return autocorrelation on average

option return is statistically significant. For each type of options (call, put, or straddle), we

run the following cross-sectional regressions of their returns on stock return autocorrelation

and other control variables, which have been linked to option returns in the literature (e.g.,

risk premium and existing option mispricing):

Ri,t = αt + βtρ̂i,t−1 +
M∑
j=1

γjtX
j
i,t−1 + εi,t, i = 1, . . . , Nt, (33)

where Ri,t is the return of option i at time t, ρ̂i,t−1 is the estimated stock return autocorre-

lation for stock i at time t− 1, and Xj
i,t−1 (j = 1, . . . ,M) are the control variables specified

in Section 3.2. Since realized volatility and idiosyncratic volatility are highly correlated, to

moderate the multicollinearity issue, we only include realized volatility in the regression. In

addition to this, to control for momentum effect, we also consider averages of the past 1-,

3-, and 6-month returns for each firm in the regression tests. The cross-sectional regression
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above is ran each month with Nt return observations to obtain the coefficients for the in-

dependent variables. After obtaining the time-series of the coefficients for the independent

variables, we conduct the t-test for each coefficient with one-lag correction of Newey and

West (1987). The hypothesis of the t-test is: H0 : β = 0 vs. Ha : β 6= 0. The average of the

time-series coefficients and the corresponding t-statistics are reported in Table 4. To recon-

cile the concern with respect to different expected underlying stock returns in cross section,

we control for the past 1 month, 3 month, and 6 month stock returns in our regressions.

Table 4 about here

The results of Table 4 support our claim that stock return autocorrelation is an important

determinant of expected option returns. The regression results in Table 4 are also consistent

with the previous findings in the literature. For example, the stock realized volatility has

opposite effects on call and put option returns (Hu and Jacobs (2020)), variance risk pre-

mium and liquidity risk premium can strongly predict straddle returns (Goyal and Saretto

(2009)), and the term structure of implied volatilities is positively related to straddle returns

(Vasquez (2017)).7 All in all, our regression results are consistent with previous literature’s

empirical conclusions, and more importantly, confirm that the stock return autocorrelation

effect cannot be explained by any of the previous findings in the literature.

4 Investment Strategy

In Section 3, we have provided strong statistical evidence that average returns of equity op-

tions are increasing function of the stock return autocorrelation. However, our empirical tests

in Section 3 do not consider two important aspects of equity option trading: transaction cost

and out-of-sample performance. As a result, it is not entirely clear that our empirical results

7Since we look at firm-level raw option returns instead of delta-hedged option returns, the empirical
results for ex-ante skewness and volatility of volatility may differ from those documented in the previous
literature.
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can lead to economic benefits for investors. In particular, transaction cost is a substantial

issue for equity option trading because many options have very high relative bid-ask spreads.

The average relative bid-ask spread of equity option is around 9% and could have a signif-

icant impact on the performance of an investment strategy that involves equity options.8

The option literature typically incorporates the impact of transaction cost by assuming the

effective spread to be a fixed percentage of quoted spread (such as 25%, 50%, and 100%)

when computing the return of a long-short option portfolio (e.g., Vasquez (2017), Cao, Han,

Tong, and Zhan (2017)). The advantage of this approach is that it can clearly show how the

bid-ask spreads affect the performance of a long-short portfolio of all the options. However,

investors do not need to invest in every option and they can reduce the impact of transaction

costs by concentrating on the more liquid equity options. As a result, the average impact

of bid-ask spread on the returns of equity options may not be the most relevant metric for

investors. Another issue is that our empirical results are mostly in-sample and they do not

measure the out-of-sample benefit for investors who would like to incorporate the stock re-

turn autocorrelation effect in their option portfolio allocations. In practice, investors do not

know the true expected returns of options and have to estimate them using historical data.

As a result, there are estimation errors when constructing an optimal portfolio that involves

options and these could lead to poor out-of-sample performance.

In order to deal with these two issues and to better judge the economic benefit of stock

return autocorrelation, we consider the following investment problem for an investor. We

assume an investor optimizes his allocation to the S&P500, the risk-free asset, and various

equity options. Due to the large number of equity options involved, it is not practical to

solve an optimization that involves all the options. Instead, we opt to follow the framework

proposed by Brandt, Santa-Clara, and Valkanov (2009) (BSV hereafter). The basic idea

of BSV is to utilize a parametric approach to model the optimal individual stock weights

8The real transaction cost may not be as high as the observed relative bid-ask spread as argued in
Muravyev and Pearson (2016).
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as a function of their corresponding characteristics (e.g., size, book-to-market, momentum),

because those firm characteristics are documented to be linked to expected returns of stocks.

Each type of characteristic is controlled by one parameter so that the number of parameters

to be estimated in this portfolio problem is relatively small. This parametric portfolio rule

could reduce the problem of estimation risk and provide an improvement in the out-of-sample

performance. The BSV framework can be applied in our case, because based on previous

option literature and our analytical results in Section 2, the expected option returns can be

explained by certain underlying characteristics such as: stock return volatility, variance risk

premium, and stock return autocorrelation. Similar to the logic of BSV, when constructing

the optimal option portfolio, we model the optimal equity option weights as a function of

those underlying characteristics. Specifically, we consider the following portfolio problem:

max
θ,φ

Et[U(Rp,t+1)] = max
θ,φ

1

T

T−1∑
t=0

U

(
(1− φ)Rf

t+1 + φRS
t+1 +

Nt∑
i=1

[
1

Nt

θTx̂i,t

]
RO
i,t+1

)
. (34)

Rf
t+1 is the risk-free rate at time t+1, and RS

t+1 is the return on the S&P500 at time t+1. φ is

the proportion of the total wealth the investor allocates to the S&P500.
∑Nt

i=1

[
1
Nt
θTx̂i,t

]
RO
i,t+1

is the return of a long-short option portfolio whose individual weights are determined by a

vector of various characteristics of the stock (x̂i,t). Based on past research and our theoret-

ical result in Section 2, we consider the following three characteristics: realized volatility,

variance risk premium, and stock return autocorrelation. Following BSV, we standardize all

the characteristics such that the cross-sectional average of x̂i,t is zero, meaning that investors

always hold a zero-cost long-short option portfolio. 1
Nt

is a normalization term to make sure

that the cross-section of individual weights are comparable over time when the number of

securities changes. Our parameters of interest are φ and θ = (θRV , θV RP , θρ)
T, which are

the coefficients to be estimated. Because the distribution of option returns is non-normal,

following BSV and Faias and Santa-Clara (2017), we assume that the investor’s objective

function is a CRRA utility function U(Rp,t+1) = (1+Rp,t+1)1−γ

1−γ , which is able to take all higher
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moments into consideration.9 Following the literature, we assume a risk aversion (γ) equal

to 3.

As discussed before, many options are illiquid and have very high relative bid-ask spread.

For an investor, it is difficult to invest in such options and it makes sense to exclude these

options when constructing our optimal portfolio. As a result, we only consider options with

relative bid-ask spread of 10% or less. When performing portfolio optimization based on

historical data, the unconstrained optimization can often lead to huge positions in the risky

assets because of estimation risk. This can lead to very poor out-of-sample performance.

There are various ways of mitigating this problem but one effective solution is to impose a

norm constraint on the weights of the risky assets. We follow the suggestion of DeMiguel,

Garlappi, Nogales, and Uppal (2009) and imposes the following L1-norm constraint on θ:10

|θRV |+ |θV RP |+ |θρ| < 1. (35)

We then run the optimization using an expanding window to estimate φ and θ. The

starting length of the estimation window is 48 months. The optimized weights (φ and θTx̂i,t)

are then used to construct the optimal portfolio for the next month. The out-of-sample

evaluation period is from January 2000 to December 2018 (228 months in total). For the

out-of-sample returns of options, we consider the case with and without transaction costs.

For the case without transaction costs, the returns of the options are based on their mid-

prices. For the case with transaction costs, the returns of the options are based on ask-price

when θTx̂i,t > 0, and based on bid-price when θTx̂i,t < 0. To evaluate the utility improvement

by trading option portfolios, besides computing those standard summary statistics such as

portfolio return, volatility, skewness, Sharpe ratio, and alpha (based on the Fama-French

five factor model), we also calculate the average certainty equivalent (CE) following Faias

9Our results are robust if we use the mean-variance utility instead.
10In addition to an upper bound of 1, we also try upper bounds of 0.75 and 1.25, and the results are robust

to this change.
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and Santa-Clara (2017).

CE = [(1− γ)Ū ]
1

1−γ − 1, (36)

where Ū is the average utility of the out-of-sample portfolio returns (Ū = 1
T

∑T
t=1 Ut), and

Ut is the CRRA utility with a risk aversion equal to 3. The certainty equivalent can be

understood as the constant risk-free rate per period that will give the investor same utility

as the stream of risky returns actually earned on our portfolio. Table 5 provides details

of our investment strategy. We report the estimated model parameters and out-of-sample

performance of our portfolio. In Panel A, we first construct a portfolio without considering

transaction cost. The reported parameters φ and θ are averages of the monthly optimized

parameters from January 2000 to December 2018. Then in Panel B, we report the parameters

and out-of-sample performance by taking into account of transaction costs for the options.

In order to investigate the additional value from the stock return autocorrelation, we also

report the results when only two of the underlying characteristics, realized volatility, and

variance risk premium, are used.

Table 5 about here

Table 5 suggests that investors are able to benefit from trading equity options based on

those underlying characteristics, even after considering the transaction costs (Panel B). For

example, the monthly Sharpe ratio of call (put) option portfolio is 0.362 (0.371) without

transaction cost and 0.146 (0.199) with transaction cost, while the Sharpe ratio of buy-and-

hold S&P500 index during the same period is only 0.051. The utility gain of investors is also

significantly higher using equity options in the portfolio. For instance, the monthly certainty

equivalent (CE) of call (put) option portfolio is 2.056% (2.300%) without transaction cost

and 0.408% (0.539%) with transaction cost, whereas the CE of buy-and-hold S&P500 index

is 0.074%. Given that all the numbers are monthly values, the benefit of having equity
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options in the portfolio is considerably large. In addition, we also show that both Sharpe

ratio and CE of the portfolio including equity options are much smaller if the stock return

autocorrelation is omitted from the characteristics used. Without transaction cost, the

Sharpe ratio of call (put) option portfolio decreases from 0.362 (0.371) to 0.042 (0.254) if

investors neglect the stock return autocorrelation when using the BSV model to optimize

their portfolio allocation. With transaction cost, the exclusion of stock return autocorrelation

also leads to a significant drop of Sharpe ratio from 0.146 to −0.063 for call option portfolio,

and from 0.199 to 0.120 for put option portfolio.

Two results are worth mentioning here. First, the parameters (θ’s) are significant for all

the underlying characteristics and the signs are consistent with our theoretical predictions.

For example, θρ for stock return autocorrelation is significantly positive, meaning that in-

vestors should buy options with higher stock return autocorrelation and sell options with

lower stock return autocorrelations. Second, the transaction cost does have a significant

impact on the out-of-sample performance of the optimized portfolio. For example, without

considering transaction cost, the monthly Sharpe ratio of the portfolio that makes use of

call options is 0.362, compared to 0.051 for the benchmark. However, after considering the

transaction cost, the Sharpe ratio of the portfolio with call options drops by more than

50% to 0.146, although there are still significant utility gains for the call option portfolio.

Overall, the results in this section demonstrates that the stock return autocorrelation is an

important characteristic for an equity option portfolio allocation problem and investors can

obtain significant economic gain by utilizing this information. However, it is worth pointing

out that the superior performance of the option portfolio optimized using autocorrelation

does not necessarily imply market frictions or missing risk factors embedded in autocorrela-

tion. Instead, the superior performance of our strategy simply suggests that the stock return

autocorrelation is an important determinant of expected option returns.
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5 Robustness Checks

5.1 Alternative Measures of Return Autocorrelation, Sorting, and

Different Rebalancing Frequencies

We conduct several robustness checks for our main results reported in Table 2 Panel A

(equal-weighted portfolios). We first look at the robustness of our measure for stock return

autocorrelations. Specifically, we construct the stock return autocorrelation through two

alternative ways: daily return autocorrelations within each month and monthly return au-

tocorrelations using a 48-month rolling window. We find that our portfolio-sorting results

hold in both cases (Table 6 Panel A). As previously discussed in Section 2, the relationsip

between the stock return autocorrelation and the expected option return may depend on

the specific choice of model used to generate non-zero return autocorrelation. Since the

expected option return depends on the divergence of σ2
k from σ2, we also consider a more

direct measure of this divergence, namely the variance ratio of Lo and MacKinlay (1988).

Following Lo and MacKinlay (1988), we construct the variance ratio as the variance of the

k-period continuously compounded returns divided by k times the variance of one period

continuously compounded returns. Since the target portfolio is held for around a month, we

choose k = 22 for our empirical analysis. Specifically, the variance ratio (VR) is computed

as

V Rk =
σ̂2
k

σ̂2
(37)

where

σ̂2 =
1

T − 1

T∑
t=1

(rt − µ̂)2, (38)

σ̂k
2 =

1

m

T∑
t=k

(rt−k+1 + · · ·+ rt − kµ̂)2, (39)
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m = k(T − k + 1)

(
1− k

T

)
, (40)

µ̂ =
1

T

T∑
t=1

rt, (41)

where rt denotes the continuously compounded daily return at time t and T is the number of

daily observations. In order to match the maturity of the options in our empirical work, we

choose k = 22 and compute the variance ratio based on daily returns of the underlying stock

over the past 6-months. Lo and MacKinlay (1988) shows that V Rk is approximately a linear

combination of the first k−1 autocorrelation coefficients. When Lo and Wang (1995) model

holds, autocorrelations of all lags are completely determined by the first-lag autocorrelation.

In this case, V Rk is simply a noisier measure of the first-lag autocorrelation. However, when

Lo and Wang (1995) model does not hold, V Rk may contain additional information that is

not captured by the first-lag autocorrelation. Therefore, whether the return autocorrelation

or the variance ratio performs better is an empirical question. Panel A of Table 6 reports the

result using the variance ratio to sort the option portfolios. We find that the portfolio-sorting

performance is comparable to the result obtained using first-order return autocorrelation

where both economic and statistical significance are similar. Therefore, it provides a further

support that our result is driven by the fundamental feature of the stock returns, namely

the serial dependence, rather than mispricings or market imperfections.11

Table 6 about here

Second, we investigate how robust our finding is to different rebalancing frequencies. It

will help us to understand whether our result is a short-term effect or also remains in long

term. To examine this, we extend rebalancing frequencies to every 3 months, 6 months,

and 12 months, instead of sorting firms every month. Although we still use equity options

11The variance ratio also shows comparable performance for other tests as well such as Fama-MacBeth
regression and double sorting.
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expiring in 1-month to construct the portfolios, we keep the quintile ranks of the firm un-

changed during the rebalancing periods. The rest of the calculation follows the same way in

Section 3.2. Our empirical evidence shows that the effect of stock return autocorrelation on

option returns is a long-term effect. For example, the difference of average returns between

the highest autocorrelation straddle portfolio and the lowest autocorrelation straddle port-

folio can significantly last for one year (2.4% every month, tantamount to 28.8% each year),

implying that the stock return autocorrelation effect is less likely driven by option mispric-

ing, but is more likely driven by fundamental factors. In addition to this, we alternatively

sort the portfolio into deciles, and still find a significant result (Table 6 Panel C).

5.2 Options with Different Time-to-Maturity, Moneyness, and Re-

turn Calculation

In Section 3, we mainly consider ATM options expiring in one month for our empirical tests.

However, based on our theoretical derivation in Section 2, we expect our empirical results

should also hold for options with different maturities and moneyness, and in particular the

stock return autocorrelation effect is expected to be stronger for out-of-the-money (OTM)

options. In this subsection, we re-run our empirical tests in Section 3, but use options with

alternative maturities, such as 15 days, 60 days, 90 days, and 120 days, or with alternative

moneyness such as OTM and in-the-money (ITM). In addition, the option returns we con-

structed are mainly from the middle of one month (i.e., the third Friday of the expiration

month) to the middle of the next month at expiration. Ni, Pearson, and Poteshman (2005)

argues that hold-to-expiration option returns are affected by biases at expiration. To avoid

this bias, we follow Cao, Han, Tong, and Zhan (2017) to construct the one-month option

returns from the beginning and held to the end of each month. The robustness results are

provided in Table 7.

Table 7 about here
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We first look at option returns for different time-to-maturity. Since we construct portfo-

lios using options with different time-to-maturity, the portfolio rebalancing frequency is not

one month as in Section 3. Instead, the portfolio rebalancing frequency is determined by the

holding period of options we selected. For example, if we select equity options expiring in

15 days, the portfolio will be rebalanced every 15 days. If we choose equity options expiring

in 60 days, the portfolio will be rebalanced roughly every two months. Table 7 Panel A

shows that the effect of stock return autocorrelation on option returns is robust for different

time-to-maturity.

We then investigate the explanatory power of stock return autocorrelation for different

levels of moneyness. We consider two other types of options: OTM options with moneyness

(K/S) less than 0.95 for put options and greater than 1.05 for call options, and ITM options

with moneyness less than 0.95 for call options and greater than 1.05 for put options. We also

construct the portfolio with a combination of call and put options with same moneyness,

in order to study how the effect of stock return autocorrelation varies by moneyness. Since

call and put options will not have the same strike price if they are ITM or OTM, we cannot

call them “straddle” anymore. Instead, we name it as “combination”. Consistent with our

theoretical results, the positive relation between stock return autocorrelation and average

option returns holds for different levels of moneyness. More importantly, the stock return

autocorrelation effect is much stronger for OTM call and put options, which is consistent

with our model’s prediction. For example, the average monthly quintile spread of OTM put

option portfolio is 9.3%, which is larger than the spreads in other cases.

Finally, we consider alternative ways of computing option returns. Instead of constructing

option returns from the middle of each month, we follow Cao, Han, Tong, and Zhan (2017)

and select options at the beginning of each month and choose those ATM options with time

to maturities closest to 30 days. Through this way, the option returns are calculated from

the beginning to the end of each month. Panel C of Table 7 confirms that our empirical
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results hold for this alternative definition of option returns.

5.3 Stochastic Volatility

In Section 2, we have assumed the volatility σ to be constant for all models we considered.

This is because we are mainly interested in the effect of autocorrelation stemming from the

trending drift term and it is analytically convenient to make an assumption of constant

volatility. We now relax this assumption by allowing stochastic volatility in the general

bivariate trending O-U process to verify if it can substantially alter our conclusions. By

embedding Heston (1993) style square-root process of stochastic volatility specification into

the general bivariate trending O-U process, we consider the following model of log stock

price:

d log(St) = (µ− γ(log(St)− µt) + λXt)dt+
√
VtdWt, (42)

dXt = −δXtdt+ σxdW
x
t , (43)

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

v
t , (44)

where θ is the long-term mean of the variance and κ measures the speed of mean-reversion for

the variance. Two Brownian motions Wt and W v
t are correlated with coefficient ρ while W x

t

is assumed to be independent to others. One of the most attractive feature of Heston (1993)

model is being able to generate variance risk premium, which is particularly pronounced in

the index options. Therefore, we calibrate the model to the S&P500 index and its options

as much as possible. Using the historical mean of index returns, dividend yield, and risk-

free rate, we first set µ = 5.86% and r = 2.25%. For the parameters concerning stochastic

volatility process, we use parameters estimated in Fournier and Jacobs (2020) and set κ =

5.3178, θ = 0.0408, ξ = 0.1882, ρ = −0.4694, λSV = −1.08, where λSV is the price of

variance risk parameter. We keep the same values for parameters concerning trend process
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dXt and set σx = 0.1, λ = 2.5 and δ = 0.2.

We rely on simulations to compute the expected option return under this model and plot

its relationship with the stock return autocorrelation in Figure 7. Figure 7 demonstrates

that our conclusion is not affected by the inclusion of the stochastic volatility, as monotonic

relationship between option returns and stock return autocorrelation persist. The major

effect coming from the inclusion of the stochastic volatility model is on the decrease in the

level of expected option returns through the variance risk premium, but it does not change

our main conclusion.

6 Conclusions

This paper presents a new variable that can explain the cross-sectional difference of expected

equity option returns, namely the first-order stock return autocorrelation coefficient. Using

the extended Black-Scholes framework proposed by Lo and Wang (1995), we show analyti-

cally that expected option return is an increasing function of the underlying stock’s return

autocorrelation. This prediction is strongly supported by the empirical findings where av-

erage returns of calls, puts, and straddles are found to be monotonically increasing in the

magnitude of their underlying stock’s return autocorrelation. These findings are robust to

different implementation methods as well as controlling for other known factors that possess

explanatory power of cross-sectional differences of average equity option returns.

Our findings contribute to the recent literature on the equity options investment. We

identify a new variable that is easy to construct and derive its impact on the cross-section of

expected returns on equity options. This approach could be potentially used to study other

option pricing models that extends the Black-Scholes formula along different directions al-

though obtaining an analytical formula for expected option return could be challenging for

these models. Nevertheless, our results suggest that researchers should take the autocorrela-

tion effect into consideration when they study option-return related predictors.Nevertheless,
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our results suggest that revisiting the options literature in the perspective of investment

could be interesting. Most importantly, we demonstrate that such analysis could lead to

superior investment strategies that offer real benefits for investors even after taking into

account of estimation risk and transaction costs.
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Appendix

A Proof of Proposition 1

Consider a general European derivative with maturity t+ τ and a payoff at maturity given

by

Ht+τ = h(St+τ ), (A.1)

where h(St+τ ) is a deterministic function of the underlying stock price at t+ τ . As noted in

Grundy (1991) and Lo and Wang (1995), the drift of the stock price process is irrelevant for

determining the price of the derivative today, and we can use the risk-neutralized process

of the stock price to determine the price of the European derivative today. Under the

risk neutral measure, the continuously compounded return of rt+τ = log(St+τ ) − log(St) is

normally distributed with a mean of τ
(
r − σ2

2

)
and variance of τσ2. It follows that the

current price of the European derivative is given by

Ht(St, σ) = e−rτEQ
t [h(St+τ )]

= e−rτ
∫ ∞
−∞

h
(
Ste

(r− 1
2
σ2)τ+σ

√
τv
)
φ(v)dv. (A.2)

Similarly, the price of the derivative at time t+ k, where 0 ≤ k ≤ τ , can be obtained as

Ht+k(St+k, σ) = e−r(τ−k)EQ
t+k[h(St+τ )]

= e−r(τ−k)
∫ ∞
−∞

h(St+ke
(r− 1

2
σ2)(τ−k)+σ

√
τ−kv)φ(v)dv. (A.3)

Under the physical measure, the stock price follows a trending O-U process and its k-period

continuously compounded return rk = log(St+k)− log(St) is normally distributed with mean
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kµ and variance kσ2
k. As a result, we can write St+k as

St+k = Ste
µk+σk

√
kw, (A.4)

where w is a standard normal random variable. Then, we can compute the expected price

of the derivative at time t+ k as

Et[Ht+k] =

∫ ∞
−∞

Ht+k

(
Ste

µk+σk
√
kw, σ

)
φ(w)dw

=

∫ ∞
−∞

[
e−r(τ−k)

∫ ∞
−∞

h
(
Ste

µk+σk
√
kwe(r−

σ2

2
)(τ−k)+σ

√
τ−kv

)
φ(v)dv

]
φ(w)dw

= e−r(τ−k)
∫ ∞
−∞

∫ ∞
−∞

h
(
Ste

µk+(r−σ
2

2
)(τ−k)e

√
σ2
kk+σ

2(τ−k)u
)
φ2

(
u,w;

σk
√
k

σ∗
√
τ

)
dwdu

= e−r(τ−k)
∫ ∞
−∞

h

(
Ste

µk+
(
r−σ

2

2

)
(τ−k)+σ∗√τu

)
φ(u)du

= erkHt

(
Ste

µk+
(
r−σ

2

2

)
(τ−k)−

(
r−σ

∗2
2

)
τ
, σ∗
)

= erkHt(S
∗
t , σ

∗), (A.5)

where

S∗t = Ste
µk+

(
r−σ

2

2

)
(τ−k)−

(
r−σ

∗2
2

)
τ

= Ste

(
µ−r+σ2k

2

)
k

(A.6)

and φ2(·, ·; ρ) stands for the density function of a standard bivariate normal random variable

with correlation ρ. In the above derivation, we make a change of variable of

u =
σk
√
kw + σ

√
τ − kv√

σ2
kk + σ2(τ − k)

=
σk
√
kw + σ

√
τ − kv

σ∗
√
τ

∼ N(0, 1), (A.7)

and we have

Corr[u,w] = Cov[u,w] =
σk
√
k

σ∗
√
τ
. (A.8)

This completes the proof.
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B Proof of Corollary 1.1

This is a special case of Proposition 1 with k = τ , thus σ∗ = στ and S∗t = Ste
(µ−r+σ2τ

2
)τ = S̃t.

This completes the proof.

C Proof of Proposition 2

From the Black-Scholes formula, it is easy to show that

∂CBS(S∗t , K, r, τ, σ
∗)

∂S∗t
= Φ(d∗1), (A.9)

∂PBS(S∗t , K, r, τ, σ
∗)

∂S∗t
= −Φ(−d∗1), (A.10)

∂CBS(S∗t , K, r, τ, σ
∗)

∂σ∗
= S∗t φ(d∗1)

√
τ , (A.11)

∂PBS(S∗t , K, r, τ, σ
∗)

∂σ∗
= S∗t φ(d∗1)

√
τ , (A.12)

where

d∗1 =
log
(
S∗
t

K

)
+
(
r + σ∗2

2

)
τ

σ∗
√
τ

. (A.13)

It follows that

∂Et[Ct+k]

∂σk
= erk

[
∂CBS(S∗t , K, r, τ, σ

∗)

∂S∗t

∂S∗t
∂σk

+
∂CBS(S∗t , K, r, τ, σ

∗)

∂σ∗
∂σ∗

∂σk

]
= erk

[
Φ(d∗1)S

∗
t kσk + S∗t φ(d∗1)

√
τ
kσk
τσ∗

]
= erkS∗t kσk

[
Φ(d∗1) +

φ(d∗1)

σ∗
√
τ

]
, (A.14)

∂Et[Pt+k]

∂σk
= erk

[
∂PBS(S∗t , K, r, τ, σ

∗)

∂S∗t

∂S∗t
∂σk

+
∂PBS(S∗t , K, r, τ, σ

∗)

∂σ∗
∂σ∗

∂σk

]
= erk

[
−Φ(−d∗1)S∗t kσk + S∗t φ(d∗1)

√
τ
kσk
τσ∗

]
= erkS∗t kσk

[
−Φ(−d∗1) +

φ(d∗1)

σ∗
√
τ

]
. (A.15)
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We now show that when k = τ and µ > 0, ∂Et[Pt+k]/∂σk > 0 for at-the-money and out-of-

the-money put options. Note that when k = τ and µ > 0,

St ≥ K ⇒ S∗t ≥ Ke

(
µ−r+σ2τ

2

)
τ
⇒ d∗1 ≥ σ∗

√
τ . (A.16)

It follows that

−Φ(−d∗1) +
φ(d∗1)

σ∗
√
τ
≥ −Φ(−d∗1) +

φ(d∗1)

d∗1
=

Φ(−d∗1)
d∗1

[
−d∗1 +

φ(d∗1)

Φ(−d∗1)

]
> 0. (A.17)

The last inequality follows from the result of Gordon (1941) regarding inverse Mill’s ratio

for normal random variable that states for d∗1 ≥ 0,

φ(d∗1)

1− Φ(d∗1)
> d∗1. (A.18)

This completes the proof.
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Table 1
Summary Statistics of the Variables

Percentile Values

Summary Statistics
Avg.
Obs.

Avg. Min 25th 50th 75th Max

Panel A: Stock Characteristics (Monthly Frequency)

Return Autocorrelation 1,022 −0.007 −0.501 −0.038 −0.003 0.030 0.272

Stock Return 1,022 0.009 −0.896 −0.052 0.009 0.068 2.065

Realized Volatility 1,022 0.386 0.010 0.217 0.319 0.479 3.177

Implied Volatility 1,022 0.400 0.011 0.248 0.350 0.495 2.091

Variance Risk Premium 1,022 0.008 −1.594 −0.039 0.023 0.081 0.766

Panel B: Option Returns (Monthly Frequency)

Call Option Return 1,022 0.053 −1.000 −1.000 −0.764 0.751 15.122

Put Option Return 1,022 −0.165 −1.000 −1.000 −1.000 0.294 17.720

Straddle Return 1,022 −0.039 −1.000 −0.609 −0.200 0.361 7.402

This table provides descriptive statistics for the monthly time-series variables used in the paper.

The statistics are calculated by first taking the cross-sectional average of all eligible firm-level

observations and then compute the average over time. The variance risk premium is computed as

the difference between the annualized 30-day option implied volatility and the annualized 30-day

stock realized volatility. To avoid the effect by outliers, we truncate the cross-section of securities

at the 99.5% level before taking the cross-sectional average. The 0.5% truncation is not considered

because the minimum value of call/put options is −1. A stock (or option) is eligible to be included

in the sample in certain month if it has more than 100 daily observations during the past 6 months.

The sample period is from January 1996 to December 2018.
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Table 2
Portfolios Sorted by Stock Return Autocorrelation

Call
Option

Put
Option

Straddle
Underlying

Stock

Average Au-
tocorrelation

Monthly
Return

Monthly
Return

Monthly
Return

Monthly
Return

Panel A: Equal-Weighted Portfolio

Low −0.087 0.066 −0.156 −0.045 0.0049

2 −0.024 0.093 −0.154 −0.037 0.0082

3 0.003 0.113 −0.142 −0.019 0.0079

4 0.028 0.117 −0.135 −0.016 0.0082

High 0.074 0.135 −0.099 0.006 0.0051

High-Low 0.161 0.069*** 0.057*** 0.052*** 0.0002

t-stat (4.21) (3.37) (6.28) (0.15)

FF 5-factor alpha 0.069*** 0.062*** 0.050*** 0.0006

t-stat (4.02) (3.48) (5.80) (0.47)

HF 9-factor alpha 0.063*** 0.058*** 0.051*** −0.0017

t-stat (3.62) (3.19) (5.80) (−1.18)

Panel B: Value-Weighted Portfolio

Low −0.086 0.065 −0.162 −0.050 0.0051

2 −0.024 0.090 −0.161 −0.041 0.0083

3 0.003 0.110 −0.148 −0.023 0.0080

4 0.028 0.115 −0.140 −0.019 0.0082

High 0.073 0.134 −0.104 0.003 0.0055

High-Low 0.159 0.070*** 0.058*** 0.053*** 0.0004

t-stat (4.20) (3.41) (6.46) (0.25)

FF 5-factor alpha 0.070*** 0.063*** 0.052*** 0.0008

t-stat (4.06) (3.49) (6.05) (0.65)

HF 9-factor alpha 0.063*** 0.059*** 0.053*** −0.0015

t-stat (3.57) (3.22) (6.03) (−1.06)

This table summarizes the average returns and alphas in monthly frequencies for portfolios sorted

by the stock return autocorrelation and hold for one month. Panel A reports the equal-weighted

average returns and alphas, while Panel B reports the value-weighted (based on the underlying

market capitalization) average returns and alphas. The alpha is calculated based on the Fama-

French five factor model and hedge fund nine factor model. The sample period is from January

1996 to December 2018. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%

levels, respectively.
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Table 3
Straddle Portfolios Double Sorted by Stock Return Autocorrelation and Other
Characteristics

Sorted by Realized Volatility Low 2 3 4 High

High-Low 0.017 0.062*** 0.027* 0.039*** 0.039***

t-stat (0.99) (4.11) (1.72) (2.58) (2.64)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

High-Low 0.017 0.022 0.033** 0.038*** 0.040***

t-stat (0.99) (1.50) (2.06) (2.59) (2.73)

Sorted by Variance Risk Premium Low 2 3 4 High

High-Low 0.056*** 0.053*** 0.055*** 0.029* 0.046***

t-stat (3.64) (3.16) (3.40) (1.80) (2.96)

Sorted by ILIQ Low 2 3 4 High

High-Low 0.052*** 0.044*** 0.023 0.042*** 0.045***

t-stat (3.08) (2.91) (1.55) (2.83) (2.79)

Sorted by IVTS Low 2 3 4 High

High-Low 0.053*** 0.072*** 0.029 0.053*** 0.029*

t-stat (3.59) (5.06) (1.60) (3.46) (1.92)

Sorted by Vol-of-Vol Low 2 3 4 High

High-Low 0.049*** 0.032** 0.046*** 0.050*** 0.056***

t-stat (2.95) (2.15) (3.02) (3.35) (3.50)

Sorted by ex-ante Skewness Low 2 3 4 High

High-Low 0.030* 0.066*** 0.027* 0.039** 0.058***

t-stat (1.82) (4.37) (1.68) (2.36) (3.73)

In this table, we first sort individual stocks based on several control variables into five quintiles. ILIQ

stands for the stock illiquidity computed following Amihud (2002) and IVTS denotes the implied

volatility term structure defined in Section 3. Vol-of-vol is computed following Cao, Vasquez, Xiao,

and Zhan (2018) and ex-ante skewness is constructed based on Boyer and Vorkink (2014) at the

firm level. Within each control variable’s quintile, we sort the individual stocks by their stock

return autocorrelations into five quintiles and compute the difference of average returns between

the high and low stock return autocorrelation quintile. To save space, we only show the results

for equal-weighted straddle portfolios, but the results are similar for call and put option portfolios,

and also for value-weighted portfolios. The sample period is from January 1996 to December 2018.

***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 4
Fama-MacBeth Regressions

Call Option Put Option Straddle Underlying Stocks

Univariate Multiple Univariate Multiple Univariate Multiple Univariate Multiple

Intercept 0.104*** 0.130*** −0.130*** −0.229*** −0.022 −0.066*** 0.0069* 0.0126***

t-stat (2.88) (2.98) (−2.91) (−4.04) (−1.39) (−3.02) (1.82) (4.77)

Autocorrelation 0.337*** 0.344*** 0.327*** 0.291*** 0.264*** 0.247*** 0.0014 0.0025

t-stat (3.73) (3.94) (3.12) (3.11) (5.76) (5.48) (0.17) (0.37)

Realized Volatility −0.099 0.293*** 0.108*** −0.0109

t-stat (−1.40) (4.64) (2.95) (−1.23)

Variance Risk Premium −0.129** 0.212*** 0.070** −0.0154**

t-stat (−1.96) (3.52) (2.20) (−2.11)

ILIQ 6.360*** 8.578*** 6.384*** −0.0861

t-stat (3.55) (3.75) (4.62) (−0.73)

IVTS 0.523*** 0.684*** 0.583*** 0.0379***

t-stat (3.80) (4.78) (7.67) (3.30)

Past One-Month Return −0.068 −0.059 −0.078** −0.0022

t-stat (−0.95) (−0.86) (−2.40) (−0.34)

Past Three-Month Return −0.013 −0.181 −0.048 −0.0167

t-stat (−0.07) (−1.24) (−0.62) (−0.98)

Past Six-Month Return 0.066 −0.466** −0.166 0.0567**

t-stat (0.27) (−2.23) (−1.62) (2.31)

Vol-of-Vol −0.143* 0.013 −0.085** −0.0101

t-stat (−1.94) (0.17) (−2.11) (−1.38)

Ex-ante Skewness −0.003 −0.001 0.001 −0.0008**

t-stat (−0.49) (−0.22) (0.60) (−2.44)

Average adj. R2 5.62% 5.91% 4.19% 10.86%

This table reports the Fama-MacBeth regressions for each portfolio. The dependent variables are

the cross-section of individual returns based on the corresponding type of portfolios, and the inde-

pendent variables are the cross-section of stock return autocorrelation and other control variables

in Table 3. The detailed cross-sectional regression and time-series test are specified in Section 3.3.

All portfolios are formed at monthly frequency and held for one month. All dependent and inde-

pendent variables are expressed as monthly values. The coefficients in the table are calculated by

taking the time-series average of the cross-sectional regressions over time. The t-stat reported is the

t-test with Newey-West one-lag correction. The sample period is from January 1996 to December

2018. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 5
Performance of Investment Strategies

Panel A: Performance without Transaction Cost

with 3 Characteristics with 2 Characteristics Benchmark

Variable Call Put Straddle Call Put Straddle S&P500

φ 0.736*** 0.725*** 0.936*** 0.789*** 0.344*** 0.767***

t-stat (4.45) (4.29) (4.60) (4.43) (3.48) (4.48)

θRV −0.274*** 0.246*** 0.019* −0.387*** 0.398*** 0.221***

t-stat (−4.52) (4.36) (1.94) (−4.56) (4.48) (3.30)

θV RP 0.001 −0.016** −0.022*** 0.028* 0.027 0.070*

t-stat (1.17) (−2.14) (−2.91) (1.78) (0.76) (1.94)

θρ 0.656*** 0.647*** 0.881***

t-stat (4.56) (4.56) (4.59)

r̄ 0.033 0.041 0.042 0.005 0.018 0.008 0.003

σ(r) 0.087 0.107 0.072 0.079 0.067 0.043 0.042

SR 0.362 0.371 0.566 0.042 0.254 0.146 0.051

SR3 − SR2 0.319*** 0.117* 0.420***

t-stat (5.05) (1.80) (5.24)

Skewness −0.357 −0.010 −0.117 −0.063 −0.525 −0.660 −0.588

FF 5-factor alpha 0.027*** 0.033*** 0.037*** −0.003 0.014*** 0.006** −0.001**

t-stat (5.06) (4.65) (7.95) (−0.72) (2.91) (2.90) (−2.47)

CE 2.056% 2.300% 3.434% −0.497% 1.089% 0.473% 0.074%

CE3 − CE2 2.553%*** 1.210%* 2.961%***

t-stat (4.45) (1.94) (5.92)

Avg. No. of Options 435 415 311 435 415 311
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Table 5 Continued:

Panel B: Performance with Transaction Cost

with 3 Characteristics with 2 Characteristics Benchmark

Variable Call Put Straddle Call Put Straddle S&P500

φ 0.605*** 0.537*** 0.901*** 0.717*** 0.487*** 0.638***

t-stat (3.85) (4.02) (4.44) (4.24) (3.79) (4.21)

θRV −0.270*** 0.237*** 0.004 −0.136*** 0.200*** 0.0003

t-stat (−4.52) (4.38) (0.33) (−3.93) (4.21) (− 0.91)

θV RP −0.016** −0.009 −0.075*** −0.010** 0.086*** −0.0001

t-stat (−2.54) (−0.39) (−3.63) (−2.15) (3.42) (−1.09)

θρ 0.527*** 0.500*** 0.712***

t-stat (4.53) (4.50) (4.59)

r̄ 0.011 0.020 0.016 −0.001 0.007 0.0004 0.003

σ(r) 0.069 0.091 0.064 0.043 0.045 0.030 0.042

SR 0.146 0.199 0.228 −0.063 0.120 −0.030 0.051

SR3 − SR2 0.208*** 0.079 0.257***

t-stat (4.12) (1.38) (4.21)

Skewness −0.137 −0.310 −0.304 −0.259 −1.142 −0.203 −0.588

FF 5-factor alpha 0.008* 0.013** 0.012*** −0.005** 0.005 −0.0004 −0.001**

t-stat (1.80) (2.28) (3.06) (−2.06) (1.60) (−0.35) (−2.47)

CE 0.408% 0.539% 0.958% −0.432% 0.344% −0.095% 0.074%

CE3 − CE2 0.840%** 0.196% 1.053%***

t-stat (2.43) (0.34) (2.90)

Avg. No. of Options 435 415 311 435 415 311

In this table, we follow the framework proposed by Brandt, Santa-Clara, and Valkanov (2009) as specified in

Section 4. We report the average value of the parameters over time and their corresponding t-statistics. The

t-statistics are adjusted by Newey and West (1987) with 10-lag corrections. We also report the performance

statistics out-of-sample: average return (r̄), volatility (σ(r)), Sharpe ratio (SR), Skewness, alpha based on the

Fama-French five factor model, and certainty equivalent (CE). All variables are expressed as monthly values.

We run the optimization for the three option portfolios separately. In order to show the improvement from

considering stock return autocorrelation in the portfolio allocation, we also report the portfolio performance

using only two characteristics (without θρ). SR3−SR2 (CE3−CE2) measures the difference of the SR (CE)

between the optimal portfolio using all three characteristics and the optimal portfolio not using the stock

return autocorrelation as a characteristic. The last column is the performance of the benchmark, which is a

buy-and-hold strategy for S&P500 Index. In Panel B, we report the result by incorporating the transaction

cost for the options. The evaluation period is from January 2000 to December 2018. ***, **, and * indicate

statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 6
Robustness Checks for Portfolios Sorted by Stock Return Autocorrelation

Call
Option

Put
Option

Straddle
Underlying

Stock

Monthly
Return

Monthly
Return

Monthly
Return

Monthly
Return

Panel A: Alternative Measures of Stock Return Autocorrelation

Daily Returns High-Low 0.067*** 0.049*** 0.052*** 0.0003

(1 Month) t-stat (4.11) (3.10) (6.49) (0.15)

Monthly Returns High-Low 0.031* 0.046*** 0.039*** 0.0004

(48 Months) t-stat (1.69) (3.07) (4.42) (0.19)

Variance Ratio High-Low 0.068*** 0.051*** 0.058*** −0.005***

t-stat (4.55) (3.64) (8.38) (−2.70)

Panel B: Alternative Holding-Period

3 Months High-Low 0.039*** 0.041*** 0.041*** 0.0004

t-stat (3.25) (4.14) (6.60) (0.41)

6 Months High-Low 0.055*** 0.027*** 0.036*** 0.0003

t-stat (5.64) (3.25) (6.84) (0.39)

12 Months High-Low 0.055*** 0.004 0.024*** 0.0009**

t-stat (7.75) (0.65) (6.08) (1.98)

Panel C: Alternative Number of Portfolios

Decile Portfolio High-Low 0.070*** 0.055*** 0.063*** −0.0011

t-stat (3.33) (2.59) (5.84) (−0.49)

This table summarizes robustness checks for the predictive power of stock return autocorrelations.

The sorting process is as same as that in Table 2. In Panel A, we first construct three alterna-

tive measures for stock return autocorrelations: daily return autocorrelations within each month,

monthly return autocorrelations using a 48-month rolling window, and variance ratios of 22 days

over 1 day. In Panel B, similar to Table 2, we keep constructing the portfolios using equity options

expiring in 1 month, but sort the portfolio every 3, 6, or 12 months respectively. In Panel C, we sort

the portfolio into deciles based on the stock return autocorrelation in Table 2. The corresponding

portfolio returns are calculated as the average of monthly option returns with a monthly rollover

of the options. All variables in this table are expressed as monthly values, and all portfolios are

equally weighted. The sample period is from January 1996 to December 2018. ***, **, and *

indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 7
Portfolio Returns Using Different Option Maturity and Moneyness

Panel A: Options with Difference Time to Maturities

Call Option Put Option Straddle
Underlying

Stock

15 Days High-Low 0.057*** 0.044*** 0.042*** 0.0031*

t-stat (3.26) (2.69) (4.92) (1.83)

60 Days High-Low 0.094*** 0.048*** 0.085*** 0.0036

t-stat (5.19) (2.95) (10.25) (1.48)

90 Days High-Low 0.074*** 0.034 0.079*** −0.0006

t-stat (3.15) (1.57) (6.73) (−0.14)

Panel B: Options with Different Moneyness

Call Option Put Option Combination
Underlying

Stock

OTM High-Low 0.138*** 0.093*** 0.017*** 0.0002

t-stat (4.91) (3.30) (2.22) (0.15)

ITM High-Low 0.032*** 0.025** 0.038*** 0.0002

t-stat (3.13) (2.37) (4.62) (0.15)

Panel C: Alternative Return Calculation

Call Option Put Option Straddle
Underlying

Stock

1 Month High-Low 0.068*** 0.050** 0.070*** 0.0017

t-stat (4.03) (2.38) (7.43) (0.79)

3 Months High-Low 0.067*** 0.025 0.061*** 0.0023

t-stat (4.25) (1.40) (7.26) (1.20)

6 Months High-Low 0.058*** 0.009 0.043*** 0.0023

t-stat (3.85) (0.53) (6.09) (1.48)

This table reports the robustness checks using alternative types of options. In Panel A, when sorting

portfolios, instead of using one-month at-the-money (ATM) options, we use ATM options with alternative

time to maturities, such as: 15, 60, and 90 days. In Panel B, instead of using ATM options, we use options

with different moneyness such as out-of-the-money (OTM) options with moneyness less than 0.95 for put

options and greater than 1.05 for call options, and in-the-money (ITM) options with moneyness less than

0.95 for call options and greater than 1.05 for put options. The moneyness is defined as the strike price

divided by the underlying stock price. The call and put combination is the portfolio consisting of both call

and put options with the same moneyness. In Panel C, we consider alternative ways of computing options

returns. Instead of constructing the option returns from the middle of each month, we use options at the

beginning of each month and choose those ATM options with time to maturities closest to 30 days. We then

hold it to the end of each month. The sample period is from January 1996 to December 2018. ***, **, and

* indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Figure 1
Expected Stock and Option Returns under the Trending O-U Process
This figure plots the expected stock return, expected hold-to-expiration option and straddle returns

as functions of first-order autocorrelation of stock returns under the trending O-U process. All

options are at-the-money options with the following parameters: µ = 0.10, r = 0.05, τ = 1/12, and

σ = 0.2.
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Figure 2
Distribution of Maturity Stock Price under Two Different Trending O-U Pro-
cesses
This figure plots the distribution of the maturity stock price (St+τ ) for τ = 1/12 under the trending O-U

process with parameters µ = 0.10 and σ = 0.2, when the current stock price (St) is normalized to one. The

plot shows the distribution of St+τ when the first-order autocorrelation of stock returns (ρ) is equal to 0

(solid line) or −0.25 (dotted line). In addition, the vertical lines show the conditional payoff of the stock at

maturity when it is above and below the current stock price.

50



Figure 3
Expected Option Returns under the Trending O-U Process for Different Mon-
eyness
This figure plots the expected hold-to-expiration call and put option returns as functions of volatility (σ)

and first-order autocorrelation of stock returns (ρ) under the trending O-U process for three different levels

of moneyness and with the following parameters: µ = 0.10, r = 0.05, and τ = 1/12.
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Figure 4
Expected Stock and Option Returns under the Bivariate Trending O-U Process
This figure plots the expected stock return, expected hold-to-expiration option and straddle returns

as functions of first-order autocorrelation of stock returns under the bivariate trending O-U process.

All options are at-the-money options with the following parameters: µ = 0.10, r = 0.05, τ = 1/12,

σ = 0.2, σx = 0.1, and δ = 0.2.
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Figure 5
Expected Option Returns under the Bivariate Trending O-U Process for Differ-
ent Moneyness
This figure plots the expected hold-to-expiration call and put option returns as functions of volatility (σ) and

first-order autocorrelation of stock returns (ρ) under the bivariate trending O-U process for three different

levels of moneyness and with the following parameters: µ = 0.10, r = 0.05, τ = 1/12, σx = 0.1, and δ = 0.2.
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Figure 6
Expected Option Returns under the General Bivariate Trending O-U Process
This figure plots the expected stock return, expected hold-to-expiration option and straddle returns

as functions of first-order autocorrelation of stock returns under the general bivariate trending O-U

process. All options are at-the-money options with the following parameters: µ = 0.10, r = 0.05,

τ = 1/12, σ = 0.2, σx = 0.1, λ = 2.5 and δ = 0.2.
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Figure 7
Expected Option Returns under the General Bivariate Trending O-U Process
with Stochastic Volatility
This figure plots the expected stock return, expected hold-to-expiration option and straddle returns

as functions of first-order autocorrelation of stock returns under the general bivariate trending

O-U process with stochastic volatility. All options are at-the-money options with the following

parameters: µ = 0.0586, r = 0.0225, τ = 1/12, κ = 5.3178, θ = 0.0408, ξ = 0.1882, ρ = −0.4694,

λSV = −1.08, σx = 0.1, λ = 2.5 and δ = 0.2.
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