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1 Introduction

Low-beta assets often have higher returns than the CAPM predictions, while high-beta

assets are with lower returns.1 The literature notices that investments overweighting low-

beta stocks and underweighting high-beta ones produce significant performance. One of

the most successful low-beta strategies is Frazzini and Pedersen (2014)’s betting against

beta (BAB) factor, which greatly inspires academic explorations and investment practices

(Novy-Marx and Velikov, 2022).

If a low-beta strategy’s conditional beta covaries with market risk premium and market

variance, the conditional CAPM framework is able to explain the low-beta anomaly.2 How-

ever, a key challenge to this prospect is that BAB is designed to be market neutral, which

implies insignificant comovement between conditional betas and market variations. Asness

et al. (2020, page 644) further point out that the conditional CAPM is irrelevant unless the

arrangement of market neutrality “could be sufficiently imperfect.”

We find that BAB fails to remain market neutral in a systematic way, and the deviations

from market neutrality often arrive in the shape of crashes. Such a concern is shared by

a broad range of low-beta strategies covering different weighting schemes, beta estimators,

and hedging methods. Market neutral low-beta strategies take negative market timing and

negative volatility timing amid volatile markets, promoting beta crashes. The particular vul-

nerability of low-beta strategies to booming markets is not explained by leverage constraints,

and the conditional CAPM contributes to accounting for the low-beta effect.

Our study is motivated by two expressive BAB crashes. The first one exhibits that BAB

1Friend and Blume (1970), Black et al. (1972), Miller and Scholes (1972), Haugen and Heins (1975),
Reinganum (1981), and Fama and French (1992) find that the security market line is too flat and low-beta
stocks earn higher returns than the CAPM implications. Black (1972, 1993) suggests beta arbitrage strategies
to benefit from such a flat line. The low-beta anomaly is closely related to a general low-risk anomaly. See
Ang et al. (2006), Baker et al. (2011), and Asness et al. (2020), among others.

2Market timing refers to the comovement between conditional betas and market risk premiums, while
volatility timing refers to the comovement between conditional betas and market variances. See Jagannathan
and Wang (1996), Lewellen and Nagel (2006), Boguth et al. (2011), Cederburg and O’Doherty (2016), and
Liu et al. (2018), for example.
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is negatively exposed to booming markets: during the Internet bubble of 1999, BAB realizes

a large loss of 40% while the market gains 20%. By contrast, the second one features BAB’s

positive exposure to market crashes: during the Great Recession of 2008, the market and

BAB plunge similarly by about 40%. A further examination of the 10 worst BAB losses

reaffirms that BAB suffers from large market movements, bull markets in particular.

BAB’s vulnerability to bull markets is not captured by the rationale of funding liquidity

and leverage constraints that underlies BAB. Brunnermeier and Pedersen (2009), Adrian

and Shin (2014), and He et al. (2017) show that liquidity and leverage are pro-cyclical,

suggesting that funding liquidity constraints are less binding during economic expansions.

That is to say, funding liquidity risk and leverage constraint cannot address BAB crashes

and the deviation from market neutrality in bull markets.

Novy-Marx and Velikov (2022) specify three concerns for BAB implementation: Frazzini

and Pedersen (2014)’s beta (FP beta) raises significant bias; the rank-weighting is a backdoor

to equal-weighting stocks; the non-linear hedging for market neutrality is a backdoor to

overweighting tiny stocks. We develop low-beta strategies in line with the three critiques.

Specifically, we consider six beta estimators: the FP beta, the simple OLS market model

beta, Dimson (1979) beta, Vasicek (1973) beta, Welch (2022)’s slope-winsorized beta, and

Liu et al. (2018, LSY) beta. Besides, we adopt Jensen et al. (2022)’s capped value-weighting

and equal-weighting. The former well balances the effect of tiny stocks and facilitates more

tradable strategies, and we take it as the default weighting scheme. Additionally, we apply

the non-linear hedging, linear hedging, as well as the conventional dollar hedging.

In this way, we construct 36 beta arbitrate (BA) strategies to characterize investors’

attempts to benefit from the low-beta anomaly. Revisiting the two expressive years of 1999

and 2008, we register that crashes are a common concern for these BA strategies. Betting

against the OLS and Dimson betas, which Novy-Marx and Velikov (2022) find the least

biased and superior to the FP beta, leads to the most significant bankruptcy risk as the

strategy minimum return often goes below -100%.
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We notice that beta estimator’s value-weighted average bias does not necessarily dete-

riorate performance. Simply buying low-beta stocks and selling high-beta stocks is an ele-

mentary reflection of Black (1972)’s insight to exploit a “too flat” security market line, yet

the literature also documents that such dollar-neutral beta strategies end up with mediocre

returns (see Bali et al., 2017, Bai et al., 2019, and Schneider et al., 2020, for example).

The primary goal of non-linear market neutrality is to leverage the low-beta portfolio to

take full advantage of the flat security market line. This requires relatively stable beta esti-

mates to facilitate leverage employment. The beta bias concern is secondary as long as the

cross-sectional beta ordering does not substantially deviate from the true ordering.

The OLS and Dimson betas, despite their advantage in the value-weighted average bias,

promote capricious leverage employment. For instance, the ex ante OLS beta for the low-

beta portfolio much fluctuates and often approaches zero, thus the implied leverage can be

implausible. By contrast, the FP beta leads to the most robust time series of beta estimates

for the low-beta portfolio, outweighing its disadvantage in the value-weighted average bias.

As a result, the BA-FP strategies outperform the BA-OLS strategies with considerably

higher Sharpe ratios when investors practice non-linear market neutrality.

The beta bias concern prevails once leveraging the low-beta portfolio is no longer a key

consideration. Linear market neutrality hedges exposure by buying the market portfolio,

so betting against the OLS beta with this method becomes much more successful. Across

different hedging methods, the BA-Welch strategies offer persistently favorable performance.

This outperformance indicates that the Welch beta achieves the best balance between robust

leverage employment and beta bias confinement, consistent with Welch (2022)’s finding that

it provides the best beta prediction and the best portfolio hedging.

Simply regressing BA returns on market returns, we find realized betas prevalently sig-

nificant at the 1% level. The market exposure, nonetheless, is heavily dependent on market

conditions. We consider three market conditions: normal, bear, and bull markets. Bear

(bull) markets are the months with market risk premium below -5% (above 5%). The nor-
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mal market, where the market risk premium is between -5% and 5%, is the benchmark

condition. Bear (bull) markets account for about 11% (15%) of our sample months, and this

distribution is close to Lu and Qin (2021)’s determination of market state.3

We identify a strangle market neutrality for the market neutral BA-FP strategies, as

market neutrality is systematically maintained in normal markets. For instance, the value-

weighted BA-FP strategy with non-linear market neutrality has a trivial beta of -0.08. Bear

markets significantly raise the beta estimate by 0.41, and bull markets substantially reduce

the beta estimate by 0.69. Consequently, the point estimate of strategy beta is 0.33 in bear

markets and -0.77 in bull markets. This helps to explain the two expressive BAB crashes,

where the market exposure is positive (negative) in economic crises (booms). That is to say,

beta crashes are the result of negative market timing in volatile markets.

For robustness, we futher use a simple threshold of zero to determine upside and downside

markets, consistent with Grundy and Martin (2001) and Daniel and Moskowitz (2016). Since

the bull-market beta estimate is highly negative, we perform Daniel and Moskowitz (2016)’s

optionality analysis to check if BA is exposed to market upswing risk. We confirm significant

option-like behavior of the value-weighted BA-FP strategy with non-linear market neutrality,

and the size is close to Daniel and Moskowitz (2016)’s registration of momentum optionality.

The point estimate of strategy beta is an important -0.62 upon market upswings, as if this

market neutral strategy shorts a call option on the market. The other strategies also assume

material market exposure when the market rebounds.

Moreover, negative market timing is concurrent with negative volatility timing due to the

changes of market risk return tradeoff. The tradeoff is significantly negative in bear markets

and marginally negative in normal markets, thus volatility timing improves performance.

However, the tradeoff is significantly positive in bull markets, and managing market volatility

is disadvantageous in this case. As a result, conditional beta negatively (positively) covaries

with market variance in bull (bear) markets, effectuating negative volatility timing.

3Specifically, Lu and Qin (2021) refer the bottom 10% of three-year cumulative market returns as low
market state, the top 10% as high state, and the 80% in between as middle state.
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Beta crashes can be considered as significant volatility shocks that deteriorate BA’s risk

return tradeoff. As weak risk return tradeoff is key for volatility management (Moreira and

Muir, 2017), beta crashes extend a favorable condition to manage volatility. To evaluate the

volatility management benefits, we refer to the abnormal return from a 9-factor model as

benchmark. This model augments Fama and French (2016)’s six-factor (FF-6) model with

Bali et al. (2017)’s FMAX factor and Stambaugh and Yuan (2017)’s two mispricing factors.4

The 9-factor model remarkably outperforms the FF-6 model in explaining BA performance:

only three alphas are significant against the former, while 16 are significant against the latter.

Volatility management considerably improves investment performance. We register 32

(25) significant FF-6 (9-factor) model alphas, much higher than the corresponding number

for the unmanaged versions. The benefit is particularly striking for dollar neutrality: the

9-factor model, which fully prices all the dollar-neutral BA strategies, fails to subsume any of

the managed strategies. Such observations corroborate Barroso and Maio (2021)’s argument

that the success of managed-BAB is puzzling.

The benefits of volatility management are robust to transaction costs. Following Moreira

and Muir (2017, Section II.B), we consider three assumptions of trading cost: 1bps, 10bps,

and 14bps. We analyze the effect of transaction costs for all the 36 BA strategies and find

most of the alphas remaining significantly positive. In addition, we examine a global BAB

sample of 24 markets and confirm that the concern of market neutrality and beta crashes is

not unique to the US market. Managing international BAB factors also leads to remarkable

performance improvements.

The paper proceeds as follows. Section 2 provides the motivation of our study and

previews BAB crashes. Section 3 describes the data and develops a wide range of BA

strategies. Section 4 presents the main results and discussions, and Section 5 concludes.

4Bali et al. (2017), Schneider et al. (2020), and Asness et al. (2020) find skewness preference important
to subsume the low-beta anomaly. Stambaugh and Yuan (2017), Liu et al. (2018), and Barroso and Maio
(2021) point out that market sentiment, mispricing, and limits to arbitrage give rise to the low-beta effect.
Stambaugh and Yuan (2017) highlight that their mispricing factors (MGMT and PERF) are consistent with
investor sentiment and related to arbitrage risk.
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2 Motivation

2.1 Economic intuition

Following the framework of Lewellen and Nagel (2006), Boguth et al. (2011), and Ceder-

burg and O’Doherty (2016), we express the unconditional alpha of a low-beta strategy as

αU ≈ cov(βt, Et−1[rMKT,t])︸ ︷︷ ︸
Market timing

− E[rMKT,t]

σ2
MKT

cov(βt, σ
2
MKT,t)︸ ︷︷ ︸

Volatility timing

,
(1)

where βt is the strategy’s conditional beta, Et−1[rMKT,t] is the conditional market risk pre-

mium, E[rMKT,t] is the unconditional market risk premium, σ2
MKT,t is the conditional market

variance, and σ2
MKT is the unconditional market variance.

Cederburg and O’Doherty (2016) argue that the low-minus-high beta strategy effectively

times market risk premium and volatility, thus time-varying beta explains the low-beta

anomaly. However, Asness et al. (2020, Section 5.3.3) point out that the low-minus-high

beta strategy is not developed as market neutral as BAB. When market neutrality is sys-

tematically maintained, market timing and volatility timing cannot capture the BAB out-

performance. Therefore, time-varying beta does not subsume the low-beta effect.

Asness et al. (2020, page 644) summarize that the explanation of time-varying beta

matters if “the ex-ante hedge used to construct BAB could be sufficiently imperfect.” At the

same time, Novy-Marx and Velikov (2022) show that Frazzini and Pedersen (2014)’s beta

estimates can be predicted by using market volatility, which is related to volatility timing.

Therefore, we are particularly interested in the role of hedging method and beta estimator

for the performance of low-beta strategies.

A convenient perspective is from market neutrality and low-beta crashes. If beta crashes

are systematically related to market conditions, imperfect market neutrality admits the

contribution of time-varying beta in explaining the low-beta anomaly.
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2.2 A preview of beta crashes

Figure 1 presents two expressive BAB crashes.5 In 1999, the market displays an evident

uptrend with a cumulative return of 20%, in contrast to the underperforming BAB with

a large loss of 40%. The BAB debacle is driven by the Internet bubble, as the successful

dot-com stocks have high betas. Here are two simple statistics showing how these technology

stocks triumph in 1999: the NASDAQ index soars by 85.6%, and the price of Qualcomm

skyrockets by 2,619%.6 BAB shorts these high-beta stocks, and its performance is heavily

affected. Although BAB is intended to be market neutral, the episode of 1999 suggests that

bull markets promote significant BAB declines.

BAB crashes can also hit during market crises. In 2008, both the market and BAB

suffer a gloomy performance, and their cumulative losses are about 40%. The performance

similarity throughout the year indicates that BAB bears a beta close to one rather than

around zero as implied by market neutrality. Frazzini and Pedersen (2014, Proposition 3)

highlight that a worsening funding liquidity depresses contemporary BAB return and raises

future BAB return. Nonetheless, BAB’s cumulative performance stably diminishes in 2008,

hinting that liquidity shocks do not necessarily elevate future required return.

A relevant question is that if the two episodes are representative or outliers. Table 1 lists

the 10 worst BAB returns and the corresponding market returns from 1930 to 2020. The

greatest BAB crash is -21.95% in September 1939, while the contemporary market return is

a large 16.88%. The second largest crash is in July 1932, as BAB realizes a considerable loss

of 19.07% against a huge market increase of 33.84%. The year of 1999 witnesses two large

BAB losses, yet the episode of 2008 cannot even get on the list. The top losing months do

not come randomly; rather, they are associated with significant market variations such as

the Great Depression and its consequences in the 1930s, the market crash of 1987, as well

as the Internet bubble in the early 2000s.

5Data of the BAB and market factors are from AQR’s datasets and Kenneth French’s data library.
6See the article titled “The Year in the Markets; 1999: Extraordinary Winners and More Losers” at The

New York Times in January 3, 2000, Section C, Page 17.
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BAB’s vulnerability to booming markets is evident. The average BAB loss is 14.21%,

accompanied by a remarkable market gain of 9.18%. By contrast, we report the 10 best

BAB returns and find that BAB is successful amid mild market declines. Specifically, the

average BAB profit is 12.62% and the corresponding market risk premium is -1.67% on

average. In short, the two expressive BAB crashes and the worst BAB returns exhibit a

notable departure from the intended market neutrality.

2.3 Hedging method and beta variation

Consistent with Liu et al. (2018, Equation 9), we decompose BAB into a simple dollar-

neutral low-minus-high beta strategy and an enhanced beta bet as follows:7

rBAB =
rL − rf
βL

− rH − rf
βH

= rL − rH︸ ︷︷ ︸
Dollar hedge

+ (1− β−1
H )(rH − rf )− (1− β−1

L )(rL − rf )︸ ︷︷ ︸
Enhancement of beta bet

,
(2)

where rL and βL (rH and βH) denote the return and beta on the low (high)-beta portfolio,

and rf is the risk-free return.

The dollar-neutral low-minus-high beta strategy directly reflects Black (1972)’s insight

to benefit from a “too flat” security market line. However, a flat security market line does

not necessarily guarantee that rL is significantly superior to rH , so the low-minus-high beta

strategy can be unprofitable. Examining CAPM beta decile portfolios, Bali et al. (2017,

Table 1) register an insignificant return difference between the highest and lowest beta deciles.

Bai et al. (2019, Table 3) and Schneider et al. (2020, Table 3) document similar results.

Therefore, it is necessary to overweight the low-beta portfolio and underweight the high-

beta portfolio to take full advantage of the weak security market line. Market neutrality

fulfills this mission by enhancing the beta bet with (1− β−1
H )(rH − rf )− (1− β−1

L )(rL − rf ).
7Han (2022) decomposes BAB returns into three parts with specified weighting schemes. Comparatively,

Equation 2 does not identify weighting scheme or beta estimator, thus the implication is more general.
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Since the market average beta is one, we have 1− β−1
H > 0 and 1− β−1

L < 0. As long as rH

and rL are greater than rf , the enhanced beta bet raises BAB returns.

The dollar-neutral low-minus-high beta strategy and the enhanced beta bet are, individ-

ually or jointly, exposed to crash risk. First, the dollar-neutral low-minus-high beta strategy

is vulnerable to booming markets, and this vulnerability can be inferred from coskewness

and downside beta.8 Bali et al. (2017) report that the coskewness (downside beta) is -4.75

(0.09) for the lowest beta decile and -1.96 (2.10) for the highest beta decile. This suggests

that low-beta stocks are sensitive to large market movements but robust to large market

declines. In other words, they suffer from large market gains.

Second, the enhanced beta bet implicitly assumes that the ex ante beta estimates reliably

predict future betas. If the beta estimates are poor forecasts, the enhanced beta bet backfires

and distances BAB from its intention of market neutrality (see Novy-Marx and Velikov, 2022,

page 85). Cederburg and O’Doherty (2016, Figure 1) show that the 5th percentile of stock

betas can approach -1, so βL can be too small and the implied leverage too large. For

instance, if βL is estimated to be 0.04, the leverage for the low-beta portfolio is 24 (which is

1/0.04-1). Investors find it implausible because the accessible leverage is only up to 20 even

for equity hedge funds (Ang et al., 2011).

Novy-Marx and Velikov (2022, Figure 6) further exhibit that the value-weighted average

beta across the market dips below 0.8 for several beta estimators. Such a general downward

bias makes it possible that βH < 1 and (1−β−1
H )(rH−rf ) < 0, depressing BAB performance.

Given the strong comovement between the 5th percentile of stock betas and the median stock

beta (Cederburg and O’Doherty, 2016, Figure 1), one may expect that βH < 1 is concurrent

with βL < 0 and the enhanced beta bet amplifies losses. The beta estimation concern is

aggravated in bull markets (Hollstein et al., 2020), which supports our intuition that BAB

is particularly vulnerable to booming markets.

8Harvey and Siddique (2000) add square market excess returns to the CAPM regression and refer to the
slope coefficient as coskewness. Downside beta is the slope coefficient by regressing stock excess returns on
market excess returns upon downside markets (see Bawa and Lindenberg, 1977 and Ang et al., 2006).
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3 Data and strategy devlopment

3.1 Data description

We obtain daily and monthly stock data from the Center for Research in Security Prices

(CRSP), including all common stocks listed on the NYSE, AMEX, or NASDAQ that have a

CRSP share code of 10 or 11. Our sample is from July 1926 to December 2020. Consistently,

we collect data for the market (MKT), size (SMB), and value (HML) factors from Fama and

French (1993), the momentum (MOM) factor from Carhart (1997), the profitability (RMW)

and investment (CMA) factors from Fama and French (2015). Factor data and monthly

NYSE market equity breakpoints are from Kenneth French’s data library.

3.2 Development of beta arbitrage strategies

Novy-Marx and Velikov (2022) identify three concerns about BAB’s non-standard pro-

cedures: Frazzini and Pedersen (2014)’s novel beta (FP beta) raises significant bias; the

rank-weighting scheme is a backdoor to equal-weighting stocks; the non-linear hedging for

market neutrality is a backdoor to overweighting tiny stocks. We next develop low-beta

strategies corresponding to the three concerns.

Since value-weighting stock betas across the market should be one, Novy-Marx and Ve-

likov (2022) calculate the value-weighted average for different beta estimators to quantify

beta bias. They find the FP beta inferior to the simple OLS market model beta (OLS

beta) and Dimson (1979) beta (Dimson beta). Besides, we also consider Vasicek (1973) beta

(Vasicek beta), Welch (2022)’s slope-winsorized beta (Welch beta), and Liu et al. (2018)

beta (LSY beta). The six beta estimators employ different estimation windows and return

frequencies, constituting a representative set of betas that investors can readily bet against.

We provide more details for these beta estimators in the Internet Appendix.

As for weighting method, Novy-Marx and Velikov (2022) argue that the rank-weighting
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assigns disproportionately high weights to micro and nano stocks (market equity below the

NYSE 20th percentile), which are illiquid and difficult to trade. To address this problem, we

follow Jensen et al. (2022, Section 2)’s capped value-weighting: beta terciles are determined

by non-micro and non-nano stocks, then micro and nano stocks are assigned based on the

same terciles. Compared to the plain value-weighting, the capped version balances the effect

of tiny stocks across tercile portfolios and forms more tradable strategies. This advantage is

particularly relevant to the low-beta context. We set the capped value-weighting as primary

option and also include the conventional equal-weighting.9

In terms of hedging method, Frazzini and Pedersen (2014) use non-linear market neutral-

ity as represented by Equation 2. We further consider the following linear market neutrality,

which is also denoted as direct hedging by Novy-Marx and Velikov (2022):

rBAB = rL − rH︸ ︷︷ ︸
Dollar hedge

+ (βH − βL) · rMKT︸ ︷︷ ︸
Bet on the market

. (3)

Generally, market neutrality is organized as dollar neutrality plus an enhanced beta bet.

Non-linear market neutrality enhances the beta bet by tilting towards the low-beta portfolio,

while linear market neutrality takes the bet on the whole market.

The market bet can take on the equal-weighted or value-weighted market factor. Novy-

Marx and Velikov (2022, Figure 3) compare the two versions and find the former more

profitable. However, stock betas are conventionally estimated relative to the value-weighted

market factor. The ex ante beta of the equal-weighted market factor is not always one, thus

investors have to adjust the market exposure βH − βL accordingly. The exact adjustment is

also dependent on beta estimation window, which raises a problem when the interested beta

estimator (like the FP beta) employs multiple estimation windows or when multiple beta

estimators are involved. Comparatively, the value-weighted market factor is free from such

a problem, and we choose it to implement linear market neutrality.

9Novy-Marx and Velikov (2022, Section 2.1) accentuate that the value-weighted BAB performance is a
more accurate and practical reflection of investment gains.
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We recapitulate our strategy design as follows:

• 6 beta estimators: FP, OLS, Dimson, Vasicek, Welch, and LSY betas;

• 2 weighting schemes: capped value-weighting and equal-weighting;

• 3 hedging methods: non-linear and linear market neutrality, as well as dollar neutrality.

Therefore, we develop 36 (6× 2× 3) strategies, and we refer to them as beta arbitrage (BA)

strategies in case of confusion with Frazzini and Pedersen (2014)’s original BAB. We believe

such diverse strategies account for the concerns in BAB’s construction, and a comprehensive

evaluation of these strategies sheds light on the low-beta effect.

4 Main results and discussions

4.1 Revisiting beta crashes

We first revisit the two expressive years of 1999 and 2008 for the six value-weighted BA

strategies with non-linear market neutrality in Figure 2. Large declines are prevalent across

strategies, and investors hit greater crashes when they bet against more standard betas such

as the OLS beta. In 1999, the maximum drawdown is about 30% for the BA-FP strategy

and about 50% for the others. Besides, the year of 2008 witnesses a depreciation of 20% for

the BA-FP strategy and about 60% for the rest. Such huge and persistent losses reaffirm

that beta crashes are a general concern for the low-beta effect.

Inspecting key indicators for the 36 BA strategies, we notice similar performance for the

BA-FP and LSY, for the BA-OLS and Dimson, as well as for the BA-Vasicek and Welch

strategies. To facilitate exposition, we present the BA-FP, OLS, and Welch results in Table

2, with the complete summary reported in the Internet Appendix. Frazzini and Pedersen

(2014, Table 3) document that BAB has a standard deviation of 11% and a Sharpe ratio of

0.8, close to that of the equal-weighted BA-FP strategy with non-linear market neutrality

(11.91% and 0.81, respectively). This resemblance corroborates Novy-Marx and Velikov

(2022)’s argument that the rank-weighting is a backdoor to equal-weighting stocks.
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Dollar neutrality renders poor Sharpe ratios, while market neutrality remarkably im-

proves performance. For instance, the dollar-neutral equal-weighted BA-FP strategy has a

Sharpe ratio of -0.03. Linear market neutrality raises the Sharpe ratio to 0.44 and non-linear

market neutrality brings a notable 0.81. This pattern holds across beta estimators, reaffirm-

ing our argument in Section 2.3 that the dollar-neutral low-minus-high beta strategy can be

unfavorable and the enhanced beta bet makes the best of the flat security market line.

Investors may expect that market neutrality promotes risk mitigation, but we find this

intuitive expectation not coming true. Non-linear market neutrality leads to a significant

bankruptcy risk as minimum returns are often below -100%. For instance, it renders the

equal-weighted BA-Welch strategy a minimum return of -116.55%, a straight bankruptcy

once it occurs. The two BA-OLS strategies even have a minimum return below -2,000%. In

practice, such strategies are hardly implementable.

To illustrate the impact of beta crashes on investment experience, we show the cumu-

lative performance of BA strategies across the sample period in the Internet Appendix. In

December 1989, the BA-OLS and Dimson strategies with non-linear market neutrality hit

direct bankruptcy, wiping out all cumulative profits. The value-weighted BA-FP strategy

with linear market neutrality also suffers from precipitous declines: its cumulative return

falls from $0.67 at the beginning of August 1932 to $0.13 at the end of the month. A full

recovery to the former level takes up almost three decades until February 1960. The month

of August 1932 registers the bankruptcy of the value-weighted BA-FP strategy with dollar

neutrality, too.

The primary examination of BA strategies confirms that crash risk is not specific to

BAB but rather a common concern for low-beta strategies. Beta crashes are not mitigated

when investors adopt more standard procedures for strategy construction, such as using

conventional beta estimators like the OLS beta or using linear market neutrality. We are

further interested in if beta variations play a role in precipitating beta crashes, and we

investigate this question in the next subsection.
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4.2 Time-varying beta and leverage

Novy-Marx and Velikov (2022, Section 4.2) argue that the FP beta is inferior to the OLS

and Dimson betas because of its substantial bias in the value-weighted average. Specifically,

they find the mean bias of the FP beta six times that of the OLS and Dimson betas. We

extend their analysis back from 1926 with the inclusion of the Vasicek, Welch, and LSY

betas. Figure 3 plots the time series of value-weighted average for different beta estimators.

Novy-Marx and Velikov (2022, Figure 6) register that the FP beta bias reaches a peak of

30% around 1994, while we note the maximum bias of 41% in December 1964. The mean

bias of the FP beta is the highest 5.4% and the standard deviation is also the highest 9.4%.

Surprisingly, the LSY beta has the second worst mean bias and standard deviation.

Estimated with monthly returns, the LSY beta is broadly considered robust to microstructure

noises (see, Liu et al., 2018 and Barroso and Maio, 2021, for instance). Nonetheless, the

value-weighted average of LSY beta estimates is persistently below one, reaching a nadir of

0.8 in 1973. The time-series fluctuation is much smaller for the rest beta estimators: the

mean bias is only 0.2% for the OLS beta, 0.1% for the Dimson beta, 1.4% for the Vasicek

beta, and 2.3% for the Welch beta, with similar standard deviations around 2.8%.

As the OLS and Dimson betas are the least biased, one may expect that betting against

them with non-linear market neutrality produces the best performance. Contrarily, such

strategies significantly underperform. Table 2 Panel A reminds that the BA-OLS strategies

have a poor Sharpe ratio of 0.17, while the average Sharpe ratio is 0.72 for the BA-FP

strategies and 0.71 for the BA-Welch strategies. It is still preferred to bet against the

FP beta. Comparatively, betting against the OLS beta with linear market neutrality is

substantially favorable, as the average Sharpe ratio rockets to 0.79. By contrast, the BA-FP

strategies have a dwarfed Sharpe ratio of 0.44 on average.

The OLS beta badly matches non-linear market neutrality because it promotes mistaken

leverage in the low-beta portfolio. Figure 4 displays the time series of βL estimates. When
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betting against the OLS and Dimson betas, investors often find βL too small and the implied

leverage implausible. For instance, the ex ante OLS beta of the low-beta portfolio is -0.0015

in May 1989 and 0.0018 in June. That is to say, investors have to radically change leverage

from -658 to 552 over one month. Such variations are persistent for the OLS and Dimson

betas from the late 1980s to the mid-1990s. The other betas are less affected.10

Besides, stable βL fosters stable leverage. The OLS and Dimson betas have the highest

standard deviations of βL estimates while the FP and Welch betas have the lowest ones.11

Correspondingly, the BA-FP and Welch strategies have the best Sharpe ratios while the BA-

OLS and Dimson strategies have the worst ones. The disadvantage of the OLS and Dimson

betas is much mitigated by linear market neutrality, which leverages the whole market rather

than the low-beta portfolio. In such a case, the edge of the two betas in confining the value-

weighted average bias prevails, and betting against them obtains a large Sharpe ratio.

In short, the FP beta better matches non-linear market neutrality than the OLS beta, in-

dicating that the value-weighted average bias does not necessarily undermine performance.

The primary goal of non-linear market neutrality seems leveraging the low-beta portfolio

than hedging. This requires relatively stable beta estimates to facilitate leverage employ-

ment. The beta bias concern is secondary as long as the cross-sectional beta ordering does

not substantially deviate from the true ordering (see also Novy-Marx and Velikov, 2022,

footnote 16). The bias concern prevails when leveraging the low-beta portfolio is no longer

a consideration, as in the case of linear market neutrality.

It is worth noting that the BA-Welch strategies have the most consistent performance

with a favorable Sharpe ratio of 0.75 on average, regardless of market neutrality versions.

This suggests that the Welch beta achieves the best balance between robust leverage em-

ployment and beta bias confinement. Our results support Welch (2022)’s finding that the

Welch beta provides the best prediction for future beta and the best portfolio hedging.

10The minimum βL estimate is 0.46 for the FP beta, 0.38 for the LSY beta, 0.18 for the Welch beta, and
0.14 for the Vasicek beta. The implied leverage is more reasonable for the FP and LSY betas.

11The standard deviation is 11.5% for the FP beta, 12.8% for the Welch beta, 13.2% for the LSY beta,
14.3% for the Vasicek beta, 16.5% for the OLS beta, and 18.8% for the Dimson beta.
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4.3 Market exposure

If market neutrality is maintained, the strategy’s realized beta should be statistically

insignificant. For the value-weighted BA strategies, we calculate their realized betas and plot

the absolute value of the associated t-statistics in Figure 5. All betas are significant, most of

them even at the 1% level. As expected, the dollar-neutral BA strategies are greatly exposed

to the market. However, the large t-statistics of the market neutral BA strategies come as a

surprise, signaling notable deviations from the intended market neutrality. Comparatively,

the BA-FP strategies have the lowest t-statistics around 2, while betting against the other

betas assumes a much stronger market exposure.

Following Novy-Marx and Velikov (2022, Section 5), we examine BA’s exposure to market

risk premium and market volatility ratio. Specifically, we consider the following regression:

rBA,t = α + β1Vt + β2rMKT,t + β3rMKT,t−1 + β4rMKT,t−2 + εt, (4)

where V = rMKT · ln(σ−1Y
MKT/σ

−5Y
MKT ) is the interactive term between market risk premium

and the log ratio of the prior one-year market volatility σ−1Y
MKT to the prior five-year market

volatility σ−5Y
MKT . Novy-Marx and Velikov (2022) argue that BAB’s significantly negative

loading on the log market volatility ratio alludes to volatility timing.

Table 3 shows that the BA-FP strategies always have negative β̂1, suggesting higher

market tilt when recent market volatility is low. The significance of β̂1, however, seems

primarily driven by market neutrality rather than the FP beta. Betting against the FP beta

with dollar neutrality no long exhibits significant β̂1. Similarly, β̂1 of the value-weighted

BA-OLS strategies is a significant -0.21 upon linear market neutrality but an insignificant

0.13 upon dollar neutrality. The complete analysis for all the 36 strategies in the Internet

Appendix reaffirms that no β̂1 attains statistical significance upon dollar neutrality, while

linear market neutrality promotes more negative β̂1 than non-linear market neutrality.

Meanwhile, the market factor coefficients are often significant, attesting BA’s imperfect
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market neutrality. The equal-weighted BA-FP strategy with non-linear market neutrality

has a zero β̂2, yet its β̂3 is a highly significant 0.20 (t-statistic is 8.56). The result conforms

to Novy-Marx and Velikov (2022, Table 5, Specification 3)’s argument that BAB’s long

position in tiny and illiquid stocks facilitates greater beta significance in longer horizon.

Comparatively, the capped value-weighting balances tiny stocks across beta terciles, pacifying

the nonsynchronous trading effect. Thus, we see that the value-weighted BA-FP strategy

with non-linear market neutrality has a trivial β̂3 of 0.05.

In addition, the BA-FP strategies are more robust to the nonsynchronous trading concern

than the BA-OLS and Welch strategies. Most of the BA-FP strategies have insignificant β̂3,

which is not the case for the other strategies. In the Internet Appendix, we further show

that the Dimson beta does not cure the nonsynchronous trading problem, as half of the BA-

Dimson strategies have highly significant β̂3. This finding is different from Novy-Marx and

Velikov (2022, Table 5), and the main reason is that they use five-year daily data to estimate

Dimson beta while we use one-year window to be consistent with other beta estimators (see

Cederburg and O’Doherty, 2016 and Welch, 2022, for instance).12

We also inspect all the BA strategies relative to Carhart (1997)’s four-factor model in the

Internet Appendix. The estimated market exposure remains prevalently significant, and the

lowest significance goes for the BA-FP strategies. Compared to traditional betas, the FP beta

better suits the objective of leveraging the low-beta portfolio and containing market exposure.

At the same time, the BA-FP strategies are persistently exposed to momentum risk. Such

momentum exposure corroborates the deviation from market neutrality, as momentum is

strongly dependent on market risk (Daniel and Moskowitz, 2016).

Imperfect market neutrality admits the role of time-varying beta in explaining the low-

beta anomaly. Section 2 indicates that BAB crashes are triggered by large market variations.

We next examine how market timing accounts for beta crashes.

12Another reason can be about the differences in strategy construction and sample period. Novy-Marx
and Velikov (2022) adopt the plain value-weighting and hedge the exposure with the equal-weighted market
factor, while we take the capped value-weighting and hedge with the value-weighted market factor. Their
sample period is from 1968 to 2019, while ours from 1926 to 2020.
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4.4 Strangle market neutrality

Both economic crises and booms promote beta crashes, yet they entail different market

exposure. To distinguish such effects, we plot BA returns against market returns for the

value-weighted BA-FP strategy with non-linear market neutrality. Figure 6 displays a neg-

ative relationship over the whole sample period, with a slope estimate of -0.18 (t-statistic

is -2.10). However, a strongly positive relationship emerges when market return goes below

-5%, as the slope estimate is 0.33 (t-statistic is 2.96).

The negative relationship is restored once market return is above 5%. The slope estimate

is an important -0.77 (t-statistic is -5.52), corroborating that large market gains foster greater

beta crashes. We notice a flat relationship when market return is between -5% and 5%.

The slope estimate is a trivial -0.08 (t-statistic is -1.45), meaning that market neutrality

is systematically maintained as long as market changes are not dramatic. The piecewise

relationship between BA and market returns indicates conditional market timing.

Correspondingly, we consider three market conditions: normal, bear, and bull markets.

We define a bear (bull) market dummy variable Dt (Ut) taking the value of one if the market

risk premium in month t is below -5% (above 5%) and zero otherwise. The normal market,

where the market risk premium is between -5% and 5%, is the benchmark condition. Bear

markets account for about 11% of our sample months and bull markets take up about 15%.

The distribution is close to Lu and Qin (2021), who refer the bottom 10% as low market

state, the top 10% as high state, and the 80% in between as middle state.

We examine the following conditional CAPM regression:

rBA,t = α + αDDt + αUUt + (β + βDDt + βUUt)rMKT,t + εt. (5)

Table 4 summarizes the results for the market neutral BA-FP strategies. Based on the simple

CAPM regression, the equal-weighted BA-FP strategy with non-linear market neutrality

well achieves its goal of zero market beta. However, the other BA-FP strategies have a
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significantly negative beta, indicating their particular vulnerability to booming markets.

Introducing market conditions, we find market neutrality systematically maintained in

normal markets. For instance, the value-weighted BA-FP strategy with non-linear market

neutrality has an insignificant β̂ of -0.08,13 while bear markets significantly raise the beta

estimate by 0.41 (t-statistic is 2.77). On the contrary, bull markets substantially lower the

beta estimate by 0.69 (t-statistic is -3.01). Therefore, the point estimate of beta is 0.33

(-0.08+0.41) in bear markets and a remarkable -0.77 (-0.08-0.69) in bull markets.

The material exposure to bear and bull markets is not unique to market neutral strategies.

In the Internet Appendix, we register that dollar-neutral strategies have more significant β̂D

and β̂U . One may concern that the threshold specification of ±5% can affect the diagnostics

of BA’s sensitivity to market conditions. For robustness, we next use a simple threshold of

zero to determine upside and downside markets, consistent with Grundy and Martin (2001)

and Daniel and Moskowitz (2016). We conduct Daniel and Moskowitz (2016)’s optionality

analysis to check if BA is exposed to market upswing risk.

We run the following regression:

rBA,t = γ0 + γ1D
∗
t−1 +

(
γ2 +D∗

t−1(γ3 + γ4CU
∗
t )
)
rMKT,t + εt, (6)

where D∗
t is a cumulative downside market indicator taking the value of one if the prior one-

year cumulative market return is negative and zero otherwise, and CU∗
t is a contemporary

upside market indicator taking the value of one if market risk premium is positive and zero

otherwise.14 The two indicators help to capture the effect of market upswings.

Table 5 provides the key results. In Panel A, we see highly significant γ̂4 for the BA-FP

strategies. Specifically, the value-weighted BA-FP strategy with non-linear market neutrality

13The t-statistic is slightly different from Figure 6 Panel C because we use the full sample to estimate the
conditional CAPM regression.

14Daniel and Moskowitz (2016) adopt a lookback window of two years to determine downside market.
Since beta estimates predominantly rely on return information over the past year, the one-year window
better conforms to the methodology of BA strategies. However, as we show in the Internet Appendix, using
the two-year window or the NBER-based recession indicator renders similar results.
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has a γ̂4 of -0.69 (t-statistic is -3.11), which is close to the momentum optionality (Daniel

and Moskowitz, 2016, Table 3). The point estimate of strategy beta is an important -0.62

(-0.02+0.09-0.69) when the market rebounds, suggesting that market upswings precipitate

large declines. For example, the strategy incurs a heavy loss around 10% if the market

regains 20% from recession, as if it shorts a call option on the market.

Panels B and C confirm this optionality for the BA-FP strategies with different hedging.

The other BA strategies often have insignificant γ̂4, but their market timing behaviors upon

market upswings are still persistent. Figure 8 exhibits the point estimate of strategy beta

when the market rebounds from recession (γ̂2 + γ̂3 + γ̂4). Interestingly, the dollar-neutral BA

strategies take the least deviation from zero beta, while the market neutral BA strategies

assume a much stronger market exposure.

Frazzini and Pedersen (2014) emphasize that funding shocks impair market neutrality.

Following their choice of TED-spread volatility to proxy for funding difficulties,15 we find

that funding liquidity risk cannot fully accommodate the deviation from market neutrality.

The average TED-spread volatility is about 0.06% in bull and normal markets, while it

doubles to 0.12% in bear markets. Since liquidity difficulties asymmetrically fall in bear

markets (Brunnermeier and Pedersen, 2009, Adrian and Shin, 2014, and He et al., 2017),

the prevalent market timing behaviors in bull markets are left unexplained.

Besides, beta dispersion is negatively related to TED-spread volatility (Novy-Marx and

Velikov, 2022, Table 4) and it neither accounts for the beta crashes in bull markets. In the

Internet Appendix, we regress the beta spread between the high-beta and low-beta portfolios

βH − βL on market risk premium with and without market condition indicators. We do

not find evidence that bull markets promote large losses by compressing beta. The slope

coefficients are economically small and statistically indistinguishable from zero. Moreover,

market conditions neither help to predict beta spread. These observations reaffirm that beta

compression is unlikely responsible for the bull-market beta crashes.

15Daily data of the TED spread (TEDRATE) are from Federal Reserve Bank of St. Louis, and the earliest
date is January 2, 1986. See Novy-Marx and Velikov (2022, Section 4.4) for more discussions.
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4.5 Market variance risk

We have seen that BA performance is related to market risk premium, and next we show

it is also related to market variance. Consistently, we run the following regression:

rBA,t = κ+ κDDt + κUUt + (λ+ λDDt + λUUt)σ̂
2
MKT,t + εt, (7)

where σ̂2
MKT,t is the variance of daily market factor returns in month t.

Table 6 shows the results for the market neutral BA-FP strategies. Simply regressing BA

returns on market variances, we register highly negative slope coefficients. For example, the

equal-weighted BA-FP strategy with non-linear market neutrality has a λ̂ of -1.65 (t-statistic

is -3.79). As the value of a call option on the market is positively related to market variance,

writing a call loses in volatile markets. The prevalently negative λ̂ supports our finding

of BA’s optionality. Comparatively, the Internet Appendix reports that the dollar-neutral

BA-FP strategies have insignificant λ̂, consistent with Figure 8 that dollar neutrality realizes

smaller deviation from zero beta than market neutrality upon market upswings.

Adding market condition indicators further reveals that BA returns are particularly rel-

evant to bull-market variance risk. Take the value-weighted BA-FP strategy with non-linear

market neutrality for example. It is trivially exposed to market variance risk in normal mar-

kets given an insignificant λ̂ of 0.43 (t-statistic is 0.71). Bull markets bring greater changes in

the sensitivity of market variance risk, as the strategy’s λ̂U (-6.51 with a t-statistic of -2.08)

is more significant than its λ̂D (-1.23 with a t-statistic of -1.89). For the other strategies, the

absolute value of λ̂U is always larger than that of λ̂D, corroborating that the variance risk

in bull markets is more detrimental to BA performance.

The negative impact of bull-market variance raises a question: BA’s reduced market

exposure in bull markets should bring volatility timing benefits upon increased bull-market

variance. We find this bull-market volatility timing ineffective because the market risk return

tradeoff changes. Figure 7 illustrates that the tradeoff is negative when market risk premium
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is below 5%. Specifically, the negative tradeoff is highly significant in bear markets (the slope

coefficient’s t-statistic is -3.55) and marginally significant in normal markets (t-statistic is

-1.69). In both cases, less market exposure is profitable.

However, the bull-market slope coefficient is a highly significant 5.91 (t-statistic is 3.47),

dominating its peers in size (-1.74 in bear markets and -1.19 in normal markets). Managing

market volatility is disadvantageous in the presence of a strong risk return tradeoff. Moreover,

BA’s market exposure and market variance significantly go up in bear markets, effectuating

negative volatility timing. As a result, volatility timing in bull and bear markets fails to

improve the performance of BA strategies.

Both bull and bear markets have high variance. Comparatively, funding liquidity risk

predominantly falls in bear markets, and this asymmetric feature facilitates the separation

of market variance effects on BA performance. We consider the following regression:

rBA,t = θ + θ1σ̂
2
MKT,t + θ2σ̂TED,t + θ3TEDt + θ4∆TEDt + εt, (8)

where σ̂TED,t is the volatility of daily TED spreads in month t, TEDt is the TED spread at

the end of month t, and ∆TEDt is the TED spread difference between month t and month

t − 1. The definition of the three TED-spread variables conforms to Frazzini and Pedersen

(2014) and Novy-Marx and Velikov (2022).

Figure 9 exhibits the t-statistics for the slope estimates. Market variance risk remains

the most important in explaining BA performance, indicating that the bull-market volatility

timing is a greater concern than the bear-market volatility timing. Market variance risk is

much more significant than funding liquidity risk, particularly for linear market neutrality.

Consistent with Novy-Marx and Velikov (2022), we note that the TED-spread volatility plays

a marginal role when the level of TED spread is present. We also consider lagged terms as

explanatory variables, and we find the lagged market variance insignificant in predicting BA

performance. This is not surprising due to the ex ante market neutrality.
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4.6 Managing beta crashes

Moreira and Muir (2017) and Cederburg et al. (2020) register that volatility manage-

ment is particularly successful for BAB. Beta crashes deteriorate the risk return tradeoff by

depressing return and elevating risk, extending a favorable condition to manage volatility.

We next explore the volatility-managed BA performance with the following strategy:

rσBA,t =
c

σ̂BA,t−1

rBA,t, (9)

where c corresponds to an annualized volatility level of 12% following Barroso and Santa-

Clara (2015) and Barroso and Maio (2021), and σ̂BA,t is the realized volatility calculated

from daily BA returns in month t.16

Barroso and Maio (2021) argue that the FF-6 model subsumes BAB performance. We

expand the analysis for the 36 BA strategies and report the results in the Internet Appendix.

Significant FF-6 alphas go to half of the market neutral BA strategies and one-third of the

dollar-neutral BA strategies. Non-linear market neutrality is remarkably advantageous in

promoting abnormal performance. For example, Table 7 shows that the FF-6 alphas of the

value-weighted BA-FP strategies are persistent, and non-linear market neutrality brings the

most significant 0.55% (t-statistic is 3.34).

We consider extending the FF-6 model for better explanatory power. Bali et al. (2017),

Schneider et al. (2020), Asness et al. (2020), Stambaugh and Yuan (2017), Liu et al. (2018),

and Barroso and Maio (2021) highlight that skewness preference, market sentiment, mispric-

ing, and limits to arbitrage contribute to explaining the low-beta anomaly. In particular,

Bali et al. (2017) develop FMAX factor to characterize skewness preference; Stambaugh and

Yuan (2017) propose two mispricing factors (MGMT and PERF), which capture investor

sentiment and arbitrage risk. Therefore, we augment the FF-6 model with the three factors

16In the literature, realized variance is also used for risk scaling, yet the performance difference is not
material (see Moreira and Muir, 2017, Table 5). We choose realized volatility for its advantage in mitigating
transaction costs, as noted by Moreira and Muir (2017, page 1625) and Barroso and Detzel (2021, page 751).
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to arrive at an extended 9-factor model.17

The 9-factor model well subsumes the BA abnormal performance, as only three alphas

are left significantly positive. Linear market neutrality and dollar neutrality fail to sustain

significant alphas. Novy-Marx and Velikov (2022, Tables C.8 and C.9) note that the value-

weighted BAB has lower FF-6 alphas than the equal-weighted BAB. We do not observe such

a pattern for the 9-factor model, given that the value-weighted BA-FP strategies always

have higher alphas. A plausible reason is that small stocks suffer from strong mispricing

error (Stambaugh et al., 2015 and Stambaugh and Yuan, 2017), which is captured by the

mispricing factors. Therefore, the equal-weighted strategies are no longer rewarded for their

tilt to small stocks in the 9-factor model.

Managing BA risk strongly improves performance. In particular, the economical and

statistical significance of alphas is considerably enhanced for the BA-FP strategies. For ex-

ample, the value-weighted BA-FP strategy with linear market neutrality has an insignificant

9-factor model alpha of 0.23%, while volatility management doubles it to 0.47% (t-statistic is

2.73). Volatility management is also beneficial for the other strategies. The equal-weighted

BA-Welch strategy with linear market neutrality has a trivial 9-factor model alpha of 0.11%

(t-statistic is 0.68), while its managed version obtains 0.97% (t-statistic is 3.52).

In addition, volatility management is especially profitable for the dollar-neutral BA

strategies. The 9-factor model, which fully prices all the dollar-neutral BA strategies, fails to

subsume any of the managed strategies. The dollar-neutral equal-weighted BA-FP strategy

is a case in point: volatility management favorably raises the 9-factor model alpha from

-0.06% (t-statistic is -0.45) to 0.63% (t-statistic is 4.30). In general, we register 32 (25) sig-

nificant FF-6 (9-factor) model alphas in the Internet Appendix, corroborating Barroso and

Maio (2021)’s argument that the success of managed-BAB is puzzling.

A practical concern of volatility management profits is transaction cost. Following Mor-

17The 9-factor model fully incorporates Stambaugh and Yuan (2017)’s M-4 factor model to accommodate
the low-beta anomaly, as a parsimonious model is limited to explain expected returns in the presence of
mispricing (Stambaugh and Yuan, 2017, page 1037).
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eira and Muir (2017, Section II.B), we consider three assumptions of trading cost: 1bps,

10bps, and 14bps.18 We examine if the significant benefits of BA risk management sur-

vive transaction costs. Table 8 summarizes the results for 10bps and 14bps trading costs,

as the results for 1bp are highly close to Table 7. All alphas remain positive, except for

the 9-factor model alphas of the value-weighted BA-OLS strategy with non-linear market

neutrality. Furthermore, most of the positive alphas keep statistical significance.

Take the value-weighted BA-FP strategies for example. With non-linear market neutral-

ity, the 9-factor model alpha is 0.63% (t-statistic is 3.57) when trading cost is 10bps and

0.62% (t-statistic is 3.50) when trading cost is 14bps. With linear market neutrality, the al-

pha remains a large 0.44% (t-statistic is 2.56) upon 10bps trading cost and 0.42% (t-statistic

is 2.48) upon 14bps trading cost. In the Internet Appendix, we analyze the effect of transac-

tion costs for all the 36 BA strategies. We observe prevalent performance improvement with

significance, and the profitability of BA risk management is robust to transaction costs.

4.7 International evidence

To check if the concern of imperfect market neutrality and beta crashes is unique to the

US market or not, we investigate a global BAB sample covering 24 markets such as France,

Germany, and UK. Maintained by AQR, the international BAB factors are composed with FP

beta, rank-weighting, and non-linear market neutrality. We provide the sample description

as well as the detailed results in the Internet Appendix.

Briefly, the international BAB factors similarly encounter crashes. The average drawdown

of the global sample is 52%, slightly lower than the US drawdown of 55%. For example, the

BAB drawdown is 69% in the UK market, suggesting a greater impact of BAB crashes than

in the US market. Calculating realized betas for the international sample, we find that most

factors have an economically large and statistically significant market beta, a clear evidence

18Barroso and Detzel (2021, Appendix A) point out that ETFs provide a cost-effective way to manage
portfolios, and we assume that investors track BA strategies with ETFs. Barroso and Detzel (2021) compre-
hensively examine the effect of transaction cost at stock level when common factors are under management.
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that market neutrality is not systematically maintained across markets. Compared to the

US level of 0.08, the average absolute market beta is a higher 0.12. The concern of market

neutrality deviations seems more acute in the international markets.

As BAB crashes deteriorate the risk return tradeoff, managing them helps to ameliorate

performance. Volatility management brings 17 Sharpe ratio increases, and most of them

are statistically significant. As the international risk factors such as the mispricing factors

are not available, we directly regress each managed BAB factor on its original version. We

register 19 positive alphas, and most of them are significant. The average annualized alpha

is about 2%, and this size is even greater than that of the managed HML factor in the US

market (Moreira and Muir, 2017, Table 1).

5 Conclusion

Frazzini and Pedersen (2014) intend their BAB strategy to be market neutral, and this

feature challenges the conditional CAPM in explaining the low-beta anomaly. Nonetheless,

we find that BAB takes a systematic deviation from market neutrality, and BAB crashes

often come in volatile markets. Such a concern is common to a broad range of 36 low-beta

strategies, covering six different beta estimators, three hedging methods, and two weighting

schemes. We document that betting against more standard betas such as the OLS beta

brings worse crash risk.

Our paper contributes to understanding BAB risk. Frazzini and Pedersen (2014) point

out that BAB may depart from market neutrality upon funding liquidity shocks. We notice

that BAB’s deviation from market neutrality in bull markets is more significant than in

bear markets. However, liquidity tends to be pro-cyclical and leverage constraints are less

binding in economic expansion. Thus, funding liquidity risk cannot address BAB’s particular

vulnerability to bull markets. The crashes of market neutral low-beta strategies can be

interpreted as negative market timing and negative volatility timing amid large market
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variations, suggesting that the conditional CAPM sheds light on the low-beta effect.

In addition, managing beta crashes leads to significant performance improvements. Lead-

ing explanations such as missing risk factors, skewness preference, mispricing, and limits to

arbitrage cannot subsume the abnormal performance of managed low-beta strategies. The

benefits of volatility management are also robust to transaction costs.
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Figures

This figure shows two expressive crashes for the betting against beta (BAB) factor. Panel A
is during the Internet bubble of 1999, and Panel B is during the Great Depression of 2008.
Assuming an initial investment of $1 at the beginning of the year, we plot the cumulative
return to the market (by dashed line) and BAB (by solid line) factors. Data of the BAB and
market factors are from AQR’s datasets and Kenneth French’s data library, respectively.

Figure 1: Two expressive BAB crashes
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This figure revisits the two expressive episodes for the six value-weighted beta arbitrage (BA)
strategies with non-linear market neutrality. Panel A is during the Internet bubble of 1999,
and Panel B is during the Great Depression of 2008. We use six beta estimators: Frazzini
and Pedersen (2014) (FP) beta, the simple OLS market model beta, Dimson (1979) beta,
Vasicek (1973) beta, Welch (2022) beta, and Liu et al. (2018) (LSY) beta. We use Jensen
et al. (2022)’s capped value-weighting scheme and Frazzini and Pedersen (2014)’s non-linear
market neutrality to compose BA strategies. Individual stock data are from the CRSP, and
the sample period is from July 1926 to December 2020.

Figure 2: Crashes revisited
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This figure shows the value-weighted average of beta estimates across the sample period. We
use six beta estimators: Frazzini and Pedersen (2014) (FP) beta, the simple OLS market
model beta, Dimson (1979) beta, Vasicek (1973) beta, Welch (2022) beta, and Liu et al.
(2018) (LSY) beta. The series is plotted by black solid line for the FP beta, by black dashed
line for the LSY beta, and by grey solid lines for the other four betas. Individual stock data
are from the CRSP, and the sample period is from July 1926 to December 2020. Shaded
bars indicate NBER economic recessions.

Figure 3: Time series of the value-weighted average of beta estimates
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This figure shows the estimated beta of the low-beta portfolio across the sample period. We
use six beta estimators: Frazzini and Pedersen (2014) (FP) beta, the simple OLS market
model beta, Dimson (1979) beta, Vasicek (1973) beta, Welch (2022) beta, and Liu et al.
(2018) (LSY) beta. The low-beta portfolio is developed following Jensen et al. (2022)’s
capped value-weighting scheme. The series is plotted by black solid line for the OLS beta,
by black dashed line for the Dimson beta, and by grey solid lines for the other four betas.
Individual stock data are from the CRSP, and the sample period is from July 1926 to
December 2020. Shaded bars indicate NBER economic recessions.

Figure 4: Time series of the estimated beta of the low-beta portfolio
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This figure shows the absolute value of t-statistics associated with realized betas for the
18 value-weighted beta arbitrage (BA) strategies. We use six beta estimators: Frazzini
and Pedersen (2014) (FP) beta, the simple OLS market model beta, Dimson (1979) beta,
Vasicek (1973) beta, Welch (2022) beta, and Liu et al. (2018) (LSY) beta. We use Jensen
et al. (2022)’s capped value-weighting scheme to compose BA strategies. For hedging
methods, we use non-linear market neutrality as explained by Frazzini and Pedersen (2014),
linear market neutrality as explained by Novy-Marx and Velikov (2022), and simple dollar
neutrality. The t-statistics are computed from the CAPM regressions using Newey and West
(1987) standard errors with 12 monthly lags. The dashed line denotes a cut-off t-statistic of
1.645 and the dotted line denotes a cut-off t-statistic of 1.96.

Figure 5: Market exposure and realized betas
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This figure shows the relationship between the market factor and the value-weighted BA-FP
strategy in different market states. To construct the value-weighted BA-FP strategy, we use
Frazzini and Pedersen (2014) (FP) beta, Jensen et al. (2022)’s capped value-weighting, and
non-linear market neutrality as explained by Frazzini and Pedersen (2014). Panel A plots
the scatter points of market returns and BA-FP returns, as well as the fitted line, over the
full sample; Panel B refers to the subsample when the return of the market factor is below
-5%; Panel C refers to the subsample when the return of the market factor is between -5%
and 5%; Panel D refers to the subsample when the return of the market factor is above 5%.
We also report the beta estimates and t-statistics, using Newey and West (1987) standard
errors with 12 monthly lags. Individual stock data are from the CRSP, and the sample
period is from July 1926 to December 2020.

Figure 6: Market neutrality and market states
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This figure shows the risk return relationship of the market factor in different market states.
Panel A plots the scatter points of market returns and market variances, as well as the fitted
line, over the full sample; Panel B refers to the subsample when the return of the market
factor is below -5%; Panel C refers to the subsample when the return of the market factor is
between -5% and 5%; Panel D refers to the subsample when the return of the market factor
is above 5%. We also report the beta estimates and t-statistics, using Newey and West
(1987) standard errors with 12 monthly lags. The data and sample period are consistent
with Figure 6.

Figure 7: Market variance and market states
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This figure shows the realized beta of the 36 beta arbitrage (BA) strategies in market up-
swings. We use six beta estimators: Frazzini and Pedersen (2014) (FP) beta, the simple
OLS market model beta, Dimson (1979) beta, Vasicek (1973) beta, Welch (2022) beta, and
Liu et al. (2018) (LSY) beta. We use Jensen et al. (2022)’s capped value-weighting scheme
and simple equal-weighting scheme to compose BA strategies. For hedging methods, we use
non-linear market neutrality as explained by Frazzini and Pedersen (2014), linear market
neutrality as explained by Novy-Marx and Velikov (2022), and simple dollar neutrality. We
run the following regression:

rBA,t = γ0 + γ1D
∗
t−1 +

(
γ2 +D∗

t−1(γ3 + γ4CU
∗
t )
)
rMKT,t + εt,

where rBA is the BA return, rMKT is the market factor return, D∗
t is a cumulative downside

market indicator taking the value of one if the past one-year cumulative market excess return
is negative and zero otherwise, and CU∗

t is a contemporary upside market indicator taking
the value of one if the market risk premium is positive and zero otherwise. The point estimate
of strategy beta is γ̂2 + γ̂3 + γ̂4 when the market rebounds from recessions.

Figure 8: Realized beta in market upswings
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This figure shows the effects of market variance risk and funding liquidity risk on the 24
market neutral beta arbitrage (BA) strategies. We use six beta estimators: Frazzini and
Pedersen (2014) (FP) beta, the simple OLS market model beta, Dimson (1979) beta, Vasicek
(1973) beta, Welch (2022) beta, and Liu et al. (2018) (LSY) beta. We use Jensen et al.
(2022)’s capped value-weighting scheme and simple equal-weighting scheme to compose
BA strategies. For hedging methods, we use non-linear market neutrality as explained by
Frazzini and Pedersen (2014) and linear market neutrality as explained by Novy-Marx and
Velikov (2022). We run the following regression:

rBA,t = θ + θ1σ̂
2
MKT,t + θ2σ̂TED,t + θ3TEDt + θ4∆TEDt + εt,

where rBA is the BA return, σ̂2
MKT,t is the variance of daily market factor returns in month

t, σ̂TED,t is the volatility of daily TED spreads in month t, TEDt is the TED spread at
the end of month t, and ∆TEDt is the TED spread difference between month t and month
t− 1. The t-statistics are computed by using Newey and West (1987) standard errors with
12 monthly lags. We plot the t-statistics associated with the coefficients of θ̂1, θ̂2, θ̂3, and
θ̂4. The dashed lines denote cut-off t-statistics of ±1.645 and the dotted lines denote cut-off
t-statistics of ±1.96.

Figure 9: Market variance and TED spread
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Tables

Table 1: Worst and best BAB returns

This table lists the 10 worst and best monthly returns to the betting against beta (BAB)
factor from December 1930 to December 2020. The contemporary returns to the market
factor are also reported. Data of the BAB and market factors are from AQR’s datasets and
Kenneth French’s data library, respectively.

Top losing months Top winning months

Month BAB Market Month BAB Market

1 193909 -21.95 16.88 193305 18.65 21.43
2 193207 -19.07 33.84 200102 15.39 -10.05
3 200101 -15.68 3.13 200011 13.50 -10.72
4 200211 -14.25 5.96 200204 12.92 -5.20
5 200002 -13.46 2.45 200212 12.15 -5.76
6 198710 -12.69 -23.24 193306 11.96 13.11
7 199911 -11.94 3.37 200901 11.90 -8.12
8 193208 -11.54 37.06 200103 10.52 -7.26
9 199912 -11.33 7.72 200202 9.70 -2.29
10 200006 -10.15 4.64 193404 9.56 -1.79

Average -14.21 9.18 12.62 -1.67
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Table 2: Performance of BA strategies

This table presents the performance of the 18 beta arbitrage (BA) strategies. We use three
beta estimators: Frazzini and Pedersen (2014) (FP) beta, the simple OLS market model
beta, and Welch (2022) beta. We use Jensen et al. (2022)’s capped value-weighting (VW)
scheme and simple equal-weighting (EQ) scheme to compose BA strategies. Panel A refers
to the strategies with non-linear market neutrality as explained by Frazzini and Pedersen
(2014), Panel B refers to the strategies with linear market neutrality as explained by Novy-
Marx and Velikov (2022), and Panel C refers to the strategies with simple dollar neutrality.
Performance measures include mean return, standard deviation, Sharpe ratio, minimum
return, maximum return, skewness, and kurtosis. Individual stock data are from the CRSP,
and the sample period is from July 1926 to December 2020. The extended table for all the
36 BA strategies is presented in the Internet Appendix.

FP OLS Welch

VW EQ VW EQ VW EQ

Panel A: Non-linear market neutrality

Mean 9.10 9.68 48.63 114.34 25.51 36.73
St. Dev 14.58 11.91 289.81 663.80 34.67 52.99
SR 0.62 0.81 0.17 0.17 0.74 0.69
Min -62.20 -22.29 -2218.97 -2544.19 -52.25 -116.55
Max 19.73 21.58 821.77 3378.04 134.47 212.97
Skewness -3.10 -0.52 -16.01 6.63 3.57 4.10
Kurtosis 51.08 9.72 478.32 192.35 48.71 60.52

Panel B: Linear market neutrality

Mean 7.41 6.07 12.88 13.09 11.12 11.17
Std 17.16 13.86 17.59 15.51 15.29 13.82
SR 0.43 0.44 0.73 0.84 0.73 0.81
Min -81.44 -39.00 -40.92 -37.57 -29.40 -28.67
Max 14.97 13.89 38.49 46.55 29.86 47.10
Skewness -5.00 -2.41 -0.61 0.69 -0.50 1.30
Kurtosis 75.52 19.68 15.09 27.27 10.32 34.27

Panel C: Dollar neutrality

Mean 0.47 -0.71 2.22 2.40 2.44 2.57
Std 24.06 20.95 21.26 17.38 21.42 17.83
SR 0.02 -0.03 0.10 0.14 0.11 0.14
Min -107.87 -53.85 -51.98 -32.55 -54.60 -35.48
Max 22.51 22.05 24.47 22.00 24.70 24.37
Skewness -4.39 -2.06 -1.12 -0.51 -1.00 -0.58
Kurtosis 61.93 16.92 13.28 8.01 12.65 9.20
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Table 3: Market exposure and the log market volatility ratio

This table presents the results of estimating the following time-series regression:

rBA,t = α + β1Vt + β2rMKT,t + β3rMKT,t−1 + β4rMKT,t−2 + εt,

where rBA is the beta arbitrage (BA) return, rMKT is the market factor return, and V =
rMKT · ln(σ−1Y

MKT/σ
−5Y
MKT ) is the interactive term between the market factor return and the

log ratio of the prior one-year market volatility to the prior five-year market volatility. We
use three beta estimators: Frazzini and Pedersen (2014) (FP) beta, the simple OLS market
model beta, and Welch (2022) beta. We use Jensen et al. (2022)’s capped value-weighting
(VW) scheme and simple equal-weighting (EQ) scheme to compose BA strategies. Below
the estimated coefficients in square brackets are robust Newey and West (1987) t-statistics.
The extended table for all the 36 BA strategies is presented in the Internet Appendix.

FP OLS Welch

VW EQ VW EQ VW EQ

Panel A: Non-linear market neutrality

β̂1 -0.48 -0.23 2.25 7.91 0.36 1.02
[-2.41] [-2.39] [1.23] [1.64] [1.23] [2.16]

β̂2 -0.14 0.00 1.77 -0.21 0.89 1.51
[-2.50] [0.03] [3.61] [-0.12] [9.83] [10.01]

β̂3 0.05 0.20 0.89 0.59 0.47 0.88
[0.95] [8.56] [3.26] [0.86] [4.52] [5.95]

Panel B: Linear market neutrality

β̂1 -0.76 -0.48 -0.21 -0.11 -0.09 0.04
[-3.31] [-4.14] [-1.80] [-0.95] [-0.80] [0.32]

β̂2 -0.11 -0.07 0.48 0.56 0.23 0.32
[-1.67] [-1.46] [10.22] [13.33] [5.09] [7.25]

β̂3 -0.06 0.05 0.08 0.16 0.07 0.17
[-0.98] [1.70] [2.58] [3.98] [2.04] [3.57]

Panel C: Dollar neutrality

β̂1 -0.37 -0.11 0.13 0.13 0.09 0.11
[-1.43] [-0.88] [1.21] [1.28] [0.78] [0.99]

β̂2 -0.91 -0.87 -0.83 -0.74 -0.86 -0.74
[-12.82] [-17.79] [-17.14] [-19.72] [-18.27] [-18.78]

β̂3 -0.07 0.05 0.09 0.17 0.07 0.17
[-1.04] [1.40] [2.64] [4.09] [2.19] [3.74]
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Table 4: Market states and market factor loadings

This table presents the results of estimating two specifications of the following time-series
regression:

rBA,t = α + αDDt + αUUt + (β + βDDt + βUUt)rMKT,t + εt,

where rBA is the beta arbitrage (BA) return, rMKT is the market factor return, Dt is a bear
market dummy variable taking the value of one if the market factor return is below -5%
and zero otherwise, and Ut is a bull market dummy variable taking the value of one if the
market factor return is above 5% and zero otherwise. Specification 1 is the simple market
model by setting αD = αU = βD = βU = 0, and Specification 2 is the full form. We use
Frazzini and Pedersen (2014)’s beta estimator, Jensen et al. (2022)’s capped value-weighting
(VW) scheme and simple equal-weighting (EQ) scheme to compose BA-FP strategies. We
use non-linear market neutrality as explained by Frazzini and Pedersen (2014), as well as
linear market neutrality as explained by Novy-Marx and Velikov (2022). Below the estimated
coefficients in square brackets are robust Newey and West (1987) t-statistics. The extended
table for all the three hedging methods is presented in the Internet Appendix.

Non-linear market neutrality Linear market neutrality

VW EQ VW EQ

(1) (2) (1) (2) (1) (2) (1) (2)

α̂ 0.88 1.05 0.81 1.11 0.75 0.85 0.58 0.78
[6.08] [7.69] [5.28] [8.21] [4.89] [5.80] [4.07] [5.91]

α̂D 3.15 3.62 2.74 3.34
[2.81] [3.16] [2.08] [3.18]

α̂U 4.16 -0.08 6.70 2.61
[2.55] [-0.08] [3.50] [2.35]

β̂ -0.18 -0.08 0.00 -0.04 -0.18 -0.01 -0.11 -0.08
[-2.10] [-1.56] [0.01] [-0.73] [-1.67] [-0.16] [-1.97] [-1.39]

β̂D 0.41 0.56 0.31 0.48
[2.77] [4.16] [1.83] [3.79]

β̂U -0.69 -0.11 -1.03 -0.44
[-3.01] [-0.71] [-3.86] [-2.68]
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Table 5: Market exposure in market upswings

This table presents the results of estimating the following time-series regression:

rBA,t = γ0 + γ1D
∗
t−1 +

(
γ2 +D∗

t−1(γ3 + γ4CU
∗
t )
)
rMKT,t + εt,

where rBA is the beta arbitrage (BA) return, rMKT is the market factor return, D∗
t is a

cumulative downside market dummy variable taking the value of one if the past one-year
cumulative market excess return is negative and zero otherwise, and CU∗

t is a contemporary
upside market dummy variable taking the value of one if the market risk premium is positive
and zero otherwise. We develop BA strategies as described in Tables 2. Below the estimated
coefficients in square brackets are robust Newey and West (1987) t-statistics. The extended
table for all the 36 BA strategies is presented in the Internet Appendix.

FP OLS Welch

VW EQ VW EQ VW EQ

Panel A: Non-linear market neutrality

γ̂0 0.94 0.97 3.55 1.29 1.45 2.03
[5.98] [6.42] [1.27] [0.25] [4.89] [3.74]

γ̂1 1.27 0.32 -9.42 34.56 -1.51 -2.34
[2.13] [0.93] [-1.48] [1.07] [-0.98] [-1.19]

γ̂2 -0.02 0.10 1.17 -0.62 0.93 1.52
[-0.33] [1.55] [2.06] [-0.26] [4.82] [4.85]

γ̂3 0.09 0.04 -0.12 3.64 -0.29 -0.17
[0.98] [0.41] [-0.12] [1.35] [-0.91] [-0.44]

γ̂4 -0.69 -0.41 3.06 -2.46 0.63 0.83
[-3.11] [-3.63] [1.16] [-0.52] [0.96] [1.14]

Panel B: Linear market neutrality

γ̂4 -0.90 -0.58 -0.13 -0.10 -0.24 -0.05
[-3.24] [-3.82] [-0.54] [-0.60] [-1.46] [-0.29]

Panel C: Dollar neutrality

γ̂4 -0.89 -0.56 -0.11 -0.03 -0.23 -0.02
[-3.25] [-3.71] [-0.51] [-0.15] [-1.36] [-0.11]
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Table 6: Market states, market variances, and BA performance

This table presents the results of estimating two specifications of the following time-series
regression:

rBA,t = κ+ κDDt + κUUt + (λ+ λDDt + λUUt)σ̂
2
MKT,t + εt,

where rBA is the beta arbitrage (BA) return, σ̂2
MKT,t is the market variance calculated from

daily market factor returns in month t, Dt is a bear market dummy variable taking the value
of one if the market factor return is below -5% and zero otherwise, and Ut is a bull market
dummy variable taking the value of one if the market factor return is above 5% and zero
otherwise. Specification 1 sets κD = κU = λD = λU = 0, and Specification 2 is the full
form. We use Frazzini and Pedersen (2014)’s beta estimator, Jensen et al. (2022)’s capped
value-weighting (VW) scheme and simple equal-weighting (EQ) scheme to compose BA-FP
strategies. We use non-linear market neutrality as explained by Frazzini and Pedersen (2014),
as well as linear market neutrality as explained by Novy-Marx and Velikov (2022). Below
the estimated coefficients in square brackets are robust Newey and West (1987) t-statistics.
The extended table for all the three hedging methods is presented in the Internet Appendix.

Non-linear market neutrality Linear market neutrality

VW EQ VW EQ

(1) (2) (1) (2) (1) (2) (1) (2)

κ̂ 1.03 0.94 1.21 1.18 0.90 0.88 0.80 0.89
[7.64] [6.43] [8.32] [8.18] [5.66] [4.87] [5.79] [6.11]

κ̂D 1.05 0.40 0.25 0.32
[1.54] [0.51] [0.36] [0.46]

κ̂U 0.00 -0.63 0.79 -0.25
[0.00] [-1.82] [0.88] [-0.52]

λ̂ -1.10 0.43 -1.65 -0.65 -1.18 -0.23 -1.22 -1.09
[-3.00] [0.71] [-3.79] [-1.01] [-2.07] [-0.26] [-3.38] [-1.52]

λ̂D -1.23 -1.19 0.03 0.38
[-1.89] [-1.53] [0.03] [0.51]

λ̂U -6.51 -1.53 -7.77 -3.41
[-2.08] [-1.38] [-1.89] [-1.96]
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Table 7: Volatility-managed BA performance

This table presents the abnormal returns relative to Fama and French (2016)’s 6-factor model
(α̂6) and the 9-factor model (α̂9) for the 18 beta arbitrage (BA) strategies. See Table 2 for
BA development and Equation 9 for volatility management strategy. Below the estimated
coefficients in square brackets are robust Newey and West (1987) t-statistics. The extended
table for all the 36 BA strategies is presented in the Internet Appendix.

FP OLS Welch

VW EQ VW EQ VW EQ

Panel A: Non-linear market neutrality

α̂6(rBA) 0.55 0.38 2.65 14.37 0.72 1.45
[3.34] [2.19] [0.83] [1.01] [2.13] [2.39]

α̂9(rBA) 0.43 0.20 2.03 12.82 0.41 1.00
[2.44] [1.23] [0.45] [0.87] [1.18] [1.56]

α̂6(rσBA) 0.76 1.28 0.29 1.65 0.46 1.43
[4.35] [3.74] [0.69] [2.23] [2.35] [2.83]

α̂9(rσBA) 0.66 1.16 -0.03 1.62 0.30 1.27
[3.74] [3.55] [-0.04] [1.86] [1.45] [2.47]

Panel B: Linear market neutrality

α̂6(rBA) 0.38 0.14 0.20 0.37 0.24 0.30
[2.30] [0.88] [0.96] [2.54] [1.44] [1.81]

α̂9(rBA) 0.23 -0.06 -0.02 0.20 0.02 0.11
[1.45] [-0.42] [-0.12] [1.34] [0.11] [0.68]

α̂6(rσBA) 0.63 1.05 0.41 0.98 0.42 1.24
[3.53] [3.74] [2.41] [4.60] [2.39] [4.31]

α̂9(rσBA) 0.47 0.81 0.19 0.72 0.21 0.97
[2.73] [3.16] [1.15] [3.42] [1.18] [3.52]

Panel C: Dollar neutrality

α̂6(rBA) 0.39 0.15 0.19 0.35 0.25 0.28
[2.48] [0.98] [0.90] [2.30] [1.46] [1.67]

α̂9(rBA) 0.22 -0.06 -0.08 0.12 -0.01 0.05
[1.50] [-0.45] [-0.42] [0.74] [-0.07] [0.32]

α̂6(rσBA) 0.60 0.70 0.43 0.77 0.39 0.71
[4.47] [4.57] [3.23] [5.72] [3.19] [4.89]

α̂9(rσBA) 0.53 0.63 0.30 0.71 0.30 0.66
[4.05] [4.30] [2.43] [5.39] [2.52] [4.70]
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Table 8: Volatility-managed BA performance and trading costs

This table presents the abnormal returns relative to Fama and French (2016)’s 6-factor model
(α̂6) and the 9-factor model (α̂9) for the 18 beta arbitrage (BA) strategies in the presence of
transaction costs. See Table 2 for BA development and Equation 9 for volatility management
strategy. Following Moreira and Muir (2017, Section II.B), we consider two assumptions of
trading costs: 10bps and 14bps. The extended table for all the 36 BA strategies is presented
in the Internet Appendix.

FP OLS Welch

VW EQ VW EQ VW EQ

Panel A: Non-linear market neutrality

α̂6(10bps) 0.73 1.23 0.27 1.63 0.44 1.41
[4.18] [3.59] [0.66] [2.21] [2.27] [2.79]

α̂9(10bps) 0.63 1.11 -0.04 1.59 0.28 1.24
[3.57] [3.39] [-0.07] [1.84] [1.35] [2.40]

α̂6(14bps) 0.72 1.20 0.27 1.62 0.44 1.40
[4.12] [3.53] [0.65] [2.19] [2.23] [2.76]

α̂9(14bps) 0.62 1.09 -0.05 1.58 0.27 1.22
[3.50] [3.32] [-0.08] [1.83] [1.31] [2.37]

Panel B: Linear market neutrality

α̂6(10bps) 0.60 0.99 0.38 0.94 0.39 1.18
[3.34] [3.53] [2.25] [4.41] [2.22] [4.12]

α̂9(10bps) 0.44 0.75 0.16 0.68 0.18 0.92
[2.56] [2.94] [0.99] [3.22] [1.02] [3.32]

α̂6(14bps) 0.59 0.96 0.37 0.93 0.38 1.16
[3.28] [3.46] [2.18] [4.33] [2.16] [4.04]

α̂9(14bps) 0.42 0.73 0.15 0.66 0.17 0.89
[2.48] [2.85] [0.92] [3.14] [0.96] [3.24]

Panel C: Dollar neutrality

α̂6(10bps) 0.57 0.66 0.40 0.73 0.37 0.67
[4.26] [4.32] [3.04] [5.47] [3.00] [4.65]

α̂9(10bps) 0.50 0.60 0.28 0.68 0.28 0.63
[3.87] [4.07] [2.26] [5.16] [2.34] [4.48]

α̂6(14bps) 0.56 0.65 0.39 0.72 0.36 0.66
[4.19] [4.23] [2.98] [5.38] [2.93] [4.57]

α̂9(14bps) 0.50 0.59 0.27 0.67 0.27 0.62
[3.80] [3.97] [2.19] [5.07] [2.27] [4.39]
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