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Abstract

We analyse spillovers between the real and financial sides of the US economy, and between those in

the US and other advanced economies. The approach developed allows for differences in sampling

frequency between financial and macroeconomic data. We find that financial markets are typically

net transmitters of shocks to the real side of the economy, particularly during turbulent market

conditions. This result holds both for domestic US macro-financial spillovers, and also those between

the US and other advanced economies. Our macro-financial spillover measures are found to have

significant predictive ability for future macroeconomic conditions in both in-sample and out-of-

sample forecasting environments. Furthermore, the predictive ability frequently of our macro-

financial measures frequently exceeds that of purely financial systemic risk measures previously

employed in the literature for the same task.
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1 Introduction

Over the last decade, there has been significant interest in financial contagion, spillovers and

systemic risk, both in the academic community and monetary and financial regulatory au-

thorities. The 2008-2009 financial crisis was previously a key driver of this interest, and the

current COVID-19 pandemic has also highlighted its importance. A primary topic of research

within this literature has been the development of quantitative measures and statistical tests

for spillovers and systemic risk in financial markets, with examples including Allen et al. (2012),

Billio et al. (2012), Diebold and Yılmaz (2014), Adams et al. (2014), Engle et al. (2015), Adrian

and Brunnermeier (2016) and Brownlees and Engle (2017).

This literature on the quantitative measurement of spillovers and systemic risk has provided

valuable insights into the strength and structure of financial market linkages at both the firm

and market-level, but has largely ignored the real or non-financial side of the economy. This

leaves unanswered the key question of the magnitude and direction of the linkages between Main

Street (the real economy) and Wall Street (financial markets) and how they vary over time. This

paper directly estimates spillovers between the financial and real sides of the economy with a

new approach designed specifically for this macro-financial context.

We perform a detailed empirical investigation of macro-financial spillovers for the US econ-

omy, estimating both the aggregate level of US macro-financial spillovers and also disaggre-

gated directional measures in a dynamic estimation environment. This allows us to decompose

spillovers in detail and analyse how the level and composition of macro-financial spillovers have

evolved over time. We then expand this analysis to consider pairs of economies comprised of

the US and one of five other advanced economies, allowing us to study the international di-

mensions of macro-financial spillovers. Finally, we also investigate the predictive ability of our

macro-financial spillover measures for future US macroeconomic conditions, finding that they

outperform existing purely financial systemic risk measures used for this task in the literature.

Despite the previously noted lack of work on the quantitative measurement of macro-

financial spillovers specifically, there is an extensive literature on macro-financial linkages in a

more general sense that helps to motivate the current work. Examples include, amongst others,

Ellington (2018) who examines the links between financial market illiquidity and macroeconomic

dynamics for UK data; Prieto et al. (2016) who examine time variation in linkages between US

GDP and financial data including stock prices and credit spreads; Galvão and Owyang (2018)
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who detail the links between a panel of key financial variables and industrial production growth

and inflation; and Hubrich and Tetlow (2015) who examine the behaviour of the macroeconomy

under periods of varying financial stress.

A second, and generally more structural, strand of the literature focuses on specific examples

of macro-financial linkages. For example, a deterioration in financial conditions is expected to

negatively impact the real side of the economy through a reduction in the willingness of financial

firms to extend credit to corporate clients, which may, in turn, suppresses investment and thus

economic output. This is supported empirically by work such as Ivashina and Scharfstein (2010),

Cingano et al. (2016) and Li et al. (2019). Likewise, shocks to the real side of the economy

may feed back into financial markets by increasing corporate defaults or reducing firm equity

values. In particular, there is significant literature studying the response of financial markets to

macroeconomic news and announcements, such as the work of Brenner et al. (2009) and Savor

and Wilson (2013). Furthermore, adverse feedback loops may develop between the financial and

real sides of the economy, amplifying the effect of negative shocks through mechanisms such as

the financial accelerator of Bernanke et al. (1996). Given that we seek to estimate and analyse

macro-financial shock transmission and spillovers in a general sense arising as a result of all

these linkages collectively, our work lies closer to the non-structural side of the literature noted

in the previous paragraph than these more structural studies.

Our work also clearly has strong links to the literature on the estimation and quantitative

measurement of systemic risk and spillovers in financial markets such as Allen et al. (2012),

and others cited above, but in a macro-financial context. The vast majority of the past work

in this field has ignored the non-financial side of the economy, despite the potential importance

of the macro-financial dimension being frequently noted (see, for example, Brunnermeier et al.,

2011). The few exceptions include Baur (2012) and Claessens et al. (2012); however, in these

cases, the real side of the economy enters only via financial data for non-financial firms, rather

than through conventional aggregate real economy series. Similarly, both Allen et al. (2012)

and Brownlees and Engle (2017) create non-financial variants of their respective systemic risk

indices by utilising data for non-financial firms. However, these non-financial indexes are used

for robustness checks and minor extensions to the core empirical analysis, not to study the

interaction between the two sides of the economy as we do here. The disadvantage of such

approaches in our context is that financial data for non-financial firms provide a less direct

and much narrower measure of conditions in the real sector of the economy than aggregate
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macroeconomic series.

Our approach is thus explicitly developed for combinations of financial and real economy1

variables. A key practical issue encountered in this context is that most financial series are

available at much higher sampling frequencies than the monthly or quarterly frequencies of

most real economy series. Standard econometric methods for the estimation of models in such a

context impose the use of a common frequency for all indicators, requiring the financial series to

be aggregated to the lower frequency of the real economy series, discarding potentially relevant

high-frequency information. Our approach instead uses mixed-frequency methods developed by

Ghysels (2016) to allow monthly macroeconomic series to be used alongside weekly financial

series. Ghysels (2016) and Schorfheide and Song (2015), amongst others, have found that in

several settings, mixed-frequency approaches can provide gains in estimation and forecasting

compared to a common-frequency approach.

For the quantitative measurement of spillovers, we employ the Diebold-Yilmaz spillover

measures previously used in the context of financial markets (see Diebold and Yılmaz 2009,2012

and 2014), but we modify and extend the approach appropriately for the mixed-frequency

context we work in. The Diebold-Yilmaz (DY) approach provides a set of spillover measures

at various levels of aggregation. The most aggregated measure is the total spillover index,

which provides a single numerical value that measures the overall level of spillovers between the

series of interest and is thus analogous to many of the other financial spillover or systemic risk

measures proposed in the literature, such as the CATFIN and SRISK measures of Allen et al.

(2012) and Brownlees and Engle (2017) respectively. We also employ the most disaggregated

pairwise spillover indexes, which provide a set of indexes measuring spillovers from a specific

series to each of the other series. The pairwise measures are directional in nature and so allow

for a detailed analysis of spillover structure that would not be possible with non-directional

alternative measures that account for the majority of the existing literature. This ability to

construct a set of pairwise directional spillover indexes is also shown to be valuable when using

our measures to forecast future macroeconomic conditions.

In our analysis of US macro-financial spillovers we focus on equity and bond markets for the

financial side of the economy and a broad measure of economic conditions for the real side of the

economy, namely the Chicago Fed National Activity Index (CFNAI). Our sample period spans

1Throughout the current work, we use the terms ‘real economy’ and ‘macroeconomic’ interchangeably when
referring specifically to series and variables. More generally, the term macroeconomic could also refer to certain
financial series types, but this is not the case in the current context.
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1980-2020, thus including many significant economic and financial events such as the 2008-2009

financial crisis and the beginning of the COVID-19 pandemic. The dynamics and magnitude of

estimated US macro-financial spillovers obtained from our new mixed-frequency extension of the

DY approach differ significantly from those obtained from a more straightforward, but other-

wise equivalent, common-frequency modelling approach that discards additional high-frequency

financial information. Perhaps most notably, the magnitude of spillovers estimated by our

new mixed-frequency DY approach is typically substantially higher than that implied by the

similar common-frequency approach. This finding suggests that using a common-frequency

modelling approach that discards additional high-frequency financial information within each

month results in estimated macro-financial connectedness being lower on average. Exploiting

this additional financial information also results in estimated spillover indexes whose dynamics

are generally more consistent with known historical events, such as those during the 2008-2009

financial crisis, than common-frequency estimates.

We also find that financial markets are typically net transmitters of shocks to the real econ-

omy regardless of whether our mixed-frequency approach or the equivalent common-frequency

approach is used, but that the role of financial markets in spillover transmission is more signif-

icant when employing the former. These findings are particularly evident when markets face

turbulence, most notably during the 2008-2009 crisis and the COVID-19 pandemic.

Following the US analysis, we study international macro-financial spillovers between the

US and other major advanced economies. For this component of the analysis we study pairs

of countries consisting of the US and one of five other advanced economies, namely Canada,

France, Germany, Japan and the UK. In each case we employ returns on a major national

equity index for each of the countries and industrial production growth for each country for the

financial and non-financial sides of the economy respectively. The key findings for the US are

also shown to hold more generally in this international context. Firstly, estimates of the overall

level of international macro-financial spillovers are again substantially higher when employing

our mixed-frequency approach than the equivalent common-frequency approach. Second, cross-

country spillovers from financial variables constitute the majority of overall spillovers on average

over the sample period. However, we find that cross-country real economy to real economy

spillovers, rather than financial spillovers, were the largest single source of the increase in

international macro-financial spillovers observed during the start of the COVID-19 pandemic.

The final dimension of our empirical analysis is motivated by past work In the literature on
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systemic risk such as Allen et al. (2012), Giglio et al. (2016) and Brownlees and Engle (2017),

who have found empirical evidence that systemic risk measures have forecasting ability for

future macroeconomic conditions. Motivated by these studies, we perform a detailed empirical

analysis to see if the same is true for our macro-financial spillover measures. A key advantage of

our DY-based approach in this context is that it directly provides a set of pairwise directional

spillover measures rather than just a single higher-level numerical measure. This allows us to

straightforwardly construct combination forecasts from these individual pairwise measures, an

approach which has been found to provide gains in predictive ability relative to forecasts based

on individual predictors elsewhere in the finance literature, such as Rapach et al. (2010) and

Paye (2012).

We find that our measures provide consistently stronger predictive ability for macroeconomic

conditions across a range of forecast horizons than existing systemic risk measures, including

the CATFIN and SRISK measures proposed by Allen et al. (2012) and Brownlees and Engle

(2017) respectively. This outperformance over existing systemic risk measures is especially pro-

nounced in an out-of-sample context or when forecasting more specific aspects of macroeconomic

conditions rather than aggregate macroeconomic conditions. Our measures’ improvements in

predictive accuracy are substantial during the 2008-2009 crisis.

The remainder of the paper is organised as follows. Section 2 introduces the methodology

we develop for quantitatively measuring the strength and structure of macro-financial spillovers.

Section 3 applies our methodology to perform a detailed empirical analysis of macro-financial

spillovers in the US and a more concise analysis for a set of five other advanced economies.

Section 4 examines the predictive ability of our macro-financial spillover measures for future

macroeconomic conditions and finally Section 5 concludes.

2 Macro-Financial Spillover Estimation

Our quantitative measures of spillovers are based on the established DY spillover methodology

of Diebold and Yılmaz (2009, 2012, 2014)2, which has been applied extensively to study financial

spillovers but has not been employed in a macro-financial context. The DY approach relies on

the forecast error variance decomposition from a standard vector autoregressive (VAR) model,

2Numerous extensions to the original DY spillover methodology have also been proposed, with notable ex-
amples including factor-augmented VARs (Claeys and Vaš́ıček, 2014), asymmetries in spillovers (Barunik et al.,
2015), frequency-domain methods (Barunik and Křehĺık, 2018), and quantile connectedness (Ando et al., 2022).
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in which all series are observed at a common sampling frequency. However, the combinations

of the real economy and financial time series of interest here will typically contain series at

different sampling frequencies, with financial series generally available at much higher sampling

frequencies than macroeconomic series.

The traditional solution would be to aggregate all high-frequency financial series to the

sampling frequency of the lowest frequency real economy series employed before applying the

standard DYmethodology to the transformed data. Whilst simple, the obvious drawback of such

an approach is the potentially relevant information lost when aggregating the higher frequency

financial series. Instead, we avoid these issues by replacing the standard common-frequency

VAR model with a mixed-frequency VAR (MF-VAR) model. This allows us to employ high and

low-frequency series together, estimating our spillover measures directly from a mixed-frequency

macroeconomic and financial dataset.

It is worth noting that, as with the works on financial spillovers and systemic risk mea-

surement pointed out in the Introduction, our DY-based approach to spillover estimation does

not make any assumptions about the source of these macro-financial spillover channels or their

theoretical underpinnings. Whilst more theoretical or structural approaches have potential ad-

vantages in other contexts, they are problematic for our objective of analysing macro-financial

spillovers at an economy-wide level given the difficulties in formulating a structural model that

is simultaneously plausible and tractable for this goal.

2.1 The Mixed-Frequency VAR Model

We follow Ghysels (2016) for the specification and estimation of the MF-VAR. To illustrate the

approach, we assume for simplicity that there are only two distinct sampling frequencies (high-

frequency and low-frequency). We also assume that the number of high-frequency time periods

is the same in each low-frequency period. Both of these are true for the empirical analysis

here. However, it should be noted that the methodology is generally applicable and that these

assumptions can be relaxed at the cost of more complex notation and implementation.

Formally, we observe a K -dimensional mixed-frequency vector process, which contains KL <

K low-frequency macroeconomic or real economy series and KH = K −KL high-frequency fi-

nancial series. In terms of low-frequency time periods, which we index by τL, the low-frequency

macroeconomic series are observed once per period and collected in the KL-dimensional vector

process xL(τL). Each high-frequency financial series is observed m times every low-frequency
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time period. We group the high-frequency observations within each low-frequency period

by series, with the m-dimensional vector xH,i(τL) containing the m values for the i-th high-

frequency series that are observed in low-frequency time period τL. In total we therefore have

KH m-dimensional vectors xH,1(τL), . . . , xH,KH
(τL) of high-frequency observations in each low-

frequency time period.

We create a stacked vector for each low-frequency time period that contains both the

KL-dimensional vector of low-frequency real economy observations, xL(τL), and the KH m-

dimensional vectors containing all the high-frequency financial data observed during the same

low-frequency time period. The resulting stacked vector is denoted by x(τL) and is of dimension

Kx, where Kx ≡ (mKH +KL):

x(τL) ≡
[
xH,1(τL)

′, . . . , xH,KH
(τL)

′, xL(τL)
′
]′

Following Ghysels (2016), we then specify a standard VAR model for the stacked mixed-

frequency vector x(τL).The general form of the p-th order MF-VAR is thus given by:

x(τL) = A0 +

p∑
j=1

Ajx(τL − j) + ε(τL) (2.1)

where A0 is an Kx-dimensional parameter vector, Aj , j = 1, . . . p are (Kx × Kx) parameter

arrays and ε(τL) is an Kx-dimensional vector of errors. Despite the somewhat non-standard

composition of the vector x(τL), the model is mathematically equivalent to a standard VAR.

As such, standard methods for estimation and analysis of VAR models can be employed.

In addition to the stacked mixed-frequency vector process x(τL) introduced above, we will

also consider the associated K-dimensional low-frequency vector process denoted by x(τL),

which contains both the KL low-frequency real economy series and the KH high-frequency

financial series appropriately aggregated down to the lower frequency of the real economy series:

x(τL) ≡
[
xHtL(τL)

′, xL(τL)
′
]′

where xHtL(τL) is used to denote the set of high-frequency series aggregated to the lower fre-

quency in the τL-th time period. We primarily employ return levels as financial series in the

current work, with return volatilities also considered in the Appendix. As such, the high-

frequency financial series contained in the vectors xH,1(τL), . . . , xH,KH
(τL) will be weekly returns
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(or return volatilities) and those in the aggregated low-frequency vector xHtL(τL) are monthly

returns (or return volatilities). We also specify a standard common-frequency VAR model for

the low-frequency vector process x(τL), which we will refer to as the common-frequency VAR

(CF-VAR).

While the MF-VAR and CF-VAR are both technically specified at the lower sampling fre-

quency, the MF-VAR also incorporates higher frequency information available within each low-

frequency time period that is not used by the CF-VAR. We use a combination of monthly

macroeconomic series and weekly financial series, allowing the MF-VAR to incorporate poten-

tially relevant intra-month information on financial market behaviour at the weekly frequency.

In the case of the CF-VAR, this high-frequency information is discarded when the financial

series are aggregated down to the monthly frequency. As noted during the introduction, Ghy-

sels (2016), Schorfheide and Song (2015) and others have previously shown that the use of

mixed-frequency methods may provide gains in accuracy for both estimation and forecasting

in the context of VAR models relative to a common-frequency approach. During our empiri-

cal analysis, we will directly compare the DY spillover measures obtained from the traditional

CF-VAR with those from the MF-VAR to investigate the impact of including this additional

high-frequency information.

2.2 Forecast Error Variance Decomposition and Spillover Measures

After the specified VAR model has been estimated, the next step when computing the DY

spillover measures is to compute the forecast error variance decomposition (FEVD) arrays for

the VAR. Following Diebold and Yılmaz (2012), we employ the approach of Pesaran and Shin

(1998) to compute generalised FEVD values. This approach is widely employed in the literature,

and so numerical details are relegated to Appendix A.1.

For a generic K-dimensional VAR, the FEVD arrays are of dimension (K ×K) and of the

form:


ϕ11(H) · · · ϕ1K(H)

...
. . .

...

ϕK1(H) · · · ϕKK(H)

 for H = 1, 2, . . . (2.2)

where ϕkl(H) for k, l = 1, . . . ,K is the fraction of the H -step-ahead error variance in forecasting
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series k that is attributable to shocks in series l. The FEVD array elements thus have a clear

interpretation as measures of spillovers and shock transmission between the series in the system.

More specifically, the pairwise DY spillover from series i to series j is given by:

Sij(H) =
100

K
· ϕji(H) (2.3)

Multiplying the relevant FEVD element ϕji(H) by the factor 100/K ensures that each pairwise

spillover value is expressed as a percentage of the total forecast error variance across all series

in the VAR3.

The DY spillover measures are complementary to alternative systemic risk measures as tools

for monitoring market conditions. It is worth emphasising again that the DY pairwise spillover

measures are directional in the sense that Sij ̸= Sji for i ̸= j. This is a key theoretical advantage

compared to most common measures of pairwise association such as correlation, which are non-

directional and measure only the strength of association between two series. Indeed this is also

an important difference between the DY spillover measures and other established measures of

systemic risk employed in the finance literature, such as the CATFIN measure of Allen et al.

(2012) or the SRISK measure of Brownlees and Engle (2017). While some of these measures

have a directional aspect, the nature or scope of the directionality measured is restricted by

construction. For example, SRISK, when computed at the firm or market level, corresponds to

the contribution of that firm or market to the overall systemic risk within the system conditional

on a systemic market decline occurring.

The fact that the DY approach naturally produces a set of pairwise spillover measures rather

than simply a single numerical measure also emerges as an important advantage when we employ

the measures to forecast macroeconomic conditions in Section 4. As demonstrated later, the fact

that each of the directional pairwise spillover measures contains different information concerning

the structure of macro-financial spillovers allows us to exploit the use of combination forecasts,

which have had much success in the previous literature on predictability.

Whilst the pairwise spillover measures of equation (2.3) permit a detailed analysis of the

direction and structure of spillovers, more aggregated measures may also be helpful to quantify

the overall strength of spillovers concisely. We, therefore, employ both the disaggregated pair-

wise measures above and the most aggregated measure proposed by Diebold and Yılmaz (2012).

3This follows because, as discussed in Appendix A.1, the sum of the elements in each row of the FEVD array
equals one, giving a sum over all elements equal to K.
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This is referred to as the total spillover index and provides a single numerical measure of the

overall level of spillovers between the series included in the underlying VAR. The measure is

thus similar in spirit to many of the economy-wide systemic risk measures proposed elsewhere

in the literature, such as CATFIN and the aggregate variants of SRISK and CoVaR. The total

spillover index is computed as:

S(H) =
100

N

K∑
i,j=1
i ̸=j

ϕji(H) (2.4)

The total spillover index gives the percentage of the total H -step-ahead forecast error variance

for all series that is attributable to shocks across series, i.e. excluding the direct effect of shocks

to each given series on itself.

As shown by Diebold and Yılmaz (2014), parallels can be drawn between the DY spillover

measures and other systemic risk measures proposed in the literature, such as the CoVaR

measure of Adrian and Brunnermeier (2016) and the MES measure that features in the work

of both Acharya et al. (2016) and Brownlees and Engle (2017). Besides the slightly different

aspect of connectedness being measured by the different approaches, the key difference is that

CoVaR, MES and the majority of the other systemic risk measures in the literature focus on

tail risk or connectedness conditional on the market or financial institution being in an adverse

state. The DY approach, on the other hand, measures unconditional connectedness in the sense

that it considers the average or mean state of the market. This average state is then allowed to

change over time through the use of a dynamic estimation environment as discussed in Section

3.

2.3 Transformation of Mixed-Frequency Forecast Error Variance Decompo-

sition

The FEVD arrays for the MF-VAR model are computed as in the common-frequency case.

However, they will have a non-standard structure arising from the non-standard composition

of the stacked vector, x(τL). Whilst the standard DY spillover measures can be computed

directly from these mixed-frequency FEVD arrays, the interpretation of the measures obtained

will differ from the standard common-frequency case.

The relevant issues and concepts are best illustrated using a simple example that is closely

related to the empirical analysis in the following sections. Specifically, we employ a bivariate

11



model with one low-frequency monthly macroeconomic series and one high-frequency financial

weekly series for exposition. We thus have m = 4,KL = 1 and KH = 1, giving a stacked mixed-

frequency vector of dimensionsKx = 5, with the form x(τL) = [xH(τL, 1), . . . , xH(τL, 4), xL(τL)]
′.

For the corresponding common-frequency VAR, we have a (2 × 1) vector process x(τL) =

[xHtL(τL), xL(τL)]
′. This results in (5× 5) FEVD arrays for the MF-VAR and (2× 2) arrays for

the CF-VAR, given respectively by:


θ11(H) . . . θ15(H)

...
. . .

...

θ51(H) . . . θ55(H)

 and

ϕ11(H) ϕ12(H)

ϕ21(H) ϕ22(H)

 for H = 1, 2, . . . (2.5)

with the differences in notation used only to distinguish the FEVD elements for the MF-VAR

and CF-VAR.

It is clear that the FEVD arrays for the MF-VAR in (2.5) will be larger than those for the

corresponding CF-VAR, since Kx > K. This arises because the weekly high-frequency series

observed in each low-frequency monthly time period are treated mathematically as separate

series when estimating the MF-VAR but enter the CF-VAR as a single monthly series. As

a result, in the common-frequency case a single FEVD element completely characterises the

directional spillovers at the chosen forecast horizon between a given pair of macroeconomic or

financial series. In contrast, in the mixed-frequency case, it will generally be characterised by

multiple FEVD array elements.

We, therefore, develop an approach for transforming the FEVD arrays obtained from the

MF-VAR to produce new FEVD arrays with the same structure and dimensions as those for the

corresponding CF-VAR. We can then compute DY spillover measures from these transformed

arrays that are directly comparable to those in the standard common-frequency case. The basic

intuition of the transformation approach is outlined here, with mathematical details found in

Appendix A.2.

Intuitively we exploit the correspondence between the elements of the FEVD arrays for the

mixed-frequency and common-frequency cases. More specifically, for the current example we
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group the MF-VAR FEVD elements in (2.5) into sub-arrays as follows:

Θ11(H) Θ12(H)

Θ21(H) Θ22(H)

 for H = 1, 2, . . . (2.6)

where:

Θ11(H) ≡


θ11(H) . . . θ14(H)

...
. . .

...

θ41(H) . . . θ44(H)

 Θ12(H) ≡


θ15(H)

...

θ45(H)



Θ21(H) ≡
[
θ51(H) . . . θ54(H)

]
Θ22(H) ≡ θ55(H)

Each of the sub-arrays Θkl(H) in (2.6) can be viewed as a mixed-frequency analogue of the

corresponding scalar element ϕkl(H) from the CF-VAR FEVD array in (2.5). For example, the

(4× 1) sub-vector Θ12(H) characterise the effects of shocks to the monthly low-frequency series

(series 2) on the weekly high-frequency series (series 1). Specifically, θi5 for i = 1, . . . , 4 measures

the fraction of the H -step-ahead error variance in forecasting the high-frequency series in week

i of the month that is attributable to shocks in the low-frequency series. The scalar element

ϕ12(H) for the common-frequency case describes the same directional pairwise relationship for

the case where both series are observed at the lower monthly frequency.

The approach detailed in Appendix A.2 transforms each of the sub-arrays Θkl(H) in (2.6)

into a scalar value, whose interpretation is directly comparable with the corresponding element

ϕkl(H) in the standard common-frequency case. This comparability of the values is ensured

by directly basing the transformation used on the mathematical definition of the generalised

FEVD elements.

3 Macro-Financial Spillovers

Our empirical analysis of macro-financial spillovers focuses primarily on the United States, given

the central role that the country plays in global economic and financial markets. We examine

over four decades of data ending in June 2020, thus covering many significant economic and

financial events, including the 2008-2009 global financial crisis and the large shocks resulting

from the onset of the COVID-19 pandemic. In Section 3.3 we also more briefly examine the in-
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ternational dimension of macro-financial spillovers using data for five other advanced economies,

namely Canada, France, Germany, Japan and the United Kingdom.

Section 3.1 begins by describing the data and implementation of the approach employed to

estimate spillovers. Section 3.2 presents a graphical analysis of the US macro-financial spillover

measures obtained using our approach. In this subsection, we also include measures obtained

from the existing common-frequency approach to assess the practical effects of ignoring the

high-frequency financial data when using a more traditional modelling approach.

3.1 Data and Spillover Estimation

On the real side of the economy, our series of interest is the Chicago Fed National Activity

Index (CFNAI) of the Federal Reserve Bank of Chicago.4 The CFNAI is employed at its regular

monthly frequency and is constructed to have a mean value of zero, with positive (negative)

values corresponding to growth above (below) its historical trend. We work with the level of

the CFNAI series, given that this corresponds in a broad sense to the change in macroeconomic

conditions5.

On the financial side, we focus on equity and bond markets, represented by the S&P500

equity index and the 10-year US Treasury Note, respectively. Although the strength and struc-

ture of spillovers between bond markets and the real economy may vary with bond maturity

and type (as suggested by Brenner et al., 2009), for simplicity, we restrict our attention to US

sovereign bonds, specifically the 10-year Treasury Note.

We focus primarily on return levels for the financial series, assuming that changes in macroe-

conomic conditions will be linked to changes in asset values. However, we do repeat the core

analysis of Section 3.2 using return volatilities for the sake of completeness, with the results

found in Appendix C.2. Whilst the switch to return volatilities does induce some changes in

the levels and dynamics of the various spillover indexes, the key empirical findings for return

levels follow through primarily unchanged.

For the non-US analysis of Section 3.3, we use month-on-month industrial production growth

4 CFNAI is frequently used in empirical work to provide a single numerical measure of US macroeconomic
activity that is broader and less noisy than specific series such as industrial production (see for example Allen
et al., 2012). It is a composite index derived from 85 underlying macroeconomic indicators grouped into four
categories: production and income, employment unemployment and hours, consumption and housing, and sales,
orders and inventories.

5We also repeated the analysis performed in the current section using the four CFNAI subcomponents in place
of the aggregate CFNAI index. These results are not reported here to conserve space but are available upon
request. These CFNAI subcomponents are, however, employed during the forecasting exercise of Section 4, with
further details of their characteristics found in the associated discussion.
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as our macroeconomic variable for the real side of the economy given the lack of an equivalent

index to the CFNAI for other countries. To provide results that are entirely comparable across

countries, we also repeat the US analysis using monthly IP growth in place of the CFNAI.

Similar to the US, for the financial side of the economy, we use return levels for the major

national equity index for each country6 and generic national 10-year government bond indexes

obtained from Bloomberg.

For the US analysis in the current section, our sample period spans 1975:01 to 2020:06, thus

including many significant economic and financial events of recent decades. Due to limited data

availability for the non-US government bond index series, the sample period for the international

analysis begins in 1990:01 and ends in 2020:04.

Whilst the inclusion of the massive shock associated with the COVID-19 pandemic is of much

interest; it has been noted by recent work such as Lenza and Primiceri (2020) and Schorfheide

and Song (2020) that its sheer magnitude leads to challenges for parameter estimation and

forecasting using standard econometric methods. This is relevant both for the estimation of

the underlying VAR model used to compute the spillover measures and also the predictive

regressions used for the forecasting exercise in Section 4. Given the size of the shock and

its unique nature, these studies have suggested that it should be explicitly considered at the

estimation stage, such as using some form of down-weighting. We do not pursue such approaches

given that it is not the focus of the current work, but we acknowledge the challenges posed for

standard econometric methods such as those we employ. Notwithstanding these issues, analysing

spillovers between the real economy and financial markets during this period is of interest.

Furthermore, given the rolling window approach used to estimate the spillover indexes, this

issue affects only the spillover values obtained for the pandemic time periods. Therefore, in the

current section, we choose to include these observations in our analysis.

The raw data for the two financial series consists of daily closing prices, from which we

produce a closing price series at a weekly frequency. To sidestep the practical issues caused

by the variation in the number of weeks per month, we employ a data pre-processing and

transformation approach to the daily series to produce weekly series with a constant four weeks

per month. These weekly closing prices are used to compute weekly returns. Further details of

the data processing approaches, together with plots of all the US series employed, can be found

6S&P/TSX for Canada, CAC40 for France, DAX for Germany, Nikkei 225 for Japan, FTSE100 for the UK
and as before the S&P500 for US.
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in Appendix B. It is interesting to note particular events associated with substantial movements

and volatility in the series, including the 1980-1981 recession, the Asian and Russian financial

crisis, 9/11, the 2008-09 global financial crisis and the recent onset of COVID-19. We will

discuss the associated spillovers from these and other events in more detail below.

Our interest lies in obtaining dynamic estimates of macro-financial spillovers, rather than

static full-sample estimates, to investigate how the strength and structure of spillovers have

varied over time. To achieve this, we use a standard rolling window estimation approach in

which the parameters of the MF-VAR and the connectedness measures are re-estimated for

each window. A window length of 60 months is employed since it appears to offer a good

balance between providing a sufficient sample size to estimate the parameters of the underlying

MF-VAR to an appropriate level of accuracy and allowing dynamics of connectedness to be

captured. We have, however, checked our results’ robustness to reasonable changes in the

window length, and there is no qualitative impact on the results. When computing the spillover

measures, we primarily considered forecast horizons of 3, 6 and 12 months, consistent with most

previous studies. However, we found that the estimates did not show significant sensitivity to

the choice of the forecast horizon, and so reported results only for the horizon of 3 months.

3.2 US Macro-Financial Spillovers

We begin in Figure 1 by plotting the total spillover indexes obtained from both the mixed-

frequency and common-frequency approaches. It can be seen that the estimated total spillover

indexes obtained from the two methods show broadly the same movements over the sample

period. However, despite the high correlation between the indexes, the level of total macro-

financial spillovers implied by the new mixed-frequency approach is, with one or two exceptions,

consistently higher than that obtained from the common-frequency approach. For example, the

average values of total spillovers for the mixed-frequency and common-frequency approaches

are 25.79% and 15.12%, respectively, representing the proportion of the total forecast error

variance in the entire system due to shocks across series. Thus by aggregating the financial

data to monthly frequency and ignoring the additional intra-monthly information it contains,

one obtains substantially lower estimates of the level of spillovers across the real and financial

sectors.

A possible explanation for this finding of higher average spillover levels for the mixed-

frequency case can be found in the previous literature on the effects of macroeconomic an-
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Figure 1: Total spillover indexes between the financial and real economy series
Total spillover indexes for mixed-frequency (denoted MF) and common-frequency (denoted CF) approaches are presented
for the sample period 1980:01 to 2020:06. Return levels are employed for the financial S&P500 and 10-year Treasury
Note series, and levels for the real economy CFNAI series. Values are computed using a 3-month forecast horizon and a
60-month rolling window. The points marked are as follows. A: Asian financial crisis, Jul ’97, B: Russian financial crisis
and LTCM collapse, Aug to Sept ’98, C: September 11, Sept ’01, D: the collapse of Bear Stearns, Mar ’08, E: Lehman
Brothers collapse, AIG bailout and Fannie Mae and Freddie Mac being placed in government conservatorship, May ’09, F:
start of the EU debt crisis in April ’10, flash crash of May ’10, G: tapering of QE in December 2013, and H: COVID-19
pandemic, March ’20. Shaded areas correspond to NBER US recession dates.

nouncements on financial markets. Studies such as Andersen et al. (2003) and Green (2004)

have employed high-frequency intraday financial data to study the effects of macroeconomic

news and announcements over short time periods and have found significant intraday effects.

However, they note that lower frequency daily data prevents these effects from being observed

and thus may bias estimates of the response in the financial markets downwards. Intuitively an

analogous explanation can be applied in the current analysis, in which the arrival of intra-month

shocks to either the financial or real series may result in significant within-month spillovers that

are visible through the use of weekly data for some series in the mixed-frequency case, but

are either ignored entirely or underestimated when using purely monthly data in the common-

frequency approach.

Considering the dynamics of the total spillover indexes briefly, we see substantial fluctua-

tions over the sample period, many of which coincide with major economic or financial events.

Some notable examples are marked in Figure 1, with the most significant spikes in spillovers oc-

curring during the 2008-2009 global financial crisis, particularly around the collapse of Lehman

Brothers, the bailout of AIG and Fannie Mae and Freddie Mac being placed in government

conservatorship.

As can be seen in Figure 1, the most significant spike in macro-financial spillovers during
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our sample period has occurred with the onset of the COVID-19 pandemic, dominating even

the 2008 global financial crisis. Between February and March 2020, the common-frequency and

mixed-frequency estimates rose from 16 to 37 and from 25 to 44, respectively. This is expected

given that the shock resulting from the COVID-19 pandemic has been the largest negative shock

to hit the global economy since the Great Depression of 1929.

In addition, except the global financial crisis of the last quarter of 2008, April-May 2010,

and the COVID-19 pandemic, the movements in the mixed-frequency spillover measure are

typically substantially smoother than the common-frequency spillovers, which frequently ex-

hibits significant upward or downward jumps such as those in October 1987, September 1992

and August 1998. This likely results from incorporating intra-month financial information in

the mixed-frequency analysis, which results in the effects of sustained shocks to financial series

being spread across consecutive weeks and gradually incorporated into the spillover index. On

the other hand, in the common-frequency case, only the accumulated shock is observed at the

end of the month, leading to a more significant jump in the index when this information is

incorporated into the new value of the index.

The total spillover index provides an informative but highly aggregated measure that poten-

tially hides many exciting details of the structure of macro-financial spillovers. We decompose

the total spillover measures of Figure 1 into their component pairwise directional spillover mea-

sures. We first represent this information in the form of spillover decomposition plots in Figure

2. Given that the total spillover index equals the sum of all pairwise measures, the top of the

complete shaded area corresponds to the relevant total spillover index (as previously plotted in

Figure 1), and the shaded areas beneath represent the contribution of each pairwise spillover.

These spillover decomposition plots thus provide an effective way to visualise the relative im-

portance of each directional spillover channel in total spillovers over time. Panels (a) and (b)

present the mixed-frequency and common-frequency spillover decomposition plots for the entire

sample period, whereas panels (c) and (d) span only 2008:06 to 2020:12, allowing more precise

analysis of the 2008-2009 crisis and the start of the COVID-19 pandemic.

For the mixed-frequency case in panels (a) and (c), it is immediately apparent that the

vast majority of the (total) spillovers originates in financial markets, represented by the bottom

four shaded areas of the spillover decomposition plots. The contribution of the real side of the

economy (the sum of the areas represented by the yellow and orange colours) accounts for only

a tiny part of the total spillovers in this context, whereas for the common-frequency case in

18



(a) Mixed-frequency spillover index

80 85 90 95 00 05 10 15 20

0

5

10

15

20

25

30

35

40

45

(b) Common-frequency spillover index

80 85 90 95 00 05 10 15 20

0

5

10

15

20

25

30

35

40

45
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(d) Common-frequency - 2008-2020
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Figure 2: Decomposition of total macro-financial spillover indexes into pairwise components
The figure presents area plots in which the top of the complete shaded area corresponds to the relevant total spillover
index and each shaded area below representing the contribution of each specific pairwise spillover to the value of the total
spillover index. The relevant spillover measures for the mixed-frequency case are plotted in panels (a) and (c) and those for
the common-frequency case in panels (b) and (d). Return levels are used for the financial S&P500 and 10-year Treasury
Note series and levels for the real economy CFNAI series. Values are computed using a 3-month forecast horizon and a
60-month rolling window for the sample period 1980:01 to 2020:06 in panels (a) and (b) and 2008:06-2020:06 in panels (c)
and (d).

panels (b) and (d) they are larger. Whilst there is a clear difference in the average levels of

real to financial spillovers over the sample period for mixed-frequency and common-frequency

(1.94% and 2.69% respectively), this difference is most notable during the late 1980s, during

the 2008-2009 financial crisis and the COVID1-9 pandemic (see panels (c) and (d)), and to a

lesser extent in the early 1980s and late 1990s.
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As discussed above, we hypothesise that this difference is due to the common-frequency

index not incorporating higher frequency financial information. Thus the estimates obtained

suggest a relatively more minor role for financial markets. This is expected given that financial

markets can respond much more quickly to either economic or financial shocks than real economy

variables. The incorporation of weekly financial data allows our mixed-frequency approach to

detect these high-frequency intra-month responses in financial markets, which would be ignored

by the common-frequency approach using only monthly information.

The pairwise spillover measures can also be presented as standard line plots. This com-

plements the spillover decomposition plots of Figure 2, with the latter being more suited to

analysing the relative contribution of the individual spillover measures to the total level, and

the former more suited to exploring the dynamics of specific spillover measures in absolute

terms.7

3.3 International Macro-Financial Spillovers

The international dimension of macro-financial spillovers is clearly of interest given the connect-

edness of modern financial and economic markets across national borders. This is an extensive

topic for possible future research, but here we take an initial step towards a fuller examination

of international macro-financial spillovers.

We perform a series of two-country analyses consisting of the US and one other advanced

economy, considering in turn Canada, France, Germany, Japan and the UK. For each estimated

two-country VAR model, we include on the financial side weekly returns for the S&P500 and the

respective major non-US national equity index detailed previously in footnote 5. On the real

side, we employ monthly IP growth for the US and non-US advanced economy due to the data

limitations previously noted in Section 3.1. These four variables allow us to examine directional

cross-country financial-to-financial, real-to-real, financial-to-real and real-to-financial spillovers,

without the number of pairwise spillover measures becoming impractically large for discussion.

The practical issue encountered is that common global shocks drive some of the movements in

variables of the same type across countries e.g. the S&P500 and FTSE100. This makes it difficult

in some periods to separate out the spillover effects of, for example, shocks to the S&P500 on

UK IP growth and shocks to the FTSE100 on UK IP growth. To minimise this, we restrict

7 To conserve space, the line plots and the associated discussion are included in Appendix C.1, where we
examine how changes in pairwise spillovers relate to significant historical events as we did previously for the total
spillover index in Figure 1.
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the error covariance matrix of the estimated VAR such that shocks that are both cross-country

and cross-variable, for example US IP growth to UK equity returns, are contemporaneously

uncorrelated. Correlation between shocks within each country (e.g. UK IP growth and UK

equity returns) and shocks to the same variable type for different countries (e.g. US and UK IP

growth) are unrestricted.

In terms of spillovers, this implies that contemporaneous (i.e. 0-step-ahead) pairwise spillovers

for these cross-country cross-variable combinations are zero, leaving any cross-country contem-

poraneous spillovers to occur via the financial-to-financial or real-to-real channels. Whilst the

restrictions imposed do impact the spillover measures obtained at longer horizons of H ≥ 1,

which are the object of interest here and in most other DY-based analyses, these spillovers will

be non-zero unlike those for H = 0. To implement these restrictions a feasible GLS estima-

tion approach is used. All other aspects of the methodology are identical to that discussed

previously.

This two-country four-variable setup allows us to analyse key cross-country macro-financial

spillovers without the set of spillover measures to be discussed becoming impractically large for

the current subsection. It also has the benefit of minimising the parameter proliferation issues

encountered in larger VAR models. As demonstrated by Demirer et al. (2018), this issue can be

solved in the context of DY spillover measures even for extremely large VARs by using shrinkage

based methods such as LASSO, but this would take us beyond the scope of the current work.

We present the mixed-frequency and common-frequency total spillover indexes for the five

pairs of countries in Figure 3. Similar to the single country US case, whilst the total spillover

indexes based on the mixed-frequency and common-frequency approaches tend to follow similar

trajectories over time in each country, the values for the mixed-frequency approach are almost

always higher than the corresponding index based on the common-frequency approach. For

conciseness, the remainder of the discussion below refers to the mixed-frequency indexes only.

During the 2008-09 global financial crisis the total spillover indexes for all country pairs

increased significantly to values within the range 40-45%. For the US-Germany pair, total

spillovers continued to rise further late 2014, presumably due to a combination of the effects of

the EU sovereign debt crisis and Germany’s strong economic and financial links with US and

world markets. Interestingly however, whilst total international spillovers for the US-France and

US-UK pairs also remain high during the same period, they do not show the same sustained

increase as the case of Germany. For the UK this can be attributed to its lack of membership
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of the Eurozone, but the lack of a similar rise in France is more difficult to explain outside of

lower economic and financial integration with US markets. Total spillovers for the US-Japan

pair begin to drop much quicker from 2011 onwards, due to the relative isolation from the

turbulence occurring in the EU.

For all country pairs, the response of the mixed-frequency index to the shock caused by

the beginning of the COVID-19 pandemic in Spring 2020 was broadly similar to that observed

in the US, with a very sharp elevation of total spillovers. We observe that for US-France and

US-Germany, the peak in the total spillover index occurred in March 2020, whereas in the

remaining country pairs, the current peak is recorded in April. This timing is consistent with

the spread of the pandemic, given that most large mainland European countries such as France

and Germany imposed strict lockdown measures earlier than the other countries, including the

UK. The size of the increases relative to their February 2020 levels are similar across countries,

typically in the range of 20-25 percentage points. However, there is some variation that appears

related to country-level variation in the severity and timing of the pandemic, and the scale of

measures imposed to limit its spread in the non-US country. In particular, the largest increase

of approximately 27 percentage points is observed for the US-France pair, and the lowest of

19 percentage points for the US-Japan pair, which is consistent with the level of cases and

restrictions imposed in these countries at the time. As noted in the US analysis, extending

the sample period would allow international macro-financial spillovers during later stages of the

pandemic to be studied, but this is not the primary focus of the current analysis and so is left

for future work.

Next, we examine international macro-financial spillover structure in more detail using a

subset of the pairwise spillover measures from which the total index is obtained8. To conserve

space we restrict attention to three pairs of countries, namely US-Germany, US-Japan and US-

UK, with results for Canada and France being similar and available upon request. Figure 4 plots

the relevant cross-country or international pairwise spillovers for the selected country pairs.

Beginning with the relative importance of the various pairwise spillover types, as was true

in the previous US analysis, the majority of total macro-financial spillovers are comprised of

spillovers originating in financial markets, represented by the top two rows of subplots in Fig-

ure 4. International equity to equity market spillovers in the second row are substantially higher

8We do not produce spillover decomposition plots analogous to Figure 2 because with four series in the VAR
we obtain 12 pairwise measures rather than the previous 6, making the decomposition plot difficult to interpret.
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than other spillover sources on average across the sample period, typically within the range of

6% to 10%.

Although lower on average, cross-country spillovers from equities to the real sector in the first

row are also large relative to other pairwise spillover types during the 2008-09 global financial

crisis, frequently reaching sustained levels of 4-6%. International financial to real spillovers also

clearly pick up the early stages of the COVID-19 pandemic at the end of the current sample

period, with large spikes observed for both the US-Germany and US-UK pairs and a smaller

peak for US-Japan, consistent with the lower case numbers and level of restrictions in Japan at

the time.

In this first row, spillovers from non-US equities to US IP exceed those from US equities to

non-US IP in all three cases in the period preceding the 2008-09 global financial crisis. Given

the global importance and size of US financial markets, it might be assumed that spillovers

from US financial to non-US real variables should naturally be larger than those from non-US

financial markets to US IP. At least in the case of Germany and the UK, it may be the case

that the DAX and FTSE100 equity returns are acting as a proxy for financial conditions within

Europe more generally and thus viewing these as being Germany- or UK-specific spillovers is

not entirely valid.

It should also be remembered that directional spillover magnitude depends not only on

the importance of shocks from the transmitting variable, but also the responsiveness (or lack

of responsiveness) of the receiving variable to those shocks. It may be that US industrial

production in the period preceding the crisis was more sensitive to shocks in international

financial conditions than IP in other countries. This could be due to the composition (both

in terms of sectors and the importance of exports), or size of manufacturing output, which

varies significantly across these four countries; in 2015 manufacturing output as a proportion

of global manufacturing in Germany, Japan, the UK and the US was 7%, 10%, 2% and 18%

respectively, making total US manufacturing output significantly higher than that of the other

countries. Likewise, the small size of UK industrial production both as a proportion of national

output and globally, provides a possible explanation for its lack of responsiveness to shocks in

US financial conditions, particularly during the 2008-09 global financial crisis. It should be

noted that while spillovers from the FTSE100 to US IP look high, they are actually around 4%

during this episode, which is only slightly greater than those observed for Germany from the

DAX to US IP.
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Whilst cross-country real to equity spillovers are typically low and in the range of 0-1%,

increases are nonetheless observed consistent with key events. The most consistently visible

example is the 2008-09 crisis and subsequent recession, but the 2011 Tohoku earthquake and

associated recession is also very clearly visible as a large increase in spillovers from Japanese

IP to the S&P500. The start of the pandemic is again visible as an increase in real to financial

spillovers, but to a lesser extent than the financial to real spillovers discussed above.

Finally, the international real to real spillovers in the final row of Figure 4 have no direct

analogue in the previous single country US analysis. For much of the sample period, cross-

country spillovers between IP growth fluctuate within the 0-2% range. Increases in spillovers

from US IP to German IP and to UK IP are visible during the global financial crisis, as is the

impact of the 2011 Tohoku earthquake and recession on spillovers from Japanese IP to US IP.

Perhaps most notably, during the start of the COVID-19 pandemic, real to real international

spillovers showed larger spikes than any other spillover type despite their relatively low levels

over the rest of the sample period. For the US-Germany and US-UK pairs, cross-country IP

growth spillovers increased from close to zero up to 8% and 6% for the case of US-Japan as

industrial output dropped dramatically with lockdowns and the sharp contraction in production

and trade.

4 Macro-Financial Spillovers as Predictors of Future Macroe-

conomic Conditions

A reoccurring question of interest in the literature on systemic risk is whether the quantitative

measures developed have predictive ability for future macroeconomic conditions. In particular,

it is often suggested (see, for example Allen et al., 2012 and references therein) intuitively

that an increase in systemic risk may hurt current and future economic conditions, primarily

through a reduction in lending from banks to the non-financial sector. Allen et al. (2012),

Giglio et al. (2016) and Brownlees and Engle (2017) amongst others have found empirically

that various quantitative measures of systemic risk do have forecasting ability for essential

macroeconomic series. Motivated by these findings, we perform a similar exercise to examine

whether the current level of macro-financial spillovers also exhibits predictive power for future

macroeconomic conditions.
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4.1 Forecasting Environment and Predictive Regressions

Our empirical approach closely follows those of Allen et al. (2012) and Brownlees and Engle

(2017), and we focus on the problem of forecasting macroeconomic series, specifically the level

of the CFNAI and its subcomponents, using predictive regressions of the form:

yt+n = αn + βnst +

q∑
i=0

γn,iyt−i + δnXt + ϵt (4.1)

where yt is the value of the macroeconomic series of interest, st is the value of the chosen macro-

financial spillover measure and Xt is a vector of financial control variables commonly used in

the literature as simple predictors of future macroeconomic conditions. The vector of control

variables Xt consists of the current values of the default spread, the term spread and the return

on the S&P 500 equity index. The forecast horizon is denoted by n and we consider forecast

horizons from one month (n = 1) up to a maximum of 12 months (n = 12).

Given that both Allen et al. (2012) and Brownlees and Engle (2017) comprehensively inves-

tigated the ability of the CATFIN and SRISK measures, respectively, to forecast future macroe-

conomic conditions, we also consider forecasting models which include CATFIN or SRISK in

place of our macro-financial spillover measures in the relevant predictive regressions9. In con-

trast to our macro-financial measures that incorporate information from the financial and real

sides of the economy, both CATFIN and SRISK are more traditional financial systemic risk

measures. The former measures the aggregate level of systemic risk in the financial system

estimated via value-at-risk or expected shortfall, whereas SRISK utilises market and balance

sheet data to estimate the expected capital shortfall of financial firms subject to the occurrence

of a systemic event. Following the empirical analysis in Allen et al. (2012) and Brownlees and

Engle (2017) respectively, CATFIN enters the predictive regressions in level form and SRISK

as a log first difference or growth rate. It should be noted that data availability constraints for

SRISK require us to start our sample period in June 2000, rather than January 1975 as in the

previous section.

To examine the incremental value of our macro-financial spillover measures and the existing

SRISK and CATFIN measures for forecasting macroeconomic conditions, we focus on evaluating

forecast performance attainable when including these measures relative to an otherwise identical

benchmark forecasting model that excludes the spillover or systemic risk measures. The form

9Data for SRISK were kindly provided by the NYU V-Lab (https://vlab.stern.nyu.edu). Those for CATFIN
were obtained from Turan Bali’s website (https://sites.google.com/a/georgetown.edu/turan-bali).
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of the predictive regressions for the benchmark model is thus given by (4.1) with the βnst term

excluded.

We have noted the challenges of model estimation and forecasting in the current economic

environment due to the COVID-19 pandemic. Econometrically there is debate as to whether

the extreme observations introduced by these events represent outliers, and as such, should

either be down-weighted or even removed. For the plots of macro-financial spillover indexes in

Section 3, we chose to include these pandemic observations in our sample period since they only

affect the values of the spillover measures for those specific time periods and not those for the

remainder of the sample period. In contrast, the formal tests of predictive ability we employ

in the current section are based on the complete set of forecasts and will therefore be affected

by this small number of extreme observations. We, therefore, exclude the pandemic period

from the analysis presented here and end the sample period in December 2019. Furthermore,

at the time that we assembled the dataset for the forecasting exercise, data for the CATFIN

indicator was only available until December 2019 and so extending the sample period requires

the exclusion of this important benchmark.

Nonetheless, we also repeated the forecasting exercise for an expanded sample period that

includes the first half of the COVID-19 pandemic with CATFIN excluded. These results, avail-

able upon request, can be summarised as follows: The absolute predictive ability of our macro-

financial spillover measures and the alternative SRISK measure falls somewhat due to the in-

clusion of the pandemic in the sample period. However, the predictive ability of the various

measures relative to the benchmark model is essentially unchanged, so our key empirical findings

outlined below still hold.

4.2 Evaluation of Predictive Ability

To formally evaluate forecast performance, we use the commonly employed test for equal pre-

dictive accuracy of Clark and West (2007), henceforth CW07, which provides a test of the null

hypothesis that the forecasts obtained from two (possibly nested) forecasting models perform

equally. In all cases, we compare the performance of forecasts produced by the models aug-

mented with the various macro-financial spillover and financial systemic risk measures against

those from the benchmark model described above. The rejection of the null hypothesis of equal

predictive accuracy implies that the simpler benchmark model is outperformed by the extended

model that incorporates spillover or systemic risk measures.
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We begin with an in-sample forecasting environment, in which all forecasting models are

estimated using data spanning the entire evaluation periods, and the predictive accuracy of the

resulting in-sample forecasts over these periods is evaluated. Sample p-values for the CW07

test are reported in Table 1 for both our total and pairwise macro-financial spillover measures.

We also include two combination forecasts obtained from the set of pairwise macro-financial

spillover measures (columns ‘PW mean’ and ‘PW med’), which are constructed as described

below. Finally, we include forecasts that employ the existing SRISK and CATFIN systemic risk

measures.

Table 1: In-sample predictive accuracy for macroeconomic conditions

Horizon (n) Total
S&P
to

TNX

S&P
to

NAI

TNX
to

S&P

TNX
to

NAI

NAI
to

S&P

NAI
to

TNX

PW
mean

PW
med

SRISK
CAT-
FIN

n = 1 0.495 0.276 0.345 0.176 0.349 0.027 0.023 0.001 0.007 0.182 0.103

n = 2 0.388 0.365 0.249 0.242 0.301 0.017 0.030 0.001 0.003 0.291 0.004
n = 3 0.176 0.127 0.208 0.055 0.313 0.044 0.024 0.004 0.015 0.376 0.008
n = 4 0.231 0.146 0.341 0.061 0.249 0.069 0.023 0.007 0.006 0.209 0.006
n = 5 0.224 0.197 0.228 0.094 0.261 0.110 0.032 0.020 0.020 0.209 0.009
n = 6 0.171 0.152 0.166 0.070 0.274 0.181 0.025 0.021 0.018 0.430 0.022
n = 7 0.174 0.162 0.158 0.074 0.181 0.483 0.038 0.048 0.044 0.204 0.008
n = 8 0.179 0.145 0.128 0.083 0.077 0.352 0.035 0.044 0.042 0.191 0.021
n = 9 0.218 0.149 0.139 0.086 0.039 0.301 0.034 0.037 0.033 0.145 0.008
n = 10 0.312 0.200 0.171 0.134 0.020 0.211 0.031 0.035 0.043 0.049 0.001
n = 11 0.407 0.216 0.125 0.175 0.010 0.329 0.024 0.026 0.024 0.018 0.001
n = 12 0.459 0.245 0.114 0.234 0.008 0.247 0.020 0.024 0.034 0.122 0.014

The table reports sample p-values for the CW07 test of equal predictive accuracy applied to in-sample n-step-ahead
forecasts for the level of the CFNAI over the sample period 2000:06-2019:12. Forecasts are obtained using predictive
regressions of the form given in equation (4.1) containing the current value of a single spillover or systemic risk measure,
with the exception of the combination forecasts. For pairwise spillovers, equities, bonds and the real economy are denoted
by S&P500, TNX and NAI respectively. The combination forecasts are labelled as ‘PW mean’ and ‘PW med’ and are
constructed respectively as the mean and median of the forecasts obtained from the 6 pairwise spillover measures. The
null hypothesis is that the forecasts for the relevant model and the benchmark model have equal predictive accuracy.
Rejection of the null implies that the extended model has superior predictive accuracy to the benchmark model.

Beginning with the predictive accuracy of the six pairwise spillover measures in columns 2

to 7, we observe numerous increases in predictive accuracy over the benchmark model that are

statistically significant at the 10% or 5% levels. Whilst the number of statistically significant

improvements in forecasting performance for the pairwise measures is higher in the sample

period of Panel A that excludes the COVID-19 pandemic than in Panel B, we still observe

numerous significant gains in the more extended sample that includes the pandemic.

The variation in predictive accuracy gains observed across measures and forecasting horizons

for the pairwise spillover measures suggests potential performance improvements to be obtained

by combining the informational content of the individual spillover measures. One way to achieve

this would be to extend the predictive regression in (4.1) to include multiple spillover measures

simultaneously. However, it is frequently found in the literature that this approach of combining
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multiple predictors results in poorer performing forecasts than combining the forecasts obtained

from distinct forecasting models containing different predictors. Examples from other areas of

the finance literature include Rapach et al. (2010) who consider the problem of forecasting

the equity premium and Paye (2012) who considers forecasts for equity market volatility using

macroeconomic variables. The former also contains a concise discussion of the possible reasons

for the solid empirical performance of combination forecasts.

The construction of combination forecasts is possible because the DY spillover approach

naturally provides a set of directional pairwise measures, each measuring different aspects of

the spillover structure. This contrasts with most existing systemic risk measures, which provide

only higher-level summary measures in their standard form. Therefore we include two simple

combination forecasts obtained as the mean and median of the forecasts10 obtained from the

six pairwise spillover measures, which are denoted by ‘PW mean’ and ‘PW med’ respectively

in Table 1. Both of these combination forecasts perform strongly, providing improvements in

predictive accuracy over the benchmark model that are statistically significant at either the 5%

or 1% levels for all forecast horizons in. Inclusion of the COVID-19 pandemic slightly reduces

the statistical significance of the gains in predictive accuracy relative to the results in Table

1, however the performance of the combination forecasts is still solid. Given their consistently

strong performance, the ability to easily construct these combination forecasts is a significant

advantage of the DY approach in this context.

Turning next to forecasts based on the total macro-financial spillover index, it can be seen

that the overall level of macro-financial spillovers has relatively poor predictive accuracy for

macroeconomic conditions in the in-sample context. It cannot increase predictive accuracy over

the benchmark model that is statistically significant at the 10% level for any of the chosen

forecast horizons in either of the two sample periods. The lack of forecasting gains from the

total index relative to the individual pairwise measures indicates that whilst the total spillover

index provides a useful single summary measure of spillovers that is conceptually more similar

to existing measures in the literature; it is the ability to decompose it into pairwise directional

spillovers that makes our DY-based approach valuable in this forecasting context.

Finally, moving on to the predictive ability of the existing SRISK and CATFIN measures,

the former fails to produce statistically significant gains over the benchmark model except

10More complicated forecast combination methods are possible, such as those that weight the individual fore-
casts based on past performance. However, in practice, these are frequently found to perform similarly to the
simple combinations such as the mean (see, e.g. Rapach et al., 2010).
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for the horizons of 10 and 11 months. The CATFIN measure, on the other hand, provides

improvements in predictive accuracy across all forecast horizons except the shortest one-month

horizon that are significant at either the 5% or 1% levels up to December 2019.

We next evaluate the out-of-sample forecasting performance of the various models relative

to the same benchmark model used above. In all cases, out-of-sample forecasts are produced

using a standard rolling-window approach with a fixed window length of 60 months. Data

within the window are used to estimate the parameters of the relevant predictive regression

and produce the n-step-ahead forecast, with the model parameters re-estimated each time the

window is rolled forward. The out-of-sample combination forecasts are computed as the mean

or median of the out-of-sample forecasts obtained from the pairwise spillover measures. Such

a pseudo-out-of-sample forecasting environment arguably better represents how these measures

would potentially be used in practice by an individual attempting to forecast future economic

conditions in real time and, as argued by Diebold (2015), can be used to assess forecasting

performance during different historical periods.

To evaluate out-of-sample forecasting performance, we again employ the CW07 test for equal

predictive accuracy but supplement this with the out-of-sample R2 measure of Campbell and

Thompson (2008). For a series of out-of-sample forecasts produced for periods t = 1, . . . , S, the

out-of-sample R2 measure is computed as:

R2
OS = 1−

∑S
t=1 (yt − ŷt)

2∑S
t=1

(
yt − ŷbt

)2
where yt is the actual value of the series to be predicted, and ŷt and ŷbt are the forecasted

values from the model under consideration and the benchmark model respectively. As such,

positive (negative) values of R2
OS imply that the forecasting model under consideration has a

lower (higher) mean-squared prediction error (MSPE) than the benchmark model.

Out-of-sample forecasting results are presented in Table 2, with those for the 2000:06-2019:12

sample period in Panel A and the 2000:06-2020:06 sample in Panel B. To conserve space, we

exclude results for the predictive regressions containing each of the individual pairwise macro-

financial spillover measures11. We include only the combination forecasts obtained from these

pairwise forecasts.

11These results are broadly similar to the previous in-sample case, with the pairwise measures providing
statistically significant gains in predictive accuracy over the benchmark model in many cases, but performance
varying across horizons and spillover measures.
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Table 2: Out-of-sample R2 values and tests of equal predictive accuracy

Total PW mean PW median SRISK CATFIN

Horizon (n) R2 CW R2 CW R2 CW R2 CW R2 CW

n = 1 -0.074 0.837 -0.010 0.470 -0.001 0.269 -0.019 0.709 0.004 0.088

n = 2 -0.034 0.229 0.023 0.045 0.008 0.160 -0.018 0.682 0.000 0.097
n = 3 0.033 0.039 0.112 0.038 0.094 0.054 -0.039 0.918 -0.001 0.081
n = 4 0.019 0.039 0.107 0.036 0.091 0.029 -0.007 0.278 0.006 0.097
n = 5 0.054 0.036 0.118 0.042 0.093 0.028 -0.006 0.315 -0.026 0.188
n = 6 0.042 0.030 0.109 0.033 0.077 0.028 0.004 0.089 -0.031 0.207
n = 7 0.072 0.030 0.168 0.046 0.167 0.059 0.003 0.170 -0.018 0.203
n = 8 0.085 0.023 0.201 0.046 0.214 0.065 0.004 0.085 -0.046 0.510
n = 9 0.049 0.014 0.145 0.034 0.160 0.053 0.035 0.041 0.013 0.117
n = 10 0.047 0.005 0.195 0.028 0.167 0.037 0.118 0.020 -0.026 0.224
n = 11 0.060 0.002 0.229 0.016 0.179 0.019 0.104 0.047 -0.043 0.146
n = 12 0.061 0.002 0.230 0.022 0.176 0.015 0.073 0.072 -0.043 0.319

The table reports Campbell and Thompson (2008) out-of-sample R2 values and sample p-values for the CW07 test of
equal predictive accuracy from predictive regressions for out-of-sample n-step-ahead forecasts for the level of the CFNAI
over the sample period 2000:06-2019:12. Forecasts are obtained using predictive regressions of the form given in equation
(4.1) containing the current value of a single spillover or systemic risk measure, with the exception of the combination
forecasts. The combination forecasts are labelled ‘PW mean’ and ‘PW med’ and are constructed respectively as the mean
and median of the forecasts obtained from the 6 pairwise spillover measures. Out-of-sample forecasts for all models are
obtained using a standard rolling window approach with a window length of 60 months. The Campbell and Thompson
(2008) out-of-sample R-squared values are computed for each model relative to the benchmark model that excludes spillover
or systemic risk measures. For the Clark and West (2007) test the null hypothesis is that the forecasts for the relevant
model and the benchmark model have equal predictive accuracy. Rejection of the null implies that the extended model has
superior predictive accuracy to the benchmark model.

Beginning with the Campbell and Thompson (2008) out-of-sample R2 values, in most cases,

the forecasts obtained using macro-financial spillover measures result in lower mean squared

prediction errors than the benchmark model. Most notably, the strong performance of the com-

bination forecasts from the pairwise spillovers continues in the out-of-sample case, dominating

the benchmark model at all but the shortest horizons and displaying larger out-of-sample R2

values than those for the total spillover index in all cases. These predictive gains relative to the

benchmark model typically increase with the forecast horizon; at the longest 11 and 12-month

horizons, the pairwise mean combination forecast results in a mean-squared prediction error

23% lower than the benchmark model and 15-20% lower at four other forecast horizons.

In contrast, the predictive performance of SRISK and CATFIN is mixed. Forecasts incorpo-

rating SRISK have a larger MSPE than the benchmark model for forecast horizons of less than

six months but typically outperform it for longer horizons. In cases where the SRISK-based

forecasts result in a lower MSPE than the benchmark, the out-of-sample R2 values obtained

are lower than those for the pairwise combination forecasts in all but one case. Furthermore,

whilst CATFIN exhibited strong forecasting power in-sample in Table 1, this disappears when

we look at the out-of-sample results. The forecasts incorporating CATFIN result in negative

out-of-sample R2 values for 8 out of the 12 forecast horizons, implying a higher MSPE than the

benchmark.
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The out-of-sample results for the CW07 test reinforce the strong in-sample predictive ac-

curacy of the pairwise mean and median combination spillover forecasts, with gains over the

benchmark model that are statistically significant in almost all cases, with the main exceptions

being the shortest 1- and 2-month horizons. Interestingly, compared to the previous in-sample

forecasting environment, the out-of-sample forecasting performance of the total macro-financial

spillover index relative to the benchmark model improves substantially, producing statistically

significant gains at the 5% level for all forecast horizons longer than two months. Indeed, fore-

casts utilising the total spillover index have lower out-of-sample p-values than any of the other

methods for horizons of 7 to 12 months, including the two combination forecasts. Turning fi-

nally to the forecasts obtained using the SRISK and CATFIN measures, the CW07 test results

largely confirm the general patterns discussed previously in the context of the out-of-sample R2

values. SRISK exhibits statistically significant gains in predictive ability over the benchmark

model at many of the longer forecast horizons, being broadly competitive with the pairwise

combination forecasts, but falling behind forecasts employing the total spillover index. The

CATFIN-based forecasts, on the other hand, only provide statistically significant gains at the

10% level at forecast horizons of 1 to 4 months. As previously noted for the out-of-sample R2,

this is in contrast to the previous in-sample environment where highly statistically significant

improvements over the benchmark model were observed at almost all horizons.

In a similar manner to Giglio et al. (2016) we next investigate the ability of the various

spillover and systemic risk measures to forecast the four disaggregated subcomponents of the

CFNAI index, which consist of production and income (PI), employment, unemployment and

hours (EUH), consumption and housing (CH), and sales, orders and inventories (SOI). This

allows us to investigate whether the relative predictive ability of the measures varies according

to the specific aspects of macroeconomic conditions that are being forecasted. Table 3 presents

p-values for the CW07 test for both in-sample and out-of-sample forecasts constructed using the

same approach as employed above. To conserve space only results for a subset of the previous

forecasting horizons are presented.

Beginning with the in-sample results, the solid predictive accuracy of the pairwise spillover

combination forecasts for the aggregate CFNAI index in Table 1 carries through for the subcom-

ponents of the index, with highly statistically significant gains over the benchmark in all cases.

For the total macro-financial spillover index, forecasting performance depends strongly on the

subcomponent to be forecasted, with predictive accuracy consistently strong when forecasting
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Table 3: In-sample and out-of-sample predictive accuracy for alternative measures of macroeco-
nomic conditions

In-sample Out-of-sample

Horizon (n) Total
PW
mean

PW
med

SRISK
CAT-
FIN

Total
PW
mean

PW
med

SRISK
CAT-
FIN

(a) Production and income (PI)

n = 1 0.462 0.005 0.013 0.114 0.068 0.851 0.115 0.060 0.473 0.048
n = 2 0.348 0.008 0.043 0.380 0.050 0.474 0.282 0.394 0.433 0.139
n = 3 0.127 0.018 0.045 0.467 0.123 0.052 0.036 0.077 0.946 0.150
n = 6 0.079 0.036 0.025 0.391 0.347 0.018 0.019 0.035 0.041 0.117
n = 9 0.101 0.081 0.070 0.156 0.181 0.010 0.018 0.021 0.063 0.128
n = 12 0.320 0.089 0.082 0.093 0.452 0.013 0.006 0.001 0.087 0.069

(b) Employment, unemployment and hours (EUH)

n = 1 0.336 0.000 0.008 0.108 0.250 0.698 0.024 0.157 0.462 0.083
n = 2 0.076 0.001 0.003 0.218 0.101 0.145 0.016 0.087 0.898 0.297
n = 3 0.015 0.001 0.001 0.434 0.269 0.012 0.011 0.025 0.470 0.127
n = 6 0.004 0.001 0.001 0.374 0.193 0.017 0.020 0.030 0.908 0.139
n = 9 0.003 0.002 0.006 0.179 0.170 0.008 0.014 0.029 0.086 0.100
n = 12 0.002 0.004 0.036 0.072 0.300 0.004 0.010 0.014 0.030 0.131

(c) Consumption and housing (CH)

n = 1 0.053 0.000 0.002 0.268 0.070 0.571 0.069 0.373 0.507 0.183
n = 2 0.301 0.000 0.001 0.403 0.022 0.317 0.022 0.024 0.598 0.103
n = 3 0.447 0.003 0.007 0.420 0.015 0.040 0.011 0.011 0.938 0.028
n = 6 0.275 0.001 0.001 0.441 0.120 0.004 0.002 0.005 0.810 0.191
n = 9 0.283 0.001 0.001 0.148 0.064 0.004 0.002 0.003 0.860 0.065
n = 12 0.390 0.001 0.001 0.435 0.222 0.015 0.002 0.001 0.695 0.119

(d) Sales, orders and inventories (SOI)

n = 1 0.346 0.002 0.026 0.478 0.076 0.606 0.267 0.462 0.979 0.056
n = 2 0.098 0.006 0.045 0.008 0.072 0.142 0.097 0.149 0.466 0.193
n = 3 0.048 0.009 0.019 0.263 0.034 0.012 0.021 0.069 0.901 0.404
n = 6 0.070 0.037 0.016 0.417 0.142 0.031 0.032 0.055 0.964 0.365
n = 9 0.107 0.069 0.036 0.201 0.289 0.030 0.049 0.042 0.435 0.337
n = 12 0.210 0.047 0.021 0.176 0.221 0.005 0.020 0.011 0.135 0.395

The table reports sample p-values for the CW07 test of equal predictive accuracy applied to in-sample and out-of-sample
n-step-ahead forecasts for the various subcomponents of the CFNAI index over the period 2000:06-2019:12. CFNAI
subcomponents are production and income (PI), employment, unemployment and hours (EUH), consumption and housing
(CH), and sales, orders and inventories (SOI). Forecasts are obtained using predictive regressions of the form given in
equation (4.1) containing the current value of a single spillover or systemic risk measure, with the exception of the
combination forecasts. The combination forecasts are labelled ‘PW mean’ and ‘PW med’ and are constructed respectively
as the mean and median of the forecasts obtained from the 6 pairwise spillover measures. Out-of-sample forecasts for all
models are obtained using a standard rolling window approach with a window length of 60 months. The null hypothesis
for the Clark and West (2007) test in each case is that the forecasts for the relevant model and the benchmark model have
equal predictive accuracy, with rejection of the null implying that the extended model has superior predictive accuracy to
the benchmark model.
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the EUH subcomponent and to a lesser extent the SOI subcomponent, but more variable across

forecast horizons and weaker on average for the remaining subcomponents. We hypothesise

that this arises because of differences in the responsiveness of the underlying macroeconomic

series to changes in the specific dimension of current economic conditions that the total spillover

index proxies. For example, series within the consumption and housing subcomponent are likely

to be sluggish and slower to respond to changes in macro-financial conditions than than sales

or orders in the SOI subcomponent, or employee hours in the EUH subcomponent. The same

logic applies to the PI component, which is comprised primarily of industrial production se-

ries, in addition to construction and personal income. This suggests that in the case of some

predictors, the relative gains in predictive accuracy do indeed depend on the specific aspect of

macroeconomic conditions to be forecasted.

Both SRISK and CATFIN fail to exhibit consistent in-sample predictive power for the

CFNAI subcomponents, providing statistically significant improvements over the benchmark

approach in only a small number of cases across the various forecast horizons and index sub-

components. For the case of CATFIN, this is limited to the 1- to 3-month horizons and contrasts

sharply to its consistently strong in-sample performance in Table 1 when forecasting the aggre-

gate CFNAI index. This is particularly notable given that the pairwise spillover combination

forecasts manage to preserve their previous performance for the case of the CFNAI subcompo-

nents.

Turning to out-of-sample forecasting performance, there is strong evidence of gains in pre-

dictive accuracy for the four CFNAI subcomponents using either the total spillover index or the

two pairwise spillover forecast combination schemes. The various forecasts incorporating macro-

financial spillover measures typically fail to provide statistically significant gains in predictive

accuracy over the benchmark model only at the shortest one and 2-month forecast horizons.

As with the in-sample case, CATFIN and SRISK only provide statistically significant improve-

ments in out-of-sample predictive accuracy over the benchmark model for the CFNAI in a small

number of cases. For the SRISK-based forecasts, gains are observed only for longer forecast

horizons for the PI and EUH subcomponents.

4.3 Time-variation in Predictive Accuracy

Whilst the CW07 test and the Campbell and Thompson (2008) out-of-sample R2 measures

are both employed widely in the literature to compare predictive accuracy between competing
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forecasting models; they do not directly reveal anything about how the relative performance of

the alternative models may vary over the forecast evaluation period. In particular, it may be

the case that specific predictors of future macroeconomic conditions have a greater predictive

ability during some time periods than others, depending on the state of the economy.

To shed light on this and other related issues, we construct plots of the cumulative squared

prediction errors (CSPEs) from predictive regressions for the n-period-ahead values of the CF-

NAI relative to that of the benchmark model. Such plots are a standard tool in the forecasting

literature, with two examples including Rapach et al. (2010) and Paye (2012). We subtract the

values of the cumulative squared prediction errors obtained for the predictive regression of inter-

est over the in-sample or out-of-sample period from those obtained from the previous benchmark

model that excludes all spillover and systemic risk measures. Values larger (smaller) than zero

imply that the forecasting model in question has a lower (higher) cumulative squared prediction

error than the benchmark model up to that point in time. An increase (decrease) during a spe-

cific time period implies that the relevant model is currently outperforming (underperforming)

the benchmark model.

To conserve space, we only consider a subset of the forecasting horizons and include re-

sults for the total spillover index, the two combination forecasts constructed from the pairwise

spillover forecasts, SRISK and CATFIN, where possible. Whilst we use the same forecast eval-

uation periods as used before for consistency, it should be noted that the vertical position or

height of each line at a given point in time is affected by the chosen start date for each plot

(given that all must equal zero at the start of the chosen evaluation period). However, the shape

or gradient of each line is unaffected by this choice.

Figure 5 plots the relative CSPEs for the previous 2000:06-2019:12 sample period. We

observe strong performance for our pairwise spillover combination forecasts, particularly during

the 2008-2009 crisis. At the 1 and 2 month horizons, the forecasting performance of the total

spillover index remains close to that of the benchmark model throughout the evaluation period,

deviating only slightly from zero. For horizons of greater than three months, forecasts obtained

from the total spillover index perform worse than the benchmark model in the early parts of

the evaluation period, with the relative CSFE values becoming steadily more negative until

around 2006. However, after the start of the financial crisis in 2008, there was a large and sharp

increase in the relative CSFE until the peak of the crisis had subsided in around 2010, suggesting

substantial gains in predictive accuracy for the total spillover index during the crisis. Even more
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substantial gains in predictive accuracy are typically observed for the pairwise mean combination

forecasts during the crisis period at the 3 to 12-month forecast horizons. However, unlike the

forecasts obtained from the total spillover index, they typically outperform the benchmark over

the pre-crisis period, too, resulting in substantially higher relative CSFEs when considered

over the complete evaluation period. Finally, the forecasts obtained from the pairwise median

combination forecast typically lie between the total spillover index and the mean combination

forecast.
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Figure 5: In-sample cumulative squared prediction errors relative to the benchmark model
The figure plots cumulative squared in-sample prediction errors of the benchmark predictive regression model minus the
cumulative squared prediction errors of the predictive regression models that include the total macro-financial spillover
index, the combination forecasts computed as the mean and median of the 6 individual pairwise spillover index forecasts,
SRISK or CATFIN. Larger values correspond to stronger performance of the relevant extended predictive regression model
relative to the benchmark, with values above (below) zero implying a smaller (larger) cumulative squared prediction error
than the benchmark model up to that point in time. The sample period considered is 2000:06-2019:12 and the dependent
variable to be forecasted in all cases is the n-period-ahead level of the CFNAI.
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The performance of the SRISK-based forecasts is nearly identical to that of the benchmark

model throughout the 2000:06-2019:12 evaluation period for the intermediate 2, 3 and 6-month

forecast horizons. At the longer nine and 12-month horizons, the dynamics of forecast perfor-

mance are somewhat similar to those of the forecasts based on the total spillover index, with

performance inferior to the benchmark in the pre-crisis period, superior to it during the cri-

sis and comparable to it in the post-crisis period. Considering the CATFIN-based forecasts

finally, we generally observe strong performance at the start of the evaluation period followed

by a further increase during the crisis period. However, this peak coinciding with the 2008

crisis is substantially less pronounced than that exhibited by the forecasts employing macro-

financial spillover measures and is typically followed by a decrease in performance relative to

the benchmark model.

Figure 6 presents equivalent plots to Figure 5 for the out-of-sample case, with all out-of-

sample forecasts produced using the rolling window approach discussed above. Given the rolling

window approach used to produce out-of-sample forecasts and the lead and lag values contained

in equation (4.1), the forecast evaluation periods are shorter than the in-sample case and vary

with the forecast horizon.

In the out-of-sample forecasting environment, the differences in cumulative squared forecast

errors for the augmented models compared to the benchmark model tend to be relatively small

at the beginning of the evaluation period and also from 2012-2014 (depending on the forecast

horizon) until the start of the COVID-19 pandemic, as indicated by the relatively flat CSPE plots

during these periods. Indeed, the most significant differences in predictive accuracy amongst the

various forecasting models and the benchmark model occur during and immediately following

the 2008 financial crisis and at the start of the ongoing COVID-19 pandemic.

In most cases, the forecasts based on the total spillover index, the pairwise forecast com-

binations and those based on CATFIN again exhibit apparent increases in predictive accuracy

relative to the benchmark model during and following the 2008 crisis, though the size and du-

ration of these increases vary substantially across forecast horizons. The main exceptions are

forecasts based on the total spillover index at the shortest 1-month horizon and those based on

CATFIN at the longest 12-month horizon. Both perform poorly during this period. In the case

of the pairwise combination forecasts, these gains tend to be substantial around the crisis and

continue to accumulate gradually even after the financial crisis has passed and are maintained

until the end of the sample period. By contrast, in the case of forecasts based on the total
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Figure 6: Out-of-sample cumulative squared forecast errors relative to the benchmark model
The figure plots cumulative squared out-of-sample forecast errors of the benchmark predictive regression model minus the
cumulative squared forecast errors of the predictive regression models that include the total macro-financial spillover index,
the combination forecast computed as the mean and median of the pairwise spillover index forecasts, SRISK or CATFIN.
Larger values correspond to the stronger performance of the relevant extended predictive regression model relative to
the benchmark, with values above (below) zero implying a smaller (larger) cumulative squared forecast error than the
benchmark model. The dependent variable to be forecasted in all cases is the n-period-ahead level of the CFNAI. Forecasts
are produced using a rolling window scheme with a fixed window length of 60 months using data spanning the period
2000:06-2019:12. Forecasts are produced up to 2019:12 in all cases, with the date of the first forecast to be evaluated
varying from 2005:10 to 2006:09 depending on the forecast horizon.
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spillover index and CATFIN, some or all of the gains in cumulative forecast accuracy over the

benchmark model attained during the crisis are generally lost in the post-crisis period, with

overall cumulative performance falling below that of the benchmark model in some cases from

2011 onwards. Finally, the SRISK-based forecasts exhibit gains during the 2008 crisis only for

the longer nine and 12-month forecast horizons.

5 Conclusion

We estimate and analyse the structure of macro-financial spillovers between equities, bonds

and the real side of the economy. For this purpose, we develop a new approach for estimating

macro-financial spillovers that combines established quantitative measures of financial spillovers

with mixed-frequency econometric methods. Our approach permits the use of mixed-frequency

macro-financial datasets without the need to aggregate the higher frequency financial series

down to the lower frequency as the real economy series. The methodology produces a set

of different macro-financial spillover measures that consider the direction of spillovers. The

directionality of the measures obtained permits a more detailed analysis of market linkages

than other approaches that measure only association.

In our analysis of macro-financial spillovers in the US economy from 1975 to 2020, we

find that the magnitude of the mixed-frequency spillovers is substantially greater than those

obtained from a similar common-frequency approach. This suggests that the loss of high-

frequency information incurred by using a common-frequency modelling approach results in

the financial and real sides of the economy appearing less connected. Furthermore, our mixed-

frequency approach’s preservation of additional high-frequency information results in spillover

measures that appear more consistent with key events that occurred during our sample period.

The same empirical findings are also evident in a set of two-country analyses of international

macro-financial spillovers. The directional nature of our spillover measures demonstrates that

the largest magnitude of spillovers originates from the financial, rather than the real, side of the

economy. This decomposition also clearly shows that the relative importance of each financial

market has changed over time.

Motivated by existing work analysing the predictive ability of financial systemic risk mea-

sures for future macroeconomic series, we explore whether our macro-financial spillover measures

can be employed to forecast US macroeconomic conditions. We find that forecasts produced
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using our spillover measures predict both broad measures of overall macroeconomic conditions

and also measures representing more specific aspects of the state of the macroeconomy. Fore-

casting performance is particularly strong for the case of simple combination forecasts com-

puted as the mean or median of the individual forecasts obtained from our set of pairwise

macro-financial spillover measures. In an in-sample forecasting environment, these combination

forecasts marginally outperform existing systemic risk measures when forecasting aggregate

macroeconomic conditions. However, they substantially outperform them when forecasting dis-

aggregated measures representing more specific aspects of economic conditions. When moving

to an out-of-sample forecasting environment, the gains in the predictive accuracy of our macro-

financial spillover measures are typically even larger when forecasting either aggregate or more

specific aspects of macroeconomic conditions. When examining the dynamics of forecasting

performance, we find that the gains in predictive accuracy provided by our spillover measures

are especially large during the 2008-2009 crisis, both relative to our chosen benchmark model

and also relative to those provided by existing financial systemic risk measures.
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Appendices

A Forecast Error Variance Decomposition

A.1 Generalised Forecast Error Variance Decomposition

We denote the generalised FEVD values by θij(H), where θij(H) measures the fraction of

the total H -step-ahead error variance in forecasting series i attributable to shocks in series j.

Following Pesaran and Shin (1998), the generalised forecast error variance decomposition values

are computed for any given forecast horizon H = 1, 2, . . . as:

θij(H) =
σjj

∑H−1
h=0 (e′iBhΣej)

2∑H−1
h=0

(
e′iBhΣB

′
hei

) for i, j = 1, . . . ,Kx (A.1)

where Σ is the covariance matrix of the error vector ε(τL), σjj is the j -th diagonal element of Σ

and ej is the Kx-dimensional selection vector with a 1 in the j -th element and zeros elsewhere.

The arrays Bi, i = 1, . . . are the coefficient arrays from the infinite order moving average (MA)

representation of the MF-VAR in equation (2.1). These can be obtained from the coefficient

arrays of the standard representation of the VAR via a simple recursion (see Diebold and Yılmaz,

2014 for details).

It is worth noting that unlike other common approaches to computing the FEVD that rely

on orthogonalisation to account for potential correlation between shocks, such as the Cholesky

decomposition, the values of the generalised FEVD arrays are not affected by the ordering of

the series within the VAR. Instead, the approach accounts for potential correlation between

shocks using the historical distribution of the errors.

A.2 Transformation of MF-VAR FEVD Arrays

We continue to employ the simple bivariate example from Section 2.3 for illustration, re-

peating some of the key details here for convenience. With one low-frequency monthly se-

ries and one high-frequency weekly series we obtain a (5 × 1) vector process with the form

x(τL) = [xH(τL, 1), . . . , xH(τL, 4), xL(τL)]
′ for the MF-VAR, and a (2×1) vector process x(τL) =

[xHtL(τL), xL(τL)]
′ for the corresponding CF-VAR. This results in (5 × 5) and (2 × 2) FEVD
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arrays, given respectively by:


θ11(H) . . . θ15(H)

...
. . .

...

θ51(H) . . . θ55(H)

 and

ϕ11(H) ϕ12(H)

ϕ21(H) ϕ22(H)

 for H = 1, 2, . . . (A.2)

We argued previously that the elements of the MF-VAR FEVD arrays can be grouped into

sub-arrays as: Θ11(H) Θ12(H)

Θ21(H) Θ22(H)

 for H = 1, 2, . . . (A.3)

where:

Θ11(H) ≡


θ11(H) . . . θ14(H)

...
. . .

...

θ41(H) . . . θ44(H)

 Θ12(H) ≡


θ15(H)

...

θ45(H)



Θ21(H) ≡
[
θ51(H) . . . θ54(H)

]
Θ22(H) ≡ θ55(H)

such that each of the sub-arrays Θkl(H) in (2.6) can be viewed as a mixed-frequency analogue

of the corresponding scalar element ϕkl(H) from the CF-VAR FEVD array. Our transformation

approach produces new FEVD arrays from the MF-VAR FEVD arrays with the same structure

and dimensions as those for the corresponding CF-VAR. We denote a generic element of the

new transformed FEVD arrays by ψkl(H) for k, l = 1, . . . ,K.

The key is to perform the transformation such that the value and interpretation of each

element ψkl(H) is directly comparable with the corresponding element ϕkl(H). This relies on

the correspondence between the elements of the mixed and common frequency arrays discussed

above and the mathematical definition of the generalised FEVD elements in equation (A.1).

For ease of notation, we denote the numerator and denominator of (A.1) more compactly as:

θij(H) =
λij(H)

µi(H)
for i, j = 1, . . . ,Kx (A.4)

where:

λij(H) ≡ σjj

H−1∑
h=0

(
e′iBhΣej

)2
and µi(H) ≡

H−1∑
h=0

(
e′iBhΣB

′
hei

)
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The denominator µi(H) corresponds to the total H -step-ahead forecast error variance for series i

and the numerator is the forecast error variance for series i due to shocks in series j (normalised

such that the shock is one standard deviation in size).

We compute each element ψkl(H) in the transformed FEVD array as:

ψkl(H) =

∑
i∈Ik, j∈Jl

λij(H)∑
i∈Ik

µi(H)
k, l = 1, . . .K, H = 1, 2, . . . (A.5)

where Ik and Jl are sets containing the row and column indexes respectively for the elements in

the MF-VAR FEVD array that correspond to the element ϕkl(H) in the sense discussed above.

For the previous bivariate example, the elements in the MF-VAR FEVD array that corre-

spond to ϕkl(H) are those contained in the sub-array Θkl(H) in equation (A.3). For example,

for k = 1, l = 1, we have I1 = {1, . . . , 4}, J1 = {1, . . . , 4} (the elements of Θ11(H)) and thus:

ψ11(H) =

∑
i∈I1, j∈J1

λij(H)∑
i∈I1

µi(H)
=

4∑
i=1,j=1

λij(H)

4∑
i=1

µi(H)

H = 1, 2, . . .

Likewise, for k = 2, l = 1 we find I2 = {5}, J1 = {1, . . . , 4} (the elements of Θ21(H)) and thus:

ψ21(H) =

∑
i∈I2, j∈J1

λij(H)∑
i∈I2

µi(H)
=

4∑
j=1

λ5j

µ5(H)
H = 1, 2, . . .

B Data Appendix

B.1 Construction of Weekly Financial Series

The MF-VAR approach of Ghysels (2016) is applicable in situations where the number of high-

frequency time periods per low-frequency period varies deterministically over time. This does,

however, somewhat complicate the implementation of the method. As discussed in the main

text, we employ a combination of monthly macroeconomic and weekly financial time series for

the empirical analysis. Working with monthly and weekly time intervals in a traditional sense,

the number of weeks per calendar month varies from month to month.
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To avoid the complications of deterministic time variation in the number of weeks per

calendar month, we pre-process the data and work with what we term ‘pseudo weeks’ rather

than standard calendar weeks. This approach is possible because we observe all financial series

at a daily frequency that is higher than the final desired weekly frequency. These pseudo weeks

are constructed by dividing the trading days within each month into four sub-periods whose

lengths vary but are as close as possible to being equal. For example, months with 20 trading

days are divided into four 5-day sub-periods, those with 19 trading days are divided into three

5-day periods and a 4-day period, those with 22 days are split into two 5-day periods and two

6-day periods and so on. The vast majority of pseudo-weeks contain either 5 or 6 trading days.

However, Februarys or months with an unusually large number of weekday non-trading days

due to holidays may have one or more weeks with four trading days.

With the exception of months containing exactly 20 trading days (always split into four

weeks of equal length), how the weeks are ordered within a given month will influence the

values (e.g. returns) obtained. For example, months with 21 working days can be split into four

pseudo-weeks with lengths 5-5-5-6, with lengths 5-5-6-5, with lengths 5-6-5-5 or with lengths 6-

5-5-5, each of which will produce different final values for prices, returns and return volatilities.

Therefore to avoid this issue, we compute values over all possible split orders for a given month

and then average the resulting values. Finally, while calculating pseudo-weekly returns or return

volatilities for each period, we also adjust the return and volatility values obtained to account

that the length of the return period differs slightly from one pseudo-week to another (4, 5 or 6

trading days).

B.2 Plots of Data Series

The US financial and macroeconomic series used to estimate spillover measures are plotted for

the full sample period in Figure A.1. Major economic and financial events during the sample

period are clearly visible in the plots, either as substantial increases in financial volatility or

large changes in the CFNAI; examples include the 1980-1981 recession, the Asian and Russian

financial crisis and the collapse of Long-Term Capital Management in the late 1990s, the dotcom

bubble and 9/11 in the early 2000s, the recent global financial crisis in the late 2000s and early

2010s, and the onset of the COVID-19 pandemic.
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Figure A.1: Time series plots of financial and real economy series
The financial (S&P500 and 10-year Treasury Bond) and real economy (CFNAI) series are plotted for the full sample
period 1975:01 to 2020:06. Returns and return volatilities are expressed in percentage terms for the weekly frequency, with
standard deviations plotted for the latter constructed using a range-based approach detailed in Appendix C.2. The CFNAI
series is plotted in level form.

C Supplementary Empirical Results

C.1 Additional Plots of Pairwise Spillover Measures

in Figure A.2. Panel (a) plots financial to financial pairwise spillover estimates, panel (b) plots

pairwise spillovers from each of the two financial markets to the real economy and panel (c)

shows the reverse from the real economy to financial markets. Figure A.2 complements the

spillover decomposition plots of Figure 2, with the latter being more suited to analysing the

relative contribution of the individual spillover measures to the total level, and the former more

suited to analysing the dynamics of specific spillover measures in absolute terms. In particular,

Figure A.2 allows us to more effectively examine how changes in pairwise spillovers relate to

key historical events as we did previously for the total spillover index in Figure 1.

There are several instances of increases in total spillovers being driven by increased spillovers
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Figure A.2: Pairwise macro-financial spillover measures
The figure presents plots of the pairwise macro-financial spillover measures for the sample period 1980:01 to 2020:06. All
measures plotted are for the mixed-frequency case. Return levels are employed for the financial S&P500 and 10-year
Treasury Note series, and levels for the real economy CFNAI series. Values are computed using a 3-month forecast horizon
and a 60-month rolling window. The points marked are as follows. A: Black Monday, Oct ’87, B: Asian financial crisis, Jul
’97, C: Russian financial crisis and LTCM collapse, Aug to Sept ’98, D: September 11, Sept ’01, E: the collapse of Bear
Stearns, Mar ’08, F: Lehman Brothers collapse, AIG bailout and Fannie Mae and Freddie Mac being placed in government
conservatorship, May ’09, G: start of the EU debt crisis in April ’10 and flash crash of May ’10, and H: COVID-19 pandemic,
March ’20.

from the financial sector to the real side of the economy. During the 1980 to 1982 inflationary

period, spillovers from the bond markets to the real economy increased substantially. They

reached local peaks in three instances: March 1980, December 1980 and February 1982, coin-
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ciding with federal funds target rate increases. These tightenings of monetary policy by the

Volcker Fed led to higher interest rates, generating immediate contractionary impacts on the

real economy, as captured by the spillovers from bond markets to the real economy reaching

8%. They subsequently declined gradually as inflation was brought under control leading to

lower interest rates. These events are also visible from the mixed-frequency spillover measures

in panel (a) of Figure 2, but not the equivalent common-frequency measures in panel (b).

The Federal Reserve implemented another rate hike cycle between December 1986 and

September 1987, with the federal funds target rate rising from 5.75% to 7.25% over this pe-

riod. Consequently, spillovers from bond markets to the real economy increased from 3.2% in

November 1986 to as high as 6.5% in May 1987. When the Federal Reserve lowered its policy

rate back to 6.75% in response to Black Monday, spillovers from bonds to the real economy

declined to 4% as of December 1987. However, the Federal Reserve returned to its rate hike

cycle in March 1988 and increased the fed funds target rate to 9.75% by the end of 1988 and

kept it there for another year. As a result, spillovers from the bond market to the real economy

stayed above four percentage points until October 1990.

Increases in spillovers from equity markets to the real economy are visible after the Black

Monday stock market crash in October 1987. The same occurred in the mid and late 1990s

due to the build-up to the Mexican Tequila crisis beginning at the end of 1994, followed by the

Asian and Russian financial crises and the collapse of LTCM in 1997 and 1998. During this

period, spillovers from the stock and bond markets to the real economy increased from two to 6

percentage points. Both measures also increased in May 2000, when the Federal Reserve raised

its policy rate from 6% to 6.5% despite the dot-com bubble bursting in the first half of 2000.

Following this, spillovers from equities and bonds to the real economy declined. However,

from mid-2006, both recorded a sharp increase from around 2 to 8 percentage points when

the Fed caught the markets off-guard by increasing the federal funds target rate in both May

and June. With the start of the 2008-2009 financial crisis, spillovers from both bond and

equity markets to the real economy increased sharply, with the latter being the most significant

contributor to the sudden increase in the total spillover index throughout this crisis. The

effects of the 2013 Taper Tantrum episode are also visible in panel (a) as a sharp increase

in spillovers from the bond market to equities, reflecting the negative shock to bond market

investor sentiment and its potential for spillovers to the equity market.

As discussed above, both the mixed-frequency and common-frequency total spillover in-
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dices in Figure 1 responded similarly to the COVID-19 shock, with a significant spike in total

spillovers. From Figure A.2 it is clear that all of the individual components of spillovers in-

crease in response to the pandemic. The largest increases in an absolute sense are noted for

spillovers from financial markets to the real economy, particularly from the equity market.

However, whilst smaller in absolute terms (reaching a level of just under 7%), in panel (c), we

observe very large increases in spillovers from the real economy to bond markets relative to the

pre-pandemic levels.

C.2 Total Spillover Indexes for Logarithmic Return Volatilities

We also computed our mixed-frequency macro-financial spillover index using logarithmic return

volatilities in place of return levels for the financial series as in Diebold and Yılmaz (2014). These

previous studies employ the range-based estimator of return volatility proposed by Parkinson

(1980), which estimates return volatility from the high and low prices during the chosen return

period. As daily data on high and low prices are not available during the earlier parts of the

sample period, we approximate this estimator by replacing the high, and low prices with the

highest and lowest daily closing prices observed each week. For the later parts of the sample

period where both estimators can be computed, we confirm that our volatility measure using

only close prices is highly correlated with the Parkinson (1980) estimator, with a correlation

coefficient of just over 0.9 for the S&P500 and just under 0.9 for the 10-year Treasury Note

series.

Figure A.3 presents an equivalent plot to Figure 1, for the case where logarithmic return

volatilities are employed instead of return levels for financial series. The total spillover index

series display broadly similar dynamics to those observed for the case of return levels. For the

case of return volatilities, the spillover indexes typically display slightly more pronounced spikes

around adverse financial or economic events than the ones for return levels (particularly during

the Asian and Russian financial crises). Financial volatility spillovers typically rise in turbulent

times and drop in tranquil times, whereas return spillovers may increase in both situations.

Finally, we again observe similar differences in the level of macro-financial spillovers between

the mixed-frequency and common-frequency cases, with the former implying a higher average

level of spillovers over the sample period.
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Figure A.3: Total spillover indexes between financial and real economy series obtained from loga-
rithmic return volatilities
Total spillover indexes for mixed-frequency (denoted MF) and common-frequency (denoted CF) approaches are presented
for the sample period 1980:01 to 2020:06. Logarithmic return volatilities are employed for the financial S&P500 and 10-year
Treasury Note series, levels for the real economy CFNAI series. Values are computed using a 3-month forecast horizon and
a 60-month rolling window. The points marked are as follows. A: Asian financial crisis, Jul ’97, B: Russian financial crisis
and LTCM collapse, Aug to Sept ’98, C: September 11, Sept ’01, D: the collapse of Bear Stearns, Mar ’08, E: Lehman
Brothers collapse, AIG bailout and Fannie Mae and Freddie Mac being placed in government conservatorship, May ’09,
F: start of the EU debt crisis in April ’10, flash crash of May ’10 and G: COVID-19 pandemic, March ’20. Shaded areas
correspond to NBER US recession dates.
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