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Abstract

Stock price jump risk is known to be important for explaining the option-implied volatility
skew generated by the Black-Scholes model. Financial leverage (distress) has an important
impact on the shape of the implied volatility skew, however, we find that the impact of
leverage on the implied volatility skew depends on the quality of the firm’s accounting trans-
parency. In this paper, we propose a model where incomplete accounting information and
the risk of financial distress together act as important drivers of jump rates and sizes for indi-
vidual stocks. Consistent with our model, empirical tests using individual stock option data
indicate that the impact of leverage on the skew is weaker for firms with lower accounting
transparency and stronger for firms with higher accounting transparency.
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I. Introduction

The volatility smile in the options market refers to the stylized fact that the Black and

Scholes [1973] implied volatility as a function of the strike price is skewed, not flat as it

should be if that model were correct. This model has since been extended in many ways to

better fit various aspects of the time-series and cross-sectional properties of option prices.6

Through these studies we have learned that stock price jumps are integral to fitting the

time-series and cross-sections of option prices.7 The economic sources of jump risk, however,

are less well understood.

In this paper, we study an economically intuitive explanation for the jump risk embedded

in the implied volatility skew in individual stock options. We model the equity option price

for a firm financed with debt and equity, for which investors do not know the precise value

of the firm, but periodically receive noisy accounting reports. In contrast to the perfect

information firm structural models of Merton [1974] and Leland [1994] models, imperfect

corporate disclosure introduces the possibility that the firm can default unexpectedly, with

equity then jumping to zero. We study the effect of this jump risk on the implied volatility

skew by incorporating the imperfect corporate disclosure of the Duffie and Lando [2001]

(DL) model into the pricing of stock options with risky debt of Toft and Pryck [1997].

Since equity is essentially a call option on the value of the firm, one cannot consistently

model both firm value and stock price as geometric Brownian motions. This led to the Geske

[1979] (Geske, Subrahmanyam, and Zhou [2016]) treatment of stock options as compound

options (options on an underlying Merton [1974] firm structure). Since equity value is equal

to zero when bankruptcy occurs, the stock return attains a heavier left tail than in a Lognor-

6Beginning with stock price jumps (Merton [1976]), then deterministic local volatility models of Derman
and Kani [1994] and Dupire [1994], then stochastic (Heston [1993]), stochastic jumps in volatility (Bates
[1996]), and stochastic jumps in volatility and the price process (Duffie, Pan, and Singleton [2000]).

7Our paper specifically focuses on the endogenous size and arrival rates of jumps asociated with a
firm’s default through the channel of quality of accounting information. In contrast, the literature has
largely focused on studying the magnitude of jump risk premia required by the data to price stock market
index options and individual firms options in: Eraker, Johannes, and Polson [2003], Broadie, Chernov, and
Johannes [2009], Christoffersen, Jacobs, and Ornthanalai [2012], Andersen, Fusari, and Todorov [2015], and
others.
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mal distribution, implying a downward-sloping volatility skew—the more levered the firm is,

the more skewed is the implied volatility function. The Toft and Pryck [1997] (TP) option

pricing model improves upon the underlying firm structure by using a Leland [1994] firm

structure allowing the firm to default at any time between inception and debt maturity or

option maturity.

In DL, the firm’s asset value is assumed to follow a Geometric Brownian Motion. How-

ever, investors do not observe the precise value. Instead, the firm periodically issues noisy

accounting reports. DL show that there is a positive probability per unit time that the firm

can go bankrupt within the next instant even if the firm is reported to be safe, because the

true firm value may lie somewhere closer to the default threshold than expected. This intro-

duces jump risk into the model, as equity value can suddenly go to zero from any positive

level. The crucial parameter in the DL model, the variance of the accounting noise, governs

the intensity of the jump to default.

Large jumps in stock prices are closely tied to news about future cash flows and discount

rates.8 It therefore seems plausible that the volatility smile of stock options may be related

to the quality of corporate disclosures. Intuitively, a firm with timely, clear, and detailed

disclosures will seldom impose a surprise on the market. In contrast, a firm that makes only

infrequent and less informative disclosures, is more likely to catch investors off guard. In

this respect, the quality of corporate disclosures may proxy for the overall level of jump risk

(both likelihood and magnitude of jumps) in stock returns.

Toft and Pryck [1997] show that financial leverage and thus distress risk influence the

implied volatility smile empirically.9 Our empirical analysis suggests that the leverage ratio

and the quality of corporate disclosure jointly explain the cross-sectional variation of the

implied volatility skew. Specifically, we highlight an important interaction between the two

effects. When a firm is perceived to be opaque, whether its leverage ratio is high or low has

8See for instance Maheu and McCurdy [2004].
9Dennis and Mayhew [2002] find less of an impact of leverage on the implied volatility skew as well as

a different sign using a different data set of options data in a time period (1986-1996) that pre-dates our
analysis (1997-2017).
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less impact on the price of a stock option. Conversely, when the firm is subject to greater

accounting transparency, the higher the leverage ratio, the more skewed the implied volatil-

ity smile, linking a lower distance to default with more expensive out-of the money options.

Our theory is able to provide option prices in closed form up to Bivariate Cumulative Stan-

dard Normal Distributions. Our empirical tests confirm our model’s theoretical prediction

and are robust to a variety of controls, measures of skewness, and measures of accounting

transparency.

To the best of our knowledge, our paper is the first to suggest and document a relationship

between the implied volatility skew and accounting transparency. As such it offers interesting

support for the DL insight and also furthers our understanding of the economic determinants

of the volatility skew. However, our approach is not without its limitations. For example,

to emphasize the role of firm-level accounting noise, we have omitted to model economy-

wide jump risk. This risk is linked to the index option skew and is also partly responsible

for the skew in individual stock options through its effect on the pricing kernel (Bakshi,

Kapadia, and Madan [2003]). Therefore, our model cannot be expected to fully account for

the magnitude of the skew.

Our empirical results should not be confused with empirical tests of option models of

heterogeneous beliefs (Buraschi and Jiltsov [2006]). From a Bayesian point of view, the

reason why different investors have different beliefs about the fundamentals of a firm is that

they are updating with different information. In the absence of truthful reporting, any news

about a company is necessarily noise, and the difference in beliefs will be high. However,

tests of heterogeneous beliefs also jointly estimate the empirical measures of the consistency

of investor trading behaviour (open interest and open volume) and measures of beliefs or

disagreement of firm value quantities. Whereas our empirical tests measure the differential

impact of firm leverage across measures of accounting quality (beliefs) of firm value, we make

no statement about the trading behaviour of investors.

More broadly, we contribute to the research agenda that focuses on the economic reasons
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for empirical departures from Black-Scholes. In this sense, our framework complements ex-

isting option models that use structural models such as Toft and Pryck [1997], Chen and Kou

[2009], Geske et al. [2016], and Morellec and Zhdanov [2019].10 Chen and Kou [2009] extend

the TP framework to explicitly include jumps in the underlying asset price process framework

in order to generate a variety of predictions for implied volatilities and credit spreads. In our

framework, jumps arise endogenously as a result of imperfect information.11 Additionally

we contribute to a recent literature that studies the effect of information (accounting and

other) disclosure on option prices.12

The rest of this paper is organized as follows. In Section II we present our theoretical

model and in Section III use numerical examples to illustrate the relationship between ac-

counting transparency and the volatility smile. In Section IV we document the construction

of the volatility skew, the accounting transparency measures, and other aspects of the data.

In Section V we conduct regression tests of the main predictions of the model with robustness

tests in Section VI. We conclude with Section VII.

II. The Model

Our goal is to examine how equity option prices relate to a firm’s capital structure as

well as the fact that public information about the firm provides only a noisy estimate of

its true value. The natural framework for this is the DL structural credit risk model with

incomplete accounting information.

Our derivation of the stock option pricing formula takes three steps. Step 1 takes into

account endogenous bankruptcy by shareholders and expresses equity value as the solution

to an optimal stopping problem. Step 2 assumes perfectly observed firm value and prices

10Morellec and Zhdanov [2019] constructs a production economy option model where firm product com-
petition is an important determinant in explaining the cross-sectional variation in implied volatility skew.

11Xiao and Vasquez [2020] study the impact of measures of default and credit risk on future option returns
with a structural option pricing model with embedded jumps in the firm asset value process.

12Dubinsky, Johannes, Kaeck, and Seeger [2019] quantify the impact of earnings announcements on option
prices using deterministic jump components and Smith [2018] option pricing model incorporates the impact
of an accounting disclosure event date on the price of an option (not the quality of the information)
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stock options using the compound options approach. Step 3 incorporates noisy accounting

information into the pricing formula. The results of the first two steps are directly from DL

and TP, and the final step is a combination of the two.

A. Equities

To begin, assume that we have a firm whose asset level is described by Vt, a Geometric

Brownian Motion with drift µ and volatility σ. The firm generates cash flow at a rate δVt,

which is distributed to shareholders as well as being used to service a par consol bond with

a total coupon rate C. The tax rate is θ, generating tax benefits for the bond at a rate of

θC. All agents are risk-neutral and discount cash flows at a constant rate of r.

In this setting, one can conjecture that shareholders will choose to liquidate the firm if

the asset level Vt becomes sufficiently low. Namely, the stopping policy that maximizes the

discounted present value from operating the firm, including tax benefits,

E

(∫ τ

t

e−r(s−t) (δVs − C + θC) ds|Vt
)
, (1)

takes the form τ (VB) = inf {t : Vt ≤ VB}. Indeed, DL verify the optimality of such a stopping

rule and show the corresponding equity value as

w (v) =
δv

r − µ
− vB (C) δ

r − µ

(
v

vB (C)

)−γ
− (1− θ) C

r

(
1−

(
v

vB (C)

)−γ)
(2)

when v > vB (C), and w (v) = 0 for v ≤ vB (C). The terms represent, respectively, the

present value of future cash flows generated by the assets, the present value of cash flows

lost to bankruptcy, and the cost of debt service minus the tax benefit. Here, vB (C) is the

default threshold

vB (C) =
(1− θ)Cγ (r − µ)

r (1 + γ) δ
, (3)

where γ = m+
√
m2+2rσ2

σ2 and m = µ− 1
2
σ2.
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Notice that the total coupon rate C can be determined by maximizing the initial value

of equity plus the market value of the consol bond. This is the notion of optimal capital

structure pursued in Leland [1994] and Leland and Toft [1996]. It is not essential to our

subsequent results and is therefore omitted.

B. Stock Options

Given shareholders’ optimal decision to liquidate the firm once the firm asset level drops

below VB = vB (C), we can price stock options as compound options on the firm’s assets.

To facilitate the derivations, define a standard Brownian motion Zt ≡ log Vt and let

v = log VB. The price at time t of a stock option with maturity T and strike price K is

ht (u) = e−r(T−t)E
((
w
(
eZT
)
−K

)+
1{τ>T}|Zt = u

)
. (4)

The indicator function means that the option payoff is zero if bankruptcy is declared prior

to its maturity.

Using Bayes’ rule, this can be rewritten as

e−r(T−t)
∫ ∞
v

(w (ex)−K)+ P (ZT ∈ dx, τ > T |Zt = u)

= e−r(T−t)
∫ ∞
v

(w (ex)−K)+ P (τ > T |Zt = u, ZT ∈ dx)P (ZT ∈ dx|Zt = u) . (5)

This expression involves two probabilities. The first is the probability of survival through

T given that the standard Brownian motion Z is pinned at the two end points, and can be

written as ψ
(
u− v, x− v, σ

√
T − t

)
= 1 − exp

(
−2(u−v)(x−v)

σ2(T−t)

)
.13 The second is simply the

density of a normal random variable with mean u + m (T − t) and variance σ2 (T − t). We

13This can be interpreted as the probability that the first time the diffusive log-firm value (which began
at time t with value u) reaches the absorbing default boundary (Zt ≡ log Vt and let v = log VB) exceeds time
T . The result relies on the density of the First Passage Time, which is the time it takes a Brownian motion
to hit an absorbing boundary.
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therefore obtain

ht (u) =
e−r(T−t)√

2πσ2 (T − t)

∫ ∞
v

(w (ex)−K)+ exp

(
−(x− u−m (T − t))2

2σ2 (T − t)

)
(

1− exp

(
−2 (u− v) (x− v)

σ2 (T − t)

))
dx. (6)

After substituting in the value of equity in equation (2) and some further manipulations,

we arrive at the final expression:

ht (u) = Feu+(m+ 1
2
σ2−r)l

(
N
(
y∗ + σ

√
l
)
− e(2mσ−2+2)(v−u)N

(
y∗ + σ

√
l +

2 (v − u)

σ
√
l

))
+Beγ(v−u)

(
N
(
y∗ − γσ

√
l
)
− e(2mσ−2−2γ)(v−u)N

(
y∗ − γσ

√
l +

2 (v − u)

σ
√
l

))
− (A+K) e−rl

(
N (y∗)− e2mσ−2(v−u)N

(
y∗ +

2 (v − u)

σ
√
l

))
, (7)

where

l = T − t,

F =
δ

r − µ
,

A =
(1− θ)C

r
,

B =
(1− θ)C
r (1 + γ)

,

y∗ = −x
∗ − u−m (T − t)

σ
√
T − t

,

and ex
∗

is the firm asset level that corresponds to an equity value of K:

Fex − A+Be−γ(x−v) = K. (8)

With some differences in notation, this pricing formula is first derived by TP. They

show that it leads to a downward-sloping volatility skew. Furthermore, the skewness of the
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pattern increases with firm leverage. Our comparative statics in Section III will re-visit these

findings.

C. Incomplete Accounting Information

The pricing formula (7) assumes that the firm asset level Vt is known to investors, which

may seem like a harmless assumption. However, recent accounting scandals suggest that

this can be quite far from reality. DL assume that firm assets are observed only periodically,

and with noise. Therefore, at time t, the value of the firm’s assets is not known with perfect

precision. Instead, it is governed by a conditional distribution that depends on the reported

firm assets as well as the absence of bankruptcy. DL use this framework to investigate the

pricing of defaultable bonds, producing strong predictions for short-maturity credit spreads.

We intend to study its impact on the pricing of stock options.

First, we follow DL in assuming that Z0 is observed without noise. Then, at time t, the

firm reports the value of Yt = Zt+Ut, where Ut is independent of Zt and normally distributed

with mean −a2

2
and variance a2, so that the reported firm asset level V̂t = Vte

Ut is a noisy

but unbiased version of Vt.

Next, we show that the stock option value can be expressed as an integral of equation

(7) over the distribution of Zt given information available at t. This can be seen by writing

the option price Ht as

Ht = e−r(T−t)E
((
w
(
eZT
)
−K

)+
1{τ>T}|Yt = y, Z0 = z0, τ > t

)
= e−r(T−t)

∫ ∞
v

(w (ex)−K)+ P (ZT ∈ dx, τ > T |Yt = y, Z0 = z0, τ > t) . (9)

The joint density of ZT and no default until T given the current and lagged asset values, as
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well as survival to t, can be decomposed by repeated applications of Bayes’ rule:

P (ZT ∈ dx, τ > T |Yt = y, Z0 = z0, τ > t)

=

∫ ∞
u=v

P (ZT ∈ dx, Zt ∈ du, τ > T |Yt = y, Z0 = z0, τ > t)

=

∫ ∞
u=v

P (τ > T |Zt = u, ZT = x)P (ZT ∈ dx, Zt ∈ du|Yt = y, Z0 = z0, τ > t)

=

∫ ∞
u=v

P (τ > T |Zt = u, ZT = x)P (ZT ∈ dx|Zt = u)P (Zt ∈ du|Yt = y, Z0 = z0, τ > t) .(10)

Of the three probabilities above, the first is simply the survival probability of the pinned

Brownian motion, previously referred to as ψ
(
u− v, x− v, σ

√
T − t

)
. The second is the

density of a normal random variable with mean u+m (T − t) and variance σ2 (T − t). The

last is the density of Zt given current and lagged asset reports and survival. We denote it

by g (u|y, z0, t) du.

Combining these two equations, we obtain

Ht =
e−r(T−t)√

2πσ2 (T − t)

∫ ∞
v

(w (ex)−K)+

∫ ∞
v

exp

(
−(x− u−m (T − t))2

2σ2 (T − t)

)
(

1− exp

(
−2 (u− v) (x− v)

σ2 (T − t)

))
g (u|Yt, Z0, t) dudx. (11)

Switching the order of integration, it is easy to see that

Ht =

∫ ∞
v

ht (u) g (u|y, z0, t) du, (12)

which is in some sense obvious given the assumed risk-neutrality.
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Following DL, the last unknown quantity g can be written as

g (u|y, z0, t) du = P (Zt ∈ du|Yt = y, Z0 = z0, τ > t)

=
P (Zt ∈ du, τ > t|Yt = y, Z0 = z0)

P (τ > t|Yt = y, Z0 = z0)

=
P (Zt ∈ du, τ > t|Yt = y, Z0 = z0)∫∞
v
P (Zt ∈ du, τ > t|Yt = y, Z0 = z0)

. (13)

The numerator, denoted as b (u|y, z0, t) du, is equal to

b (u|y, z0, t) du =
P (τ > t|Zt = u, Z0 = z0)P (Zt ∈ du, Yt ∈ dy)

P (Yt ∈ dy)

=
ψ
(
z0 − v, z − v, σ

√
t
)
φU (y − u)φZ (u) du

φY (y)
, (14)

where φU , φZ and φY are respectively the densities of Ut, Zt and Yt. We note that Ut ∼

N (−a2/2, a2), Zt ∼ N (z0 +mt, σ2t) and Yt ∼ N (−a2/2 + z0 +mt, a2 + σ2t). The last step

above uses the independence between Zt and Ut.

Putting everything together, we obtain

g (u|y, z0, t) =

√
α
2π

(
1− exp

(
− 2
σ2t
z̃0ũ
))

exp
(
− 1

2a2
(ỹ − ũ)2) exp

(
− 1

2σ2t
(ũ− z̃0 −mt)2)

N (
√
αβ)−N

(√
α
(
β − 2

σ2tα
z̃0

))
exp

(
−αη

2
+ 2

σ4t2α
z̃0 (z̃0 − αβσ2t)

) ,

(15)

where z̃0 = z0 − v, ũ = u− v, ỹ = y − v + a2/2, and

α =
σ2t+ a2

a2σ2t
,

β =
σ2tỹ + a2 (z̃0 +mt)

σ2t+ a2
,

η =
σ2ta2 (ỹ − (z̃0 +mt))2

(σ2t+ a2)2 .

This expression is slightly different in form from, but equivalent to, the one in DL.

In order to solve for our option pricing model with incomplete accounting information,

given by Ht, in closed form, we first note that the function g (u|y, z0, t) can be re-written as
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a difference of Normal distribution probability density functions with different means and

variances in the general form (see appendix for details of derivation and notation):

g (u|z0, y) =
L1

L0

× e
−(u−M1)

2

2ψ − L2

L0

× e
−(u−M2)

2

2ψ . (16)

Our formula for Ht involves the integral of the product of the TP option pricing formula

(denoted ht (u)) and the density function g (u|y, z0, t). Expanding the product results in

computing twelve integrals of the form in equation 17 (see Owen [1980]):

∫ ∞
R

Φ(A+Bx)φ(x)dx = Φ

(
A√

1 +B2

)
− Φ2

(
A√

1 +B2
, R;

−B√
1 +B2

)
. (17)

The resulting sum of the twelve integrals results in a closed form solution, up to Standard

Bivariate Normal Cumulative Probability Distribution Function, of the expression Ht. The

resulting expression and sketch of the proof for Ht is available in Section VIII of this paper.

A full step by step derivation is available in Section VIII.B of Section VIII.B of the online

mathematical appendix.

III. Numerical Examples

In this section we use numerical examples to illustrate the theoretical model outlined in

the preceding section. We focus on the interaction between accounting transparency and

leverage, asset volatility, as well as the maturity of the equity option in the determination

of the implied volatility skew.

The model parameters are chosen to be as close as possible to those used by TP, so that

comparisons can be made where appropriate. The basic parameters are m = 0.01, σ = 0.2,

r = 0.08, and θ = 0.35. The starting point of the firm value is set to V0 = 100, and the

reported firm value at t = 1 is Y1 = 100. The leverage ratio of the firm is controlled by the
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coupon rate of the consol bond, C. Given the payout rate δ, the dividend yield on the stock

is set to δY1−(1−θ)C
E1

where E1 is the equity value corresponding to an asset level of Y1. The

dividend yield and the equity value are useful when inverting the Black-Scholes formula for

the implied volatility.

In the examples below, the case of low leverage assumes C = 1.72 and δ = 3.70%; medium

leverage, C = 3.77 and δ = 4.54%; high leverage, C = 6.42 and δ = 5.66%. These parameter

values are taken directly from TP’s Table I. We also assume that the accounting precision

parameter a can take on three values: 0.01, 0.05, and 0.1. Lastly, we take the maturity of

the stock option to be 1 month.

Our primary interest is the role of leverage where the accounting reports are assumed to

be precise. We do this by setting a = 0, which reduces the model to that of TP. To isolate

the shape of the volatility skew pattern, we normalize the strike price by the current value

of equity, and divide all of the implied volatilities by the at-the-money implied volatility,

resulting in a standardized plot.

Figure 1 presents the volatility smile for cases with low, medium, or high leverage ratios.

Panel 1 is where the accounting precision is set to zero, representing precisely observed

asset values. It shows that the volatility skew increases with leverage, something that TP

document both in theory and empirically. Notably, the magnitude of the skew is very close

to what TP present in their Table II.

The remaining three panels then illustrate what happens when we have imprecise ac-

counting reports. Notice that for the case with a = 0.01 (Panel 2) we still have an implied

volatility skew that increases with leverage, but this relationship reverses itself under the

presence of somewhat higher accounting noise (Panels 3 and 4). This observation suggests

that there is a level of accounting precision under which the skewness of the smile is in-

sensitive to leverage. Consequently, one has to be careful in designing regression tests for

the relationship between skewness and leverage. It is possible, for example, that simply

regressing the skewness on leverage would not be able to uncover any relation at all.
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To explain this puzzling behavior, we examine the relationship between the volatility

smile and accounting precision under different assumptions of firm leverage. First, Figure 2

shows that this relationship is clearly monotonic, with higher skewness associated with higher

accounting noise. Since option value is a convex function of equity value in TP’s model, the

accounting noise boosts option value due to Jensen’s effect. With deep-in-the-money call

options (with low strike prices) that are very close to the no-arbitrage lower bound, a small

increase in the option value requires a large increase in equity volatility.14 This results in

the elevated volatility skew.

In Figure 2, the impact of accounting imprecision can be ostensibly much larger than the

effect of leverage, but one has to keep in mind that we do not yet know what a reasonable

level of a is. A value of a = 0.1, for example, implies an accounting report that can regularly

be 10 percent off target.

We also see from Figure 2 that accounting noise disproportionately affects the left side

of the volatility skew. The intuition is of course that the imprecise observation of firm assets

introduces downward jump risk due to the presence of the default boundary.

The most important observation from Figure 2 is perhaps the decreasing effect of ac-

counting noise with leverage—the variation of the skew is noticeably smaller in Panel 3 than

in Panel 1. This observation, which helps to explain the relationship between skewness and

leverage in Figure 1, can be understood intuitively as follows:

In our model, the volatility skew is generated by default through two channels. First,

the firm asset level can diffuse down to the default boundary. Second, the firm value can

suddenly jump to default due to incomplete accounting information. As the firm moves

closer to the default boundary (represented by higher leverage ratios), it becomes easier to

default through the normal diffusion channel, and the relative importance of the jump risk

decreases.

14Another way to understand it is that these options have very low vega according to the Black-Schoes
model.
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IV. Data

The data used for our empirical tests is merged from the following standard sources:

quarterly balance sheet data is from COMPUSTAT, daily and monthly stock data is from

CRSP, equity options data is obtained from the OptionMetrics Database, and earnings in-

formation is from the I/B/E/S data. The sample period is from January 1997 to December

2017. OptionMetrics equity options data is first available as of January 1996, however, the

merge between OptionMetrics and the earnings information is sparse during 1996 hence we

begin our sample at January 1, 1997.

Our equity options data consists of closing end of day call and put option best bid and best

offer quotes from the OptionMetrics Database which collects closing option quotes data from

all U.S. equity option exchanges. Equity options for individual firms are American in nature

in the sense that they can be exercised at any time. For each quoted option contract price

the corresponding contract open interest, daily trade volume, and Black-Scholes delta and

implied volatility are reported. The Black-Scholes delta and implied volatility are computed

using the Cox, Ross, and Rubinstein [1979] binomial lattice model in order to incorporate

the early exercise features of American options. We apply filters to our options data set,

specifically we remove contracts with missing implied volatility, open interest, trade volume,

and delta. We remove contracts that have less than 10 days remaining to maturity in order

to account for the rollover of option contracts. We remove option contracts with option best

bid or best offer prices that are less than or equal to zero, and cases where the best offer is

less than or equal to the best bid. We also require the absolute value of the option contract

delta to be between 0.02 and 0.98 to avoid using very deep in-the-money and out-of-the-

money contracts that are mis-priced and have low liquidity. Additionally we remove options

that have zero open interest as they are unlikely to contain any important information.

As a metric for the volatility skew we take the scaled difference between an at-the-

money option and an out-of-the-money option. Our logic is that the at-the-money option

will have a lower implied volatility (relatively less expensive with a lower implied volatility)
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than an out-of-the-money option (more expensive with a higher implied volatility. We then

scale by the at-the-money implied volatility to control for the level of the implied volatility

and the difference in moneyness between the at-the-money option and out-of-the-money

option. We take as at-the-money option the closest option contract that as long as the

moneyness ((K/S0)) is between 0.99 and 1.03, with corresponding moneyness ((K/S0)Hight )

and implied volatility (IV OLHight ) for every firm for each day trading day. For the out-

of-the-money option, we choose the closest option contract that as long as the moneyness

below 0.97 but above 0.92 (if not then choose that option with moneyness closest to 0.92),

with corresponding moneyness ((K/S0)Lowt ) and implied volatility (IV OLLowt ). We choose

the at-the-money and out-of-the-money options having the same date of expiration each day

for the same firm. As a metric for the volatility skew we define the Slope Skew the following

variable:

SLOPEt =

IV OLHight −IV OLLowt

IV OLHight

(K/S0)Hight − (K/S0)Lowt

(18)

So for a typical skew, this variable is negative and the more negative the more skewed the

smirk/smile is. Note that this variable only measures the left hand side of the skew, which

is where our theory’s predictions are the strongest. Our measure in equation 18 is computed

each day for every firm and averaged across all options with less than a year of remaining

time to maturity and then averaged over the quarter for each firm. For each stock trading

day we estimate the model free option implied skewness (SkewQ) of Bakshi et al. [2003]. We

detail the construction of the model free option implied skewness (SkewQ) of Bakshi et al.

[2003] to Appendix Section VIII.B.15

Our measure of leverage is computed using quarterly COMPUSTAT data as the ratio of

book value of debt divided by sum of debt and market value of equity using quarterly data

from COMPUSTAT. We assume that book values of debt and preferred stock are adequate

15We remove large outliers of equation 18 and SkewQ that are above (below) the 99th (1st) percentile.
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proxies for the corresponding market values. In order to account for heterogeneity of firm

characteristics, we use several control variables known to impact the implied volatility skew

in the most recent empirical tests in Morellec and Zhdanov [2019]. Specifically we control for

the: market-to-book ratio (M/B), market capitalization of the firm (Size), stock momentum

(Momentum), stock beta (Beta), idiosyncratic stock return skewness (Idio Skew), and at-

the-money option implied volatility (Atm Ivol). The market-to-book ratio (M/B) is the ratio

of quarterly market equity divided by book equity using quarterly data from COMPUSTAT.

We also control for the market capitalization of the firm (size) which is the log of the product

of the stock price and shares outstanding from CRSP monthly stock files (firms with share

codes 10 and 11 common shares). Momentum is the past 6 month cumulative monthly stock

returns from CRSP which controls for the stock momentum over the previous 6 months of

returns. Beta is the stock beta with the market estimated from 36 months rolling regressions

adjusted by 3 months of lags for asynchronous trading as per the Dimson [1979] adjustment.

Idio Skew is the idiosyncratic skewness of daily returns estimated quarterly using daily CRSP

stock returns. Atm Ivol is average of call and put contract implied volatility with |∆| = 0.5

and 30 days to maturity, and using OptionMetrics Volatility surface computed daily on a

firm level and then averaged over the quarter. We remove firms that have two digit SIC

codes between and including 60 and 69 in order to remove financial firms from our analysis.

Our measures of accounting quality are based on earnings information from I/B/E/S

database. We compute the dispersion in analyst forecast (Disp) and number of analyst

covering stock (Nanalyst) from the data set of firm characteristics in Green, Hand, and

Zhang [2017] (GHZ, henceforth).16 The list of firm characteristics in GHZ is constructed

using all firms with common shares that are listed on the AMEX, NYSE, or NASDAQ,

that have end of month value on CRSP, quarterly and annual balance sheet reporting on

COMPUSTAT and earnings information reported to the I/B//E/S data.

As the number of analysts (Nanalyst) increases, the quality of the accounting trans-

16We thank Jeremiah Green for making the SAS code to construct the data set freely available on his
website.
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parency of the firm increases since more analysts are paying attention to the earnings state-

ment of the firm and will yield a more precise estimate of firm value. As the dispersion in

analyst forecast (Disp), decreases from a high dispersion quantity to a low dispersion quan-

tity the quality of the accounting transparency of the firm increases since more is associated

with a more precise statement of the quality of accounting information.

INSERT TABLE I HERE

In Section X, Table I presents quarterly summary statistics for main variables from Jan-

uary 1997 to December 2017. Our implied volatility skewness measure equation 18 is negative

on average (−0.86) and up to the 99-th percentile. A negative value indicates that the OTM

implied volatility (IV OLLowt ) is higher than the ATM implied volatility (IV OLHight ), the

more expensive OTM options are indicated by a higher implied volatility. Similarly the

SkewQ measure is also negative on average (−0.45) and up to the 99-th percentile.The av-

erage firm leverage is 0.2 (or 20%) The Nanalyst ranges from zero to over 50 with a mean

of five and a median number of analysts of three.

INSERT TABLE II HERE

Correlations between variables are presented in Table II. The correlation between the

skewness measure equation 18 and the SkewQ measure is very high 0.7. Our implied volatility

skewness measure equation 18 shows only minor correlation with leverage, Nanalyst, and

Disp of -0.13, -0.05 and 0.08 respectively. Similarly the SkewQ measure shows only minor

correlation with leverage, Nanalyst, and Disp of -0.16, -0.29 and 0.1 respectively. There is

very high correlation between Nanalyst and size of 0.76, however, this is not a concern in

our empirical analysis since we do not directly use the level of Nanalyst and our analysis is

robust to the exclusion of size. Additionally all of our measures of accounting transparency

exhibit low correlation between one another (the highest is between Nanalyst and Disp of

-0.09).
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V. Empirical Tests

We will focus on the empirical implication of the impact of leverage on the implied

volatility skew based on the model prediction in III. We noted that as the quality of ac-

counting data declined, one should expect that the reported leverage becomes less influential

on the pricing of options. More precisely, we will test the following hypothesis for different

accounting quality measures and the impact of leverage on the volatility smile.

Main Hypothesis: a higher value of number of Nanalysts (lower value of Disp) is

associated with a higher level of transparency (lower a in our model) which our model

predicts would mean a more negative impact of leverage on skewness.17

Recall that TP predict that firms with higher leverage should exhibit more steeply neg-

atively sloped skews. Hence when regressing our skew metric on leverage, the coefficient

should be negative as long as the accounting transparency is not too low. Under our main

empirical hypothesis, we expect to see that the coefficient is larger in absolute value for firms

with greater transparency.

To measure the differential impact of leverage, based on the quality of accounting trans-

parency, on the implied volatility smile, we separate the cross-section of firms based on the

50th percentile of each accounting transparency measure each quarter of each year. We

define those firms that have low accounting transparency as those with the number of Nana-

lysts below the 50th percentile (Disp above the 50th percentile) each quarterly cross section.

Correspondingly, we define those firms that have high accounting transparency as those with

the number of Nanalysts above the 50th percentile (and Disp below the 50th percentile) each

quarterly cross section.18

We then estimate the impact of leverage on the volatility smile using quarterly Fama

and Macbeth [1973] regressions within in each subset. The resulting estimates of the impact

of leverage on skewness measure equation 18, where the measure of accounting quality is

17A more negative number is a negative number further from zero.
18In section VI we will show that all of our results are robust to using different percentile levels.
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Nanalyst (Disp), is reported in Table III (Table IV). Panel A (B) is estimated using the

firms with low accounting transparency (high accounting transparency).

INSERT TABLES III and IV HERE

The variable (and sign) of interest is leverage. In each of the tables III and IV, for panels

A and B, column 1 reports the univariate quarterly Fama and Macbeth [1973] regressions

within in each subset regressions using leverage. In columns 2 to 7, we add individual

control variables (Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol) one at a time to

the univariate regression for leverage. Additionally in each of the columns, in each panel A

and B, in the Tables III and IV we report the R-squared (R2) and average number of firms in

each quarterly cross-sectional regressions (N obs). R2, within each subset of data in Panels

A(B), range from 1.6% up to 11.01% (when including leverage and all control variables).

The average number of firms in each quarterly cross-sectional regressions total between both

subset of data in panels A(B) is roughly 1500 in column 1 to roughly 1200 in column 7.

We first look at Table III column 1 in panel A (low transparency firms) and find that the

coefficient of leverage is negative (-0.43) and statistically significant at the 1% level (t-stat

of -7.6). In the corresponding column 1 in panel B (high transparency firms), the leverage

coefficient is again negative (-0.55) and significant at the 1% level (t-stat of -13.23) and

more negative (or larger in absolute magnitude) than the coefficient of leverage in panel A.

This provides preliminary evidence that low accounting transparency implying a less marked

impact of leverage than high accounting transparency which is the main prediction of our

model.

In Table III, as we add control variables individually in columns 2 to 7 in panel A

(low transparency firms) find that the leverage coefficient remains negative and statistically

significant at the 1% level in each case. In the corresponding columns 2 to 7 in panel B (high

transparency firms), in each column the leverage coefficient remains negative and significant

at the 1% level. In column 7 in panel A (B), the leverage coefficient is -0.23 (-0.38) and

both significant at the 1% level with a t-stat of -3.84 (t-stat of -12.34) and the leverage
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coefficient is more negative than the coefficient of leverage in panel A (controlling for firm

characteristics). In each of the regression specifications, as controls are added, we continue

to see that the leverage coefficient is more negative for firms with a higher transparency

firms (Panel B) than for a lower transparency (Panel A) implying a less marked impact of

leverage for firms with a lower accounting transparency and confirms our main prediction of

our model in empirical tests.

So far we have shown that our theoretical model predictions are true using the Nanalyst,

next in Table IV (Disp) we estimate our regression specification from Table III where our

measure of accounting transparency is Disp. For each of columns 1 to 7 in panel A, where

low transparency firms are measured by high Disp, in each case find that the leverage coef-

ficient is negative and statistically significant at the 1% level. In the corresponding columns

1 to 7 in panel B, where high transparency firms are measured by low Disp, the leverage

coefficient is not only negative and statistically significant at the 1% level but is also more

negative than the corresponding coefficient of leverage in panel A (controlling for firm char-

acteristics). Taken together, Table III and Table IV provide strong evidence towards our

model’s theoretical predictions and shows that our conclusion is robust to different measures

of accounting transparency.

So our findings are consistent with low disclosure quality implying a less marked impact

of leverage on the skew. This is consistent with the situation depicted in Figure 2 and

confirms our main empirical hypothesis.

VI. Robustness Tests

In this section, we report several robustness tests to evaluate our main empirical findings

in Section V. We present our results for both measures of accounting quality using (i) an

alternative measure of implied volatility skewness, and (ii) alternative percentile levels of

the cross section of accounting transparency levels (for both measures of implied volatility
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skewness).

First, we redo our empirical tests from Tables III and IV where instead of using the

skewness measure of equation 18 as the dependent variable we use the model free option

implied skewness (SkewQ) of Bakshi et al. [2003].

INSERT TABLES V and VI HERE

Tables V and VI present our results using the SkewQ measure where the level of account-

ing transparency is measured using Nanalyst and Disp respectively. In Table V for each of

columns 1 to 7 in panel A and corresponding columns 1 to 7 of panel B we find that the

leverage coefficient is negative and significant at the 1% level and the leverage coefficient in

panel B is more negative than that in panel A in each column. Results in Table VI find the

same conclusion for Disp as an accounting transparency measure. These results confirm our

main empirical hypothesis using a different measure of implied volatility skewness as well as

different measures of accounting transparency.

As a final robustness test, we use alternative percentile levels of the cross section of

accounting transparency levels in our empirical tests in order to show that are results are

not affected by choosing the sample median as a percentile level each quarter.

INSERT TABLES VII and VIII HERE

Panel A (B) of Tables VII and VIII, show each of the seven regression models estimated

using the subset of data each quarter that is below (above) the 40th (60th) percentile level

of accounting transparency in the cross section where the level of accounting transparency

is measured using Nanalyst and Disp respectively and the dependent variable is the slope

skewness measure of equation 18. Similarly, Tables IX and X are presented with the regres-

sions estimated using the 40th (60th) percentile level of accounting transparency in the cross

section where the level of accounting transparency is measured using Nanalyst and Disp

respectively with the dependent variable being the SkewQ measure. When using Disp as the
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measure of accounting transparency in Tables VIII and X, for all seven regression models in

panels A and B leverage is significant at the 1% level. When using Nanalyst, in Tables VII

and IX, in panel A and B of columns 1 to 3 the coefficient of leverage is significant at the

1% level as well as in panel B of columns 4 to 7, whereas panel A of columns 4 to 7, the

leverage coefficient is negative and only statistically significant at the 5% level and in the

case of column 7 of Table IX significant at the 10% level.

INSERT TABLES IX and X HERE

In each of the four tables, in each of the seven regression frameworks, the leverage coef-

ficient is more negative for firms with higher transparency (Panel B) than those with lower

transparency (Panel A), after controlling for firm characteristics. So our findings confirm

our main empirical hypothesis implied by our theoretical model and show that the main

conclusion is robust across different measures of accounting transparency, a variety of firm

characteristics, different specifications of implied volatility skewness, and different cross-

sectional splits of accounting transparency.

VII. Conclusion

We have developed a model of the interaction between financial leverage, the quality of

corporate disclosure and the implied volatility skew for individual firm stock options. We

show theoretically that the impact of leverage on the skew is stronger for firms with greater

transparency and are able to provide empirical support for this prediction.

Our model provides an economically intuitive and empirically testable explanation for

differences in deviations from the Black-Scholes option pricing framework across firms. Taken

together with findings of a relationship between accounting transparency and the valuation of

corporate debt, this provides support for the modeling framework of Duffie and Lando [2001]

who link the precision of accounting information to the valuation of corporate securities.
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Our model, like the Duffie and Lando [2001], is based on the Leland [1994] model. How-

ever, interesting extensions to evaluate the role of debt maturity and / or variance risk when

taking into account accounting transparency, one could extend the underlying model by us-

ing the Leland and Toft [1996] model or in the case of stochastic asset variance, the Du,

Elkhami, and Ericsson [2019] setup. We leave such extensions to future work.
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VIII. Appendix

A. Appendix A: Proofs

We re-write equation g (u|z, y) in the following form.

g (u|z, y) =
L1

L0

× e
−(u−M1)

2

2ψ − L2

L0

× e
−(u−M2)

2

2ψ (19)

where ũ = u− ν,

M1 = ν +
(ỹσ2t+a2(z̃0+mt))

(a2+σ2t)
M2 = ν +

(ỹσ2t−a2(z̃0−mt))
(a2+σ2t)

ψ = σ2a2t
(a2+σ2t)

(20)

L0 =
(

1/
√
α/2π

)Φ
(√

αβ
)
− Φ

(√
α

(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

) (21)

L1 = e

−(a2+σ2t)
2σ2a2t

−(ỹσ2t+a2(z̃0+mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)


L2 = e

−(a2+σ2t)
2σ2a2t

−(ỹσ2t−a2(z̃0−mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)


(22)

We then compute a closed form expression for an option pricing model of Toft and Pryck

[1997] in the spirit of Duffie and Lando [2001] where the firm value is imperfectly observed.

We derive the call option pricing model as:

DLCALL =

∫ ∞
ν

TPCALL (eu, VB, C, r, δ, τ, σA, T,K, t) g (u|z, y) du

=

∫ ∞
ν

eu+(−r+m+σ2/2)(T−t)
[
Φ (−z1)− e(2m/σ2+2)(ν−u)Φ (−z2)

]
g (u|z, y) du

+

∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ2−2γ)(ν−u)Φ (−z4)

]
g (u|z, y) du

−
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ2)(ν−u)Φ (−z6)

]
g (u|z, y) du (23)
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where

−z1 =
−y∗+(m(T−t)+u+σ2(T−t))

σ
√
T−t −z2 =

−y∗+(m(T−t)−u+2ν+σ2(T−t))
σ
√
T−t

−z3 =
−y∗+(m(T−t)+u−γσ2(T−t))

σ
√
T−t −z4 =

−y∗+(m(T−t)−u+2ν−γσ2(T−t))
σ
√
T−t

−z5 = −y∗+(m(T−t)+u)

σ
√
T−t −z6 = −y∗+(m(T−t)−u+2ν)

σ
√
T−t

(24)

To compute the integral in equation 23, note that equation 19 is essentially a difference

in the Normally distributed random variable probability distribution functions (PDF) being

integrated over the TP option pricing formula, which is a function of Normal distributed

cumulative distribution functions (CDFS). As such the end product will be an integral, over

the range of either (−∞, ν) for a put or (ν,∞) for a call, of the product of a Normally dis-

tributed CDF and the Normally PDF. To compute this integral we make use of the equations

10, 010.1 and 10, 010.4 in Owen [1980] (stated in Lemmas VIII.B and VIII.B respectively)

which allows for a closed form expression of the integral. The result itself is then just a

function of the Standard Bivariate Normal Cumulative Probability Distribution Function.

Let A and B are real valued constants and Z ∼ N (0, 1), with probability (cumulative)

distribution function denoted φ(z) (Φ(z)) respectively then

∫ k

h

Φ(A+Bx)φ(x)dx =

∫ A/
√

1+B2

−∞
φ(x)Φ

(
k
√
B2 + 1 +Bx

)
dx

−
∫ A/

√
1+B2

−∞
φ(x)Φ

(
h
√
B2 + 1 +Bx

)
dx

= Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(25)

Taking k −→∞ in equation 54 yields:

∫ ∞
h

Φ(A+Bx)φ(x)dx = lim
k→∞

Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
= Φ

(
A√

1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(26)
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B. Appendix B: Risk-Neutral Skewness

For each stock trading day we estimate the model free option implied skewness (SkewQ)

of Bakshi et al. [2003] in equation 27. We denote St the underlying stock price at time t and

C(t, T,K) (P (t, T,K)) as the respective call (put) option prices with maturity date T and

exercise strike price of time K.

SkewQ (t, T ) =
er(T−t) − 3µ (t, T ) er(T−t)V (t, T ) + 2 (µ (t, T ))3(

er(T−t)V (t, T )− (µ (t, T ))2)3/2
(27)

where denoted below, µ (t, T ) is the risk neutral log return of the stock price from time t to

T ,V (t, T ), W (t, T ), and X (t, T ) are respectively the price of volatility, cubic, and quadratic

contracts.

µ (t, T ) = er(T−t) − 1− er(T−t)

2
V (t, T )− er(T−t)

6
W (t, T )− er(T−t)

24
X (t, T )

V (t, T ) =

∫ ∞
St

2
(

1− ln
(
K
St

))
K2

C (t, T,K) dK +

∫ St

0

2
(
1 + ln

(
St
K

))
K2

P (t, T,K) dK

W (t, T ) =

∫ ∞
St

6 ln
(
K
St

)
− 3

(
ln
(
K
St

))2

K2
C (t, T,K) dK −

∫ St

0

6 ln
(
St
K

)
+ 3

(
ln
(
St
K

))2

K2
P (t, T,K) dK

X (t, T ) =

∫ ∞
St

12
(

ln
(
K
St

))2

− 4
(

ln
(
K
St

))3

K2
C (t, T,K) dK

+

∫ St

0

12
(
ln
(
St
K

))2
+ 4

(
ln
(
St
K

))3

K2
P (t, T,K) dK (28)

We compute the skew in equation 27 for every single stock for every trading day using

all remaining option contracts for a stock on that trading day subject to the following data

filters. We remove observations with option bid quotes that are zero, observations where the

bid quote exceeds the ask quote. We remove all option contracts with zero open interest

as they are unlikely to contain any important information. We remove options who have

maturities longer than 365 since they are likely to have less trading activity. Option prices
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are then computed as the midpoint of the option bid and ask prices where the midpoints are

required to be at least 0.5.

Additionally, we make sure that the no-arbitrage condition holds for both calls and puts.

Specifically we remove observations where: (1.) the ask quotes for call options is less than

the difference between the underlying stock price and the strike price as well as (2.) the ask

quotes from put options is less than the difference between the strike price and the underlying

stock price. Subsequently we only keep out-of-the-money puts and calls. After applying all

filters and conditions we require that in order to estimate the skew we require that there are

a minimum of two out-of-the-money puts and calls each trading data.

The resulting skew measure is then computed the average of the skew measure across

option maturities each trading day and then averaged across all trading dates with available

data within a calendar quarter which results in our final quarterly skew measure. We use

trapezoidal approach when numerically approximating integrals.
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IX. Figures

Figure 1. Impact of Leverage Ratio on Implied Volatility Smile For Different Accounting Transparency
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Figure 2. Impact of Accounting Transparency on Implied Volatility Smile For Different Leverage Ratios
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X. Tables

Table I: Summary Statistics

Percentiles
Variable Name N Mean Std. Dev. 25th Median 75th
SkewQ 85, 742 −0.45 0.32 −0.62 −0.4 −0.22
Slope Skew 139, 123 −0.86 0.81 −1.13 −0.68 −0.37
Disp 181, 540 0.16 0.41 0.02 0.04 0.11
Nanalyst 290, 063 5.54 6.79 0.00 3.00 8.00
Leverage 317, 728 0.2 0.22 0.01 0.12 0.32
Momentum 307, 111 0.06 0.43 −0.18 0.02 0.22
M/B 319, 606 3.69 5.68 1.22 2.06 3.77
Beta 272, 691 1.52 1.69 0.49 1.26 2.28
Size 311, 655 19.48 2.17 17.9 19.42 20.94
Idio Skew 312, 269 0.4 1.32 −0.17 0.33 0.92
Atm Ivol 133, 414 0.49 0.24 0.32 0.43 0.61

Notes: The table presents quarterly summary statistics for main variables. We compute the dispersion in analyst forecast (Disp) and number of analyst covering
stock (Nanalyst) from I/B/E/S quarterly earnings data. M/B is the ratio of market and book equity computed using quarterly data from COMPUSTAT.
Leverage is the book value of debt divided by sum of debt and market value of equity using quarterly data from COMPUSTAT. M/B and Leverage are lagged
by one quarter in order to account for the timing of the release of accounting statements. Size is the log of the product of the stock price and shares outstanding
(times 1000) from CRSP monthly stock files (of firms with share codes 10 and 11 common shares). Momentum is the past 6 month cumulative monthly stock
returns from CRSP. Beta is the stock beta with the market estimated from 36 months rolling regressions adjusted by 3 months of lags for asynchronous trading
as per the Dimson [1979] adjustment. Idio Skew is the idiosyncratic skewness of daily returns estimated quarterly using daily CRSP stock returns. Atm Ivol is
average of call and put contract implied volatility with |∆| = 0.5 and 30 days to maturity, and using OptionMetrics Volatility surface. SkewQ, Slope Skew and
Atm Ivol are computed daily on a firm level and then averaged over the quarter. The sample period is quarterly observations from January 1997 to December
2017.
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Table II: Correlations

Correlations
Variable Names SkewQ Slope Skew Disp Nanalyst Leverage Momentum M/B Beta Size Idio Skew Atm Ivol
SkewQ 1.00 0.69 0.10 −0.29 −0.16 0.10 0.08 0.21 −0.59 0.03 0.66
Slope Skew 0.69 1.00 0.08 −0.05 −0.13 0.03 0.08 0.17 −0.24 5e− 3 0.43
Disp 0.10 0.08 1.00 −0.09 0.07 −0.05 −0.02 0.09 −0.18 0.02 0.20
Nanalyst −0.29 −0.05 −0.09 1.00 −0.05 0.01 0.09 −0.10 0.76 −0.11 −0.30
Leverage −0.16 −0.13 0.07 −0.05 1.00 −0.05 −0.18 −0.06 −0.08 0.02 −0.07
Momentum 0.10 0.03 −0.05 0.01 −0.05 1.00 0.08 0.01 0.16 0.05 −0.13
M/B 0.08 0.08 −0.02 0.09 −0.18 0.08 1.00 0.08 0.12 2e− 3 0.09
Beta 0.21 0.17 0.09 −0.10 −0.06 0.01 0.08 1.00 −0.16 0.05 0.30
Size −0.59 −0.24 −0.18 0.76 −0.08 0.16 0.12 −0.16 1.00 −0.12 −0.59
Idio Skew 0.03 5e− 3 0.02 −0.11 0.02 0.05 2e− 3 0.05 −0.12 1.00 0.03
Atm Ivol 0.66 0.43 0.20 −0.30 −0.07 −0.13 0.09 0.30 −0.59 0.03 1.00

Notes: Table contains pooled correlations between all control and accounting quality measures from Table I. The sample period is quarterly observations from
January 1997 to December 2017.
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Table III: FM Regression with Nanalyst as Accounting Transparency

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.43 −0.43 −0.4 −0.34 −0.3 −0.3 −0.23

(−7.6) (−7.84) (−6.91) (−5.76) (−5.22) (−5.15) (−3.84)
Momentum 0.04 0.06 0.12 0.1 0.11 0.07

(1.29) (2.49) (4.53) (4.14) (4.51) (2.46)
Beta 0.07 0.06 0.06 0.06 0.03

(10.32) (8.71) (8.73) (8.77) (3.54)
Size −0.11 −0.11 −0.11 0.01

(−8.87) (−8.83) (−8.85) (0.67)
M/B 0.01 0.01 2.3e− 3

(8.33) (8.43) (1.46)
Idio Skew −0.01 −0.01

(−1.86) (−2.35)
Atm Ivol 1.19

(16.05)
R2 1.61 2.54 4.07 6.13 6.43 6.69 11.01
N obs 349.00 349.00 329.00 329.00 329.00 329.00 281.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.55 −0.56 −0.55 −0.5 −0.47 −0.47 −0.38

(−13.23) (−14.32) (−11.43) (−11.82) (−12.03) (−12.08) (−12.34)
Momentum −0.04 −0.04 0.05 0.04 0.04 0.11

(−0.76) (−0.85) (1.63) (1.28) (1.31) (4.6)
Beta 0.12 0.1 0.09 0.09 0.03

(7.39) (7.07) (7.01) (7.04) (3.57)
Size −0.1 −0.1 −0.1 −0.5e− 3

(−9.79) (−9.99) (−9.99) (−0.07)
M/B 0.01 0.01 −0.4e− 3

(5.31) (5.31) (−0.66)
Idio Skew −2.6e− 3 −3.7e− 3

(−1.48) (−1.97)
Atm Ivol 1.89

(11.4)
R2 3.26 5.2 9.55 15.53 15.76 15.8 25.49
N obs 1232.00 1232.00 1172.00 1172.00 1172.00 1172.00 988.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with listed equity options. Panel A
(B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below (above) 50th percentile level of Accounting Transparency.
The variable (and sign) of interest is Leverage in regression (1). Control variables are added individually from regressions (2) to (7): Momentum, Beta, Size,
M/B, Idio Skew, and Atm Ivol. R-squared (R2) and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using
Newey and West [1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew.
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Table IV: FM Regression with Disp as Accounting Transparency

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.43 −0.43 −0.4 −0.38 −0.35 −0.35 −0.28

(−10.47) (−10.83) (−10.4) (−10.51) (−9.68) (−9.65) (−11.18)
Momentum 0.03 0.04 0.05 0.04 0.04 0.07

(1.04) (1.8) (2.38) (1.64) (1.58) (3.12)
Beta 0.06 0.05 0.05 0.05 0.02

(10.22) (9.38) (9.15) (9.07) (4.21)
Size −0.02 −0.02 −0.02 0.05

(−4.1) (−4.42) (−4.43) (6)
M/B 0.01 0.01 2.3e− 3

(7.79) (7.78) (3.09)
Idio Skew 1.3e− 3 0.4e− 3

(0.6) (0.14)
Atm Ivol 1.2

(13.85)
R2 3.42 4.33 5.78 6.67 7.14 7.18 13.69
N obs 669.00 669.00 630.00 630.00 630.00 630.00 519.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.81 −0.8 −0.76 −0.7 −0.66 −0.66 −0.43

(−13.27) (−13.43) (−11.08) (−10.92) (−11.17) (−11.2) (−8.34)
Momentum 0.07 0.08 0.11 0.1 0.11 0.1

(1.17) (2.03) (3.27) (3.08) (3.24) (4.07)
Beta 0.14 0.11 0.11 0.11 0.04

(7.3) (7.01) (7.03) (7.06) (3.72)
Size −0.11 −0.11 −0.11 −0.01

(−10.48) (−10.94) (−10.93) (−1.5)
M/B 0.01 0.01 1.6e− 3

(4.88) (4.85) (1.68)
Idio Skew −0.01 −4.3e− 3

(−2.46) (−2.03)
Atm Ivol 2.1

(12)
R2 4.36 6.1 10.01 16.71 16.85 16.9 24.44
N obs 805.00 805.00 772.00 772.00 772.00 772.00 667.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with listed equity options. Panel A
(B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below (above) 50th percentile level of Accounting Transparency.
The variable (and sign) of interest is Leverage in regression (1). Control variables are added individually from regressions (2) to (7): Momentum, Beta, Size,
M/B, Idio Skew, and Atm Ivol. R-squared (R2) and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using
Newey and West [1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew.
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Table V: FM Regression with Nanalyst as Accounting Transparency

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.18 −0.17 −0.16 −0.1 −0.09 −0.09 −0.08

(−8.88) (−10.62) (−10.33) (−6.34) (−5.31) (−5.59) (−4.75)
Momentum 0.04 0.04 0.06 0.06 0.06 0.03

(2.14) (3.07) (4.38) (4.77) (4.83) (2.73)
Beta 0.03 0.02 0.02 0.02 3.9e− 3

(9.09) (7.21) (6.74) (6.51) (1.57)
Size −0.11 −0.11 −0.11 −0.06

(−17.34) (−17.73) (−17.17) (−11.48)
M/B 0.1e− 3 0e− 3 −2.9e− 3

(0.08) (0e− 3) (−2.55)
Idio Skew 2.2e− 3 4.7e− 3

(1.27) (1.94)
Atm Ivol 0.5

(11.51)
R2 2.24 4.87 7.98 26.73 28.1 28.51 36.02
N obs 146.00 146.00 138.00 138.00 138.00 138.00 123.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.23 −0.23 −0.22 −0.17 −0.17 −0.17 −0.13

(−10.74) (−11.93) (−11.88) (−12.45) (−12.12) (−12.26) (−12.22)
Momentum −0.02 −0.01 0.02 0.02 0.02 0.02

(−0.63) (−0.64) (1.61) (1.52) (1.46) (2.55)
Beta 0.06 0.03 0.03 0.03 3.9e− 3

(9.08) (9.24) (9.17) (9.11) (3.08)
Size −0.1 −0.1 −0.1 −0.06

(−14.5) (−14.58) (−14.59) (−13.28)
M/B 0.7e− 3 0.7e− 3 −1.8e− 3

(1.73) (1.82) (−7.11)
Idio Skew 0.4e− 3 0.5e− 3

(0.4) (0.64)
Atm Ivol 0.88

(12.52)
R2 3.42 6.06 11.71 40.89 40.99 41.1 51.93
N obs 828.00 828.00 790.00 790.00 790.00 790.00 679.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with listed equity options. Panel A
(B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below (above) 50th percentile level of Accounting Transparency.
The variable (and sign) of interest is Leverage in regression (1). Control variables are added individually from regressions (2) to (7): Momentum, Beta, Size,
M/B, Idio Skew, and Atm Ivol. R-squared (R2) and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using
Newey and West [1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the SkewQ.
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Table VI: FM Regression with Disp as Accounting Transparency

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.25 −0.25 −0.23 −0.16 −0.15 −0.15 −0.12

(−9.21) (−9.65) (−10) (−8.32) (−7.14) (−7.14) (−9)
Momentum 0.01 0.01 0.03 0.02 0.02 0.02

(0.36) (0.94) (2.42) (1.91) (1.89) (3.1)
Beta 0.03 0.02 0.02 0.02 1.4e− 3

(10.83) (8.78) (8.62) (8.53) (1.01)
Size −0.07 −0.07 −0.07 −0.04

(−15.78) (−15.81) (−15.71) (−12.4)
M/B 2.4e− 3 2.4e− 3 −0.8e− 3

(5.32) (5.54) (−2.4)
Idio Skew 1.3e− 3 0.7e− 3

(1.03) (0.55)
Atm Ivol 0.69

(14.43)
R2 7.18 9.06 12.15 31.74 32.22 32.32 44.41
N obs 374.00 374.00 352.00 352.00 352.00 352.00 299.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.32 −0.32 −0.31 −0.24 −0.23 −0.23 −0.15

(−15.81) (−15.83) (−12.6) (−15.63) (−15.46) (−15.45) (−13.2)
Momentum 0.02 0.03 0.03 0.03 0.03 0.02

(0.79) (1.79) (2.08) (2.15) (2.11) (1.65)
Beta 0.06 0.03 0.03 0.03 4.4e− 3

(8.35) (9.09) (9.21) (9.18) (2.79)
Size −0.11 −0.11 −0.11 −0.07

(−15.15) (−15.33) (−15.37) (−14.02)
M/B −0.3e− 3 −0.3e− 3 −1.6e− 3

(−0.77) (−0.79) (−4.55)
Idio Skew −0.8e− 3 0.3e− 3

(−0.67) (0.28)
Atm Ivol 0.93

(10.74)
R2 3.67 6.11 10.93 43.16 43.25 43.39 52.04
N obs 559.00 558.00 537.00 537.00 537.00 537.00 469.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with listed equity options. Panel A
(B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below (above) 50th percentile level of Accounting Transparency.
The variable (and sign) of interest is Leverage in regression (1). Control variables are added individually from regressions (2) to (7): Momentum, Beta, Size,
M/B, Idio Skew, and Atm Ivol. R-squared (R2) and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using
Newey and West [1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the SkewQ.
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Internet Appendix

Additional Tables

Table VII: FM Regression with Nanalyst as Accounting Transparency

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.47 −0.48 −0.43 −0.36 −0.32 −0.32 −0.21

(−5.36) (−5.5) (−4.9) (−3.96) (−3.52) (−3.48) (−2.29)
Momentum 0.01 0.04 0.09 0.07 0.08 0.03

(0.14) (1.19) (2.96) (2.25) (2.61) (0.96)
Beta 0.07 0.06 0.05 0.06 0.02

(9.94) (8.11) (7.82) (7.94) (2.88)
Size −0.12 −0.12 −0.12 4.7e− 3

(−7.6) (−7.51) (−7.44) (0.27)
M/B 0.01 0.01 3.3e− 3

(7.26) (7.44) (1.47)
Idio Skew −0.02 −0.02

(−3.03) (−2.63)
Atm Ivol 1.28

(12.43)
R2 2.1 2.89 4.39 6.82 7.4 7.79 12
N obs 218.00 217.00 205.00 205.00 205.00 205.00 175.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.55 −0.56 −0.55 −0.52 −0.49 −0.49 −0.4

(−12.4) (−13.71) (−10.86) (−11.53) (−11.66) (−11.73) (−11.89)
Momentum −0.07 −0.06 0.04 0.03 0.03 0.12

(−1.14) (−1.35) (1.12) (0.81) (0.84) (4.57)
Beta 0.13 0.1 0.1 0.1 0.03

(7.18) (6.96) (6.92) (6.96) (3.51)
Size −0.11 −0.11 −0.11 −0.1e− 3

(−9.89) (−10.05) (−10.05) (−0.01)
M/B 0.01 0.01 −0.9e− 3

(5.11) (5.12) (−1.42)
Idio Skew −2e− 3 −3.5e− 3

(−1.05) (−1.9)
Atm Ivol 2.09

(10.6)
R2 3.34 5.54 10.48 17.24 17.45 17.5 28.66
N obs 1081.00 1080.00 1031.00 1031.00 1031.00 1031.00 867.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with listed equity options. Panel
A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below (above) 40th (60th) percentile level of Accounting
Transparency. The variable (and sign) of interest is Leverage in regression (1). Control variables are added individually from regressions (2) to (7): Momentum,
Beta, Size, M/B, Idio Skew, and Atm Ivol. R-squared (R2) and quarterly number of observations (N obs) are computed in each regression. t-statistics are
computed using Newey and West [1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew.
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Table VIII: FM Regression with Disp as Accounting Transparency

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.39 −0.39 −0.36 −0.35 −0.32 −0.32 −0.27

(−9.58) (−9.91) (−9.72) (−9.91) (−9.02) (−9.01) (−10.53)
Momentum 0.03 0.05 0.05 0.04 0.04 0.06

(1.25) (2.13) (2.37) (1.67) (1.63) (2.65)
Beta 0.05 0.05 0.04 0.04 0.02

(11.29) (10.15) (9.96) (9.81) (4.47)
Size −0.01 −0.01 −0.01 0.05

(−2.04) (−2.34) (−2.37) (6.57)
M/B 0.01 0.01 1.8e− 3

(7.64) (7.61) (2.28)
Idio Skew 0.3e− 3 −1.8e− 3

(0.13) (−0.63)
Atm Ivol 1.14

(13.15)
R2 3.33 4.2 5.32 5.99 6.4 6.47 12.75
N obs 518.00 518.00 487.00 487.00 487.00 487.00 399.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.83 −0.82 −0.77 −0.72 −0.68 −0.68 −0.43

(−12.3) (−12.24) (−10.45) (−10.55) (−10.58) (−10.63) (−7.55)
Momentum 0.07 0.08 0.1 0.1 0.1 0.09

(1.16) (1.79) (2.78) (2.59) (2.79) (3.22)
Beta 0.15 0.11 0.11 0.11 0.04

(7.22) (6.78) (6.8) (6.82) (3.52)
Size −0.11 −0.11 −0.11 −0.01

(−10.22) (−10.8) (−10.77) (−1.32)
M/B 0.01 0.01 2.1e− 3

(4.75) (4.73) (2.05)
Idio Skew −4.9e− 3 −3.5e− 3

(−2.14) (−1.49)
Atm Ivol 2.31

(11.63)
R2 4.4 6.17 10.25 17.54 17.7 17.75 25.67
N obs 646.00 646.00 621.00 621.00 621.00 621.00 537.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with listed equity options. Panel
A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below (above) 40th (60th) percentile level of Accounting
Transparency. The variable (and sign) of interest is Leverage in regression (1). Control variables are added individually from regressions (2) to (7): Momentum,
Beta, Size, M/B, Idio Skew, and Atm Ivol. R-squared (R2) and quarterly number of observations (N obs) are computed in each regression. t-statistics are
computed using Newey and West [1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew.
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Table IX: FM Regression with Nanalyst as Accounting Transparency

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.16 −0.15 −0.14 −0.08 −0.06 −0.06 −0.06

(−4.89) (−5.02) (−5.22) (−3.27) (−2.28) (−2.46) (−2.22)
Momentum 0.02 0.03 0.04 0.04 0.04 0.02

(0.98) (1.25) (2.12) (2.46) (2.5) (1.23)
Beta 0.03 0.02 0.02 0.02 1.2e− 3

(8.26) (6.63) (5.94) (5.27) (0.33)
Size −0.11 −0.11 −0.11 −0.07

(−18.25) (−18.22) (−17.61) (−9.19)
M/B 0.9e− 3 0.9e− 3 −4.4e− 3

(0.66) (0.64) (−3.06)
Idio Skew 1.1e− 3 3.6e− 3

(0.46) (0.95)
Atm Ivol 0.48

(9.01)
R2 1.57 5.07 8.52 28.23 28.66 29.18 36.69
N obs 86.00 86.00 81.00 81.00 81.00 81.00 72.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.22 −0.22 −0.21 −0.18 −0.17 −0.17 −0.14

(−9.78) (−11.06) (−11.04) (−11.9) (−11.64) (−11.77) (−11.79)
Momentum −0.04 −0.03 0.02 0.01 0.01 0.02

(−1.25) (−1.4) (1.1) (1.01) (0.96) (2.27)
Beta 0.06 0.04 0.04 0.04 3.8e− 3

(8.9) (8.8) (8.75) (8.71) (2.77)
Size −0.1 −0.1 −0.1 −0.06

(−14.43) (−14.52) (−14.54) (−13.57)
M/B 0.6e− 3 0.7e− 3 −1.7e− 3

(1.81) (1.91) (−7.12)
Idio Skew 0.1e− 3 0.3e− 3

(0.11) (0.33)
Atm Ivol 0.93

(12.18)
R2 3.2 5.9 11.65 40.75 40.83 40.95 52.21
N obs 753.00 753.00 720.00 720.00 720.00 720.00 618.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with listed equity options. Panel
A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below (above) 40th (60th) percentile level of Accounting
Transparency. The variable (and sign) of interest is Leverage in regression (1). Control variables are added individually from regressions (2) to (7): Momentum,
Beta, Size, M/B, Idio Skew, and Atm Ivol. R-squared (R2) and quarterly number of observations (N obs) are computed in each regression. t-statistics are
computed using Newey and West [1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the SkewQ.
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Table X: FM Regression with Disp as Accounting Transparency

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.25 −0.24 −0.22 −0.16 −0.14 −0.14 −0.11

(−8.65) (−9.02) (−9.14) (−7.56) (−6.43) (−6.46) (−8.25)
Momentum 0.01 0.01 0.03 0.02 0.02 0.02

(0.61) (1.19) (2.59) (1.99) (1.93) (2.59)
Beta 0.03 0.02 0.02 0.02 0.7e− 3

(10.68) (8.22) (8.02) (7.95) (0.45)
Size −0.07 −0.07 −0.07 −0.04

(−14.93) (−15) (−14.89) (−11.49)
M/B 2.4e− 3 2.5e− 3 −0.6e− 3

(4.65) (4.79) (−1.6)
Idio Skew 1.3e− 3 1.1e− 3

(0.96) (0.81)
Atm Ivol 0.65

(14.47)
R2 7.58 9.29 12.22 30.23 30.8 30.89 42.85
N obs 281.00 281.00 264.00 264.00 264.00 264.00 224.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.33 −0.33 −0.31 −0.24 −0.24 −0.24 −0.16

(−15.33) (−15.28) (−12.07) (−16.03) (−15.69) (−15.64) (−13.38)
Momentum 0.03 0.04 0.02 0.02 0.02 0.01

(0.91) (1.77) (1.46) (1.51) (1.45) (0.71)
Beta 0.07 0.03 0.03 0.03 4.5e− 3

(8.26) (8.87) (9.03) (9.01) (2.57)
Size −0.11 −0.11 −0.11 −0.07

(−15.05) (−15.24) (−15.28) (−14.1)
M/B −0.3e− 3 −0.3e− 3 −1.4e− 3

(−0.66) (−0.69) (−3.79)
Idio Skew −0.1e− 3 1e− 3

(−0.08) (0.95)
Atm Ivol 0.97

(9.97)
R2 3.53 5.88 10.99 44.09 44.16 44.28 52.44
N obs 455.00 455.00 439.00 439.00 439.00 439.00 383.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with listed equity options. Panel
A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below (above) 40th (60th) percentile level of Accounting
Transparency. The variable (and sign) of interest is Leverage in regression (1). Control variables are added individually from regressions (2) to (7): Momentum,
Beta, Size, M/B, Idio Skew, and Atm Ivol. R-squared (R2) and quarterly number of observations (N obs) are computed in each regression. t-statistics are
computed using Newey and West [1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the SkewQ.
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Proofs

We re-write equation g (u|z, y) in the following form.

g (u|z, y) =
L1

L0

× e
−(u−M1)

2

2ψ − L2

L0

× e
−(u−M2)

2

2ψ (29)

where ũ = u− ν,

M1 = ν +
(ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)

M2 = ν +
(ỹσ2t− a2(z̃0 −mt))

(a2 + σ2t)

ψ =
σ2a2t

(a2 + σ2t)

L0 =
(

1/
√
α/2π

)Φ
(√

αβ
)
− Φ

(√
α

(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

)
L1 = e

−(a2+σ2t)
2σ2a2t

−(ỹσ2t+a2(z̃0+mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)



L2 = e

−(a2+σ2t)
2σ2a2t

−(ỹσ2t−a2(z̃0−mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)


(30)

We then compute a closed form expression for an option pricing model of Toft and Pryck [1997] in the spirit of Duffie and
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Lando [2001] where the firm value is imperfectly observed. We derive the call option pricing model as:

DLCALL =

∫ ∞
ν

TPCALL (eu, VB, C, r, δ, τ, σA, T,K, t) g (u|z, y) du

=

∫ ∞
ν

eu+(−r+m+σ2/2)(T−t)
[
Φ (−z1)− e(2m/σ2+2)(ν−u)Φ (−z2)

]
g (u|z, y) du

+

∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ2−2γ)(ν−u)Φ (−z4)

]
g (u|z, y) du

−
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ2)(ν−u)Φ (−z6)

]
g (u|z, y) du (31)

where

−z1 =
−y∗+(m(T−t)+u+σ2(T−t))

σ
√
T−t −z2 =

−y∗+(m(T−t)−u+2ν+σ2(T−t))
σ
√
T−t

−z3 =
−y∗+(m(T−t)+u−γσ2(T−t))

σ
√
T−t −z4 =

−y∗+(m(T−t)−u+2ν−γσ2(T−t))
σ
√
T−t

−z5 = −y∗+(m(T−t)+u)

σ
√
T−t −z6 = −y∗+(m(T−t)−u+2ν)

σ
√
T−t

(32)

To compute the integral in equation 23, note that equation 19 is essentially a difference in the Normally distributed random
variable probability distribution functions (PDF) being integrated over the TP option pricing formula, which is a function
of Normal distributed cumulative distribution functions (CDFS). As such the end product will be an integral, over the range
of either (−∞, ν) for a put or (ν,∞) for a call, of the product of a Normally distributed CDF and the Normally PDF. To
compute this integral we make use of the equations 10, 010.1 and 10, 010.4 in Owen [1980] (stated in Lemmas VIII.B and VIII.B
respectively) which allows for a closed form expression of the integral. The result itself is then just a function of the Bivariate
Normally distributed cumulative probability distribution function.

Let A and B are real valued constants and Z ∼ N (0, 1), with probability (cumulative) distribution function denoted φ(z)
(Φ(z)) respectively then ∫ ν

−∞
Φ(A+Bz)φ(z)dz = Φ2

(
A√

1 +B2
, ν;

−B√
1 +B2

)
(33)

where Φ2 (z1, z2; ρ) is the cumulative bivariate normal distribution of two joint random variables Z1 and Z2 with correlation ρ.
Let A and B are real valued constants and Z ∼ N (0, 1), with probability (cumulative) distribution function denoted φ(z)
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(Φ(z)) respectively then∫ k

h

Φ(A+Bx)φ(x)dx =

∫ A/
√

1+B2

−∞
φ(x)Φ

(
k
√
B2 + 1 +Bx

)
dx

−
∫ A/

√
1+B2

−∞
φ(x)Φ

(
h
√
B2 + 1 +Bx

)
dx

= Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(34)

Taking k −→∞ in equation 54 yields:∫ ∞
h

Φ(A+Bx)φ(x)dx = lim
k→∞

Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
= Φ

(
A√

1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(35)

In order to solve for our option pricing model with incomplete accounting information, given by Ht, in closed form, the
function g (u|y, z0, t) can be re-written as a difference of Normal distribution probability density functions with different means
and variances in the general form (see appendix for details of derivation and notation):

g (u|z0, y) =
L1

L0

× e
−(u−M1)

2

2ψ − L2

L0

× e
−(u−M2)

2

2ψ (36)

Our formula for Ht involves the integral of the product of the TP option pricing formula (denoted ht (u)) and the density
function g (u|y, z0, t). Expanding the product results in computing twelve integrals of the form in equation 17 (see Owen [1980]).
The resulting sum of the twelve integrals results in a closed for solution, up to Bivariate Normal probability function, of the
expression Ht.
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Next we apply the framework of Duffie and Lando [2001] to the above call option option pricing formulas above:

g (u|z, y) =

√
α/(2π)

[
1− e(

−2z̃0ũ

σ2t
)
]
e

(
−(ỹ−ũ)2

2a2

)
e

(
−(ũ−z̃0−mt)

2

2σ2t

)

Φ (
√
αβ)− Φ

(√
α
(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

) (37)

where
z̃0 = z0 − ν α = σ2t+a2

a2σ2t

ũ = u− ν β = σ2tỹ+a2(z̃0+mt)
σ2t+a2

ỹ = y − ν η = a2σ2t(ỹ−(z̃0+mt))2

(σ2t+a2)2

(38)

The denominator of equation 37 is a constant in u since it does not depend on u whereas the numerator of equation 37 can
be broken down (working in the exponential term) as:

σ2t (ỹ − ũ)2 + a2 (ũ− z̃0 −mt)2

= σ2t
(
ỹ2 − 2ỹũ+ ũ2

)
+ a2

(
ũ2 − 2ũ (z̃0 +mt) + (z̃0 +mt)2)

=
(
a2 + σ2t

)
ũ2 − 2ũ

(
ỹσ2t+ a2(z̃0 +mt)

)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)

=
(
a2 + σ2t

) [
ũ2 − 2ũ

(ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)
+

(
(ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)

)2
]
− (ỹσ2t+ a2(z̃0 +mt))

2

(a2 + σ2t)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)

=
(
a2 + σ2t

) [
ũ− (ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)

]2

− (ỹσ2t+ a2(z̃0 +mt))
2

(a2 + σ2t)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2) (39)

This results in the simplified expression of the second part of the numerator:

e

(
−σ2t(ỹ−ũ)2

2a2σ2t
−a

2(ũ−z̃0−mt)
2

2a2σ2t

)

= e−
(a2+σ2t)

ũ−(ỹσ2t+a2(z̃0+mt))
(a2+σ2t)


2

−
(ỹσ2t+a2(z̃0+mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)

2a2σ2t (40)

We then combine the intermediate step in equation 40 to obtain the first part of the numerator in equation 37 (working on
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the terms in the exponentials):

4a2z̃0ũ+
(
a2 + σ2t

)
ũ2 − 2ũ

(
ỹσ2t+ a2(z̃0 +mt)

)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)

=
(
a2 + σ2t

)
ũ2 − 2ũ

(
ỹσ2t+ a2(z̃0 +mt)− 2a2z̃0

)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)

=
(
a2 + σ2t

)
ũ2 − 2ũ

(
ỹσ2t− a2(z̃0 −mt)

)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)

=
(
a2 + σ2t

) [
ũ2 − 2ũ

(ỹσ2t− a2(z̃0 −mt))
(a2 + σ2t)

+

(
(ỹσ2t− a2(z̃0 −mt))

(a2 + σ2t)

)2
]
− (ỹσ2t− a2(z̃0 −mt))2

(α2 + σ2t)
+
(
ỹ2σ2t+ α2 (z̃0 +mt)2)

=
(
a2 + σ2t

) [
ũ− (ỹσ2t− a2(z̃0 −mt))

(a2 + σ2t)

]2

− (ỹσ2t− a2(z̃0 −mt))2

(a2 + σ2t)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2) (41)

Which results in the following exponential term:

= e

−

(a2+σ2t)

ũ−(ỹσ2t−a2(z̃0−mt))
(a2+σ2t)


2

−
(ỹσ2t−a2(z̃0−mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)


2a2σ2t (42)

We can then re-write the numerator of equation 37 as the difference between equations 40 and 42, hence:

[
1− e(

−2z̃0ũ

σ2t
)
]
e

(
−(ỹ−ũ)2

2a2

)
e

(
−(ũ−z̃0−mt)

2

2σ2t

)
= e−

(a2+σ2t)

ũ−(ỹσ2t+a2(z̃0+mt))
(a2+σ2t)


2

−
(ỹσ2t+a2(z̃0+mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)

2a2σ2t

− e

−

(a2+σ2t)

ũ−(ỹσ2t−a2(z̃0−mt))
(a2+σ2t)


2

−
(ỹσ2t−a2(z̃0−mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)


2a2σ2t (43)
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we can then re-write equation 37 as

g (u|z, y) =
e−

(a2+σ2t)

ũ−(ỹσ2t+a2(z̃0+mt))
(a2+σ2t)


2

−
(ỹσ2t+a2(z̃0+mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)


2a2σ2t

Φ (
√
αβ)− Φ

(√
α
(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

) − e

−

(a2+σ2t)

ũ−(ỹσ2t−a2(z̃0−mt))
(a2+σ2t)


2

−
(ỹσ2t−a2(z̃0−mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)


2a2σ2t

Φ (
√
αβ)− Φ

(√
α
(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

)
(44)

We then denote the following constants, which are not a function of ũ to simplify the notation of equation 44

L0 =
(

1/
√
α/2π

)Φ
(√

αβ
)
− Φ

(√
α

(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

) (45)

L1 = e

−(a2+σ2t)
2σ2a2t

−(ỹσ2t+a2(z̃0+mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)


L2 = e

−(a2+σ2t)
2σ2a2t

−(ỹσ2t−a2(z̃0−mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)

 (46)

which results in

g (u|z, y) =
L1

L0

× e
−[u−M1]

2

2ψ − L2

L0

× e
−[u−M2]

2

2ψ (47)

where ũ = u− ν,

M1 = ν +
(ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)

M2 = ν +
(ỹσ2t− a2(z̃0 −mt))

(a2 + σ2t)

ψ =
σ2a2t

(a2 + σ2t)
(48)

We then compute, using equation 44 to compute a closed form expression for an option pricing model of Toft and Pryck
[1997] in the spirit of Duffie and Lando [2001] where the firm value is imperfectly observed. We derive the call option pricing
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model as:

DLCALL =

∫ ∞
ν

TPCALL (eu, VB, C, r, δ, τ, σA, T,K, t) g (u|z, y) du

=

∫ ∞
ν

eu+(−r+m+σ2/2)(T−t)
[
Φ (−z1)− e(2m/σ2+2)(ν−u)Φ (−z2)

]
g (u|z, y) du

+

∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ2−2γ)(ν−u)Φ (−z4)

]
g (u|z, y) du

−
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ2)(ν−u)Φ (−z6)

]
g (u|z, y) du (49)

where

−z1 =
−y∗+(m(T−t)+u+σ2(T−t))

σ
√
T−t −z2 =

−y∗+(m(T−t)−u+2ν+σ2(T−t))
σ
√
T−t

−z3 =
−y∗+(m(T−t)+u−γσ2(T−t))

σ
√
T−t −z4 =

−y∗+(m(T−t)−u+2ν−γσ2(T−t))
σ
√
T−t

−z5 = −y∗+(m(T−t)+u)

σ
√
T−t −z6 = −y∗+(m(T−t)−u+2ν)

σ
√
T−t

(50)

To compute the integral in equation 23, note that equation 19 is essentially a difference in the Normally distributed random
variable probability distribution functions (PDF) being integrated over the TP option pricing formula, which is a function of
Normal distributed cumulative distribution functions (CDFS). As such the end product will be an integral, over the range of
either (−∞, ν) for a put or (ν,∞) for a call, of the product of a Normally distributed CDF and the Normally PDF. To compute
this integral we make use of the equations 10, 010.1 and 10, 010.4 in Owen [1980] which allows for a closed form expression of
the integral. The result itself is then just a function of the Bivariate Normally distributed cumulative probability distribution
function. We provide a description and proof in Lemma VIII.B.

Let A and B are real valued constants and Z ∼ N (0, 1), with probability (cumulative) distribution function denoted φ(z)
(Φ(z)) respectively then ∫ ν

−∞
Φ(A+Bz)φ(z)dz = Φ2

(
A√

1 +B2
, ν;

−B√
1 +B2

)
(51)

where Φ2 (z1, z2; ρ) is the cumulative bivariate normal distribution of two joint random variables Z1 and Z2 with correlation ρ.
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Proof. ∫ ν

−∞
Φ(A+Bz)φ(z)dz =

∫ ν

−∞

∫ A+Bz

−∞
φ(x)φ(z)dxdz

=

∫ ν

−∞

∫ A+Bz

−∞

e
−1(x2+z2)

2

√
2π
√

2π
dydz

=

∫ ν

−∞

∫ A/
√

1+B2

−∞

√
1 +B2e

−1((y
√

1+B2+Bz)2+z2)
2

√
2π
√

2π
dydz

=

∫ ν

−∞

∫ A/
√

1+B2

−∞

e
−1(y2(1+B2)+2yzB

√
1+B2+B2z2+z2)

2

√
2π
√

2π
√

1/(1 +B2)
dydz

= Φ2

(
A√

1 +B2
, ν;

−B√
1 +B2

)
(52)

where we let y = (x−Bz)/
√

1 +B2 (x = y
√

1 +B2 +Bz) hence dy = dx/
√

1 +B2 and

y2(1 +B2) + 2yzB
√

1 +B2 + z2(1 +B2) = (1 +B2)

[
y2 + 2yz

B√
1 +B2

+ z2

]
=

1

1 +B2

[
y2 − 2yz

(
−B√
1 +B2

)
+ z2

]
(53)

Let A and B are real valued constants and Z ∼ N (0, 1), with probability (cumulative) distribution function denoted φ(z)
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(Φ(z)) respectively then∫ k

h

Φ(A+Bx)φ(x)dx =

∫ A/
√

1+B2

−∞
φ(x)Φ

(
k
√
B2 + 1 +Bx

)
dx

−
∫ A/

√
1+B2

−∞
φ(x)Φ

(
h
√
B2 + 1 +Bx

)
dx

= Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(54)

Proof. ∫ k

h

Φ(A+Bx)φ(x)dx =

∫ k

−∞
Φ(A+Bx)φ(x)dx−

∫ h

−∞
Φ(A+Bx)φ(x)dx

= Φ2

(
A√

1 +B2
, k;

−B
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B
1 +B2

)
(55)

Taking k −→∞ in equation 54 yields:∫ ∞
h

Φ(A+Bx)φ(x)dx = lim
k→∞

Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
= Φ

(
A√

1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(56)
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We next derive the following transformation to evaluate an integral∫ ∞
ν

eθuΦ (A+Bu)φ(u;m, s2)du

=

∫ ∞
ν

eθuΦ (A+Bu)
e
−(u−m)2

2s2

√
2πs2

du

=

∫ ∞
ν

Φ (A+Bu)
e
−(u2−2um+m2−2s2uθ)

2s2

√
2πs2

du

=

∫ ∞
ν

Φ (A+Bu)
e
−(u2−2um+m2−2s2uθ)

2s2

√
2πs2

du

= e
−m2+(m+s2θ)2

2s2

∫ ∞
ν

Φ (A+Bu)
e
−(u2−2u(m+s2θ)+(m+s2θ)2)

2s2

√
2πs2

du

= e
−m2+(m+s2θ)2

2s2

∫ ∞
ν

Φ (A+Bu)
e
−(u−(m+s2θ))2

2s2

√
2πs2

du

= e
−m2+(m+s2θ)2

2s2

∫ ∞
ν′

Φ
(
A+B(sz + (m+ s2θ))

)
φ(z)dz

= eθm+(sθ)2/2

[
Φ

(
A′√

1 + (Bs)2

)
− Φ2

(
A′√

1 + (Bs)2
, ν ′;

−Bs√
1 + (Bs)2

)]
(57)

where we let z = (u− (m+ s2θ))/s which results in A′ = A+B(m+ s2θ) and ν ′ = (ν − (m+ s2θ))/s. In the resulting equation
57 we then set θ = {1,−2m/σ2 − 1,−γ,−2m/σ2 + γ,−2m/σ2} to evaluate some of the integrals in equation 58.
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DLCALL =

∫ ∞
ν

eu−δ(T−t)
[
Φ (−z1)− e(2m/σ2+2)(ν−u)Φ (−z2)

]
g (u|z, y) du

+

∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ2−2γ)(ν−u)Φ (−z4)

]
g (u|z, y) du

−
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ2)(ν−u)Φ (−z6)

]
g (u|z, y) du (58)

where

−z1 =
−y∗+(m(T−t)+u+σ2(T−t))

σ
√
T−t −z2 =

−y∗+(m(T−t)−u+2ν+σ2(T−t))
σ
√
T−t

−z3 =
−y∗+(m(T−t)+u−γσ2(T−t))

σ
√
T−t −z4 =

−y∗+(m(T−t)−u+2ν−γσ2(T−t))
σ
√
T−t

−z5 = −y∗+(m(T−t)+u)

σ
√
T−t −z6 = −y∗+(m(T−t)−u+2ν)

σ
√
T−t

(59)

For evaluating the first integral in equation 58 we make use of the result from equation 57
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∫ ∞
ν

eu−δ(T−t)
[
Φ (−z1)− e(2m/σ

2+2)(ν−u)Φ (−z2)
]
g (u|z, y) du

=

∫ ∞
ν

eu−δ(T−t)
[
Φ (−z1)− e(2m/σ

2+2)(ν−u)Φ (−z2)
] [L1

L0
× e−

(u−M1)2

2ψ −
L2

L0
× e−

(u−M2)2

2ψ

]
du

= e−δ(T−t)
∫ ∞
ν

euΦ (−z1)

[
L1

L0
× e−

(u−M1)2

2ψ −
L2

L0
× e−

(u−M2)2

2ψ

]
du

− e−δ(T−t)
∫ ∞
ν

eue(2m/σ
2+2)(ν−u)Φ (−z2)

[
L1

L0
× e−

(u−M1)2

2ψ −
L2

L0
× e−

(u−M2)2

2ψ

]
du

= e−δ(T−t)
∫ ∞
ν

euΦ (−z1)
L1

L0
× e−

(u−M1)2

2ψ du− e−δ(T−t)
∫ ∞
ν

euΦ (−z1)
L2

L0
× e−

(u−M2)2

2ψ du

− e−δ(T−t)
∫ ∞
ν

eue(2m/σ
2+2)(ν−u)Φ (−z2)

L1

L0
× e−

(u−M1)2

2ψ du

+ e−δ(T−t)
∫ ∞
ν

eue(2m/σ
2+2)(ν−u)Φ (−z2)

L2

L0
× e−

(u−M2)2

2ψ du

= e−δ(T−t)
L1

L0
×
∫ ∞
ν

euΦ (−z1) e
− (u−M1)2

2ψ du− e−δ(T−t)
L2

L0
×
∫ ∞
ν

euΦ (−z1) e
− (u−M2)2

2ψ du

− e−δ(T−t)e(2m/σ
2+2)(ν)L1

L0
×
∫ ∞
ν

eu(−2m/σ2−1)Φ (−z2) e
− (u−M1)2

2ψ du

+ e−δ(T−t)e(2m/σ
2+2)ν L2

L0
×
∫ ∞
ν

eu(−2m/σ2−1)Φ (−z2) e
− (u−M2)2

2ψ du (60)
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= e−δ(T−t)
L1

L0

√
2πψeM1+ψ/2

Φ

 −y
∗+(M1+ψ)+(m(T−t)+σ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2



− e−δ(T−t)
L1

L0

√
2πψeM1+ψ/2Φ2

 −y
∗+(M1+ψ)+(m(T−t)+σ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M1 + ψ)

√
ψ

;

 −(
√
ψ)/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2



− e−δ(T−t)
L2

L0

√
2πψeM2+ψ/2

Φ

 −y
∗+(M2+ψ)+(m(T−t)+σ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2



+ e−δ(T−t)
L2

L0

√
2πψeM2+ψ/2Φ2

 −y
∗+(M2+ψ)+(m(T−t)+σ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M2 + ψ)

√
ψ

;

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2



− e−δ(T−t)e(2m/σ
2+2)ν L1

L0

√
2πψeM1(−2m/σ2−1)+ψ(−2m/σ2−1)2/2 ×

Φ

 −y
∗+(M1+ψ(−2m/σ2−1))+(m(T−t)+2ν+σ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2



+ e−δ(T−t)e(2m/σ
2+2)ν L1

L0

√
2πψeM1(−2m/σ2−1)+ψ(−2m/σ2−1)2/2

× Φ2

 −y
∗+(M1+ψ(−2m/σ2−1))+(m(T−t)+2ν+σ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M1 + ψ(−2m/σ2 − 1))

√
ψ

;−

 √
ψ/(−σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2



+ e−δ(T−t)e(2m/σ
2+2)(ν)L2

L0

√
2πψeM2(−2m/σ2−1)+ψ(−2m/σ2−1)2/2 ×

Φ

 −y
∗+(M2+ψ(−2m/σ2−1))+(m(T−t)+2ν+σ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2



− e−δ(T−t)e(2m/σ
2+2)(ν)L2

L0

√
2πψeM2(−2m/σ2−1)+ψ(−2m/σ2−1)2/2

×

Φ2

 −y
∗+(M2+ψ(−2m/σ2−1))+(m(T−t)+2ν+σ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M2 + ψ(−2m/σ2 − 1)2)

√
ψ

;−

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2


 (61)
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For evaluating the second integral in equation 58 we make use of the result from equation 57∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ

2−2γ)(ν−u)Φ (−z4)
]
g (u|z, y) du

=

∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ

2−2γ)(ν−u)Φ (−z4)
] [L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

=

∫ ∞
ν

Be−γ(u−ν)Φ (−z3)

[
L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

−
∫ ∞
ν

Be−γ(u−ν)e(2m/σ
2−2γ)(ν−u)Φ (−z4)

[
L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

=

∫ ∞
ν

Be−γ(u−ν)Φ (−z3)
L1

L0
× e

−(u−M1)2

2ψ du−
∫ ∞
ν

Be−γ(u−ν)Φ (−z3)
L2

L0
× e

−(u−M2)2

2ψ du

−
L1

L0
×
∫ ∞
ν

Be−γ(u−ν)e(2m/σ
2−2γ)(ν−u)Φ (−z4) e

−(u−M1)2

2ψ du

+

∫ ∞
ν

Be−γ(u−ν)e(2m/σ
2−2γ)(ν−u)Φ (−z4)

L2

L0
× e

−(u−M2)2

2ψ du

=
L1

L0
Beγ(ν)

∫ ∞
ν

e−γ(u)Φ (−z3) e
−(u−M1)2

2ψ du−
L2

L0
Beγ(ν)

∫ ∞
ν

e−γ(u)Φ (−z3) e
−(u−M2)2

2ψ du

−
L1

L0
Beγ(ν)e(2m/σ

2−2γ)(ν)

∫ ∞
ν

e−(2m/σ2−γ)(u)Φ (−z4) e
−(u−M1)2

2ψ du

+
L2

L0
Beγ(ν)e−(2m/σ2−2γ)ν

∫ ∞
ν

e−(2m/σ2−γ)(u)Φ (−z4) e
−(u−M2)2

2ψ du

+
L1

L0
Beγ(ν)

√
2πψe(−γ)M1+(−γ)2ψ/2 ×

Φ

 −y
∗+(M1+ψ(−γ))+(m(T−t)−γσ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2



−
L1

L0
Beγ(ν)

√
2πψe(−γ)M1+(−γ)2ψ/2

×

Φ2

 −y
∗+(M1+ψ(−γ))+(m(T−t)−γσ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M1 + ψ(−γ))

√
ψ

;

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2




−
L2

L0
Beγ(ν)

√
2πψeM2(−γ)+(−γ)2ψ/2 × Φ

 −y
∗+M2+(ψ(−γ))+(m(T−t)−γσ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2


+
L2

L0
Beγ(ν)

√
2πψeM2(−γ)+(−γ)2ψ/2

×

Φ2

 −y
∗+(M2+ψ(−γ))+(m(T−t)−γσ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M2 + ψ(−γ))

√
ψ

;

 −(
√
ψ)/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2




−
L1

L0
Beγ(ν)e(2m/σ

2−2γ)(ν)
√

2πψeM1(−2m/σ2+γ)+ψ(−2m/σ2+γ)2/2

×

Φ

 −y
∗+(M1+(ψ(−2m/σ2+γ)))+(m(T−t)+2ν−γσ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2



+
L1

L0
Beγ(ν)e(2m/σ

2−2γ)(ν)
√

2πψeM1(−2m/σ2+γ)+ψ(−2m/σ2+γ)2/2

× Φ2

 −y
∗+(M1+(ψ(−2m/σ2+γ))+(m(T−t)+2ν−γσ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M1 + ψ(−2m/σ2 + γ))

√
ψ

;−

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2



+
L2

L0
Beγ(ν)e−(2m/σ2−2γ)ν

√
2πψeM2(−2m/σ2+γ)+ψ(−2m/σ2+γ)2/2

×

Φ

 −y
∗+(M2+(ψ(−2m/σ2+γ)))+(m(T−t)+2ν−γσ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2
−


−
L2

L0
Beγ(ν)e−(2m/σ2−2γ)ν

√
2πψeM2(−2m/σ2+γ)+ψ(−2m/σ2+γ)2/2

× Φ2

 −y
∗+(M2+ψ(−2m/σ2+γ))+(m(T−t)+2ν−γσ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M2 + ψ(−2m/σ2 + γ))

√
ψ

;−

 −
√
ψ/(−σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2

 (62)
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For evaluating the third integral in equation 58 the result of equation 57

−
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ

2)(ν−u)Φ (−z6)
]
g (u|z, y) du

= −
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ

2)(ν−u)Φ (−z6)
] [L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

= −
∫ ∞
ν

e−r(T−t) (A+K) Φ (−z5)

[
L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

+

∫ ∞
ν

e−r(T−t) (A+K) e(2m/σ
2)(ν−u)Φ (−z6)

[
L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M1)2

2ψ

]
du

= −
∫ ∞
ν

e−r(T−t) (A+K) Φ (−z5)
L1

L0
e

−(u−M1)2

2ψ du+

∫ ∞
ν

e−r(T−t) (A+K) Φ (−z5)
L2

L0
e

−(u−M2)2

2ψ du

+

∫ ∞
ν

e−r(T−t) (A+K) e(2m/σ
2)(ν−u)Φ (−z6)

L1

L0
e

−(u−M1)2

2ψ du−
∫ ∞
ν

e−r(T−t) (A+K) e(2m/σ
2)(ν−u)Φ (−z6)

L2

L0
e

−(u−M2)2

2ψ du

= −e−r(T−t) (A+K)
L1

L0

∫ ∞
ν

Φ (−z5) e
−(u−M1)2

2ψ du+ e−r(T−t) (A+K)
L2

L0

∫ ∞
ν

Φ (−z5) e
−(u−M1)2

2ψ du

+ e−r(T−t) (A+K)
L1

L0
e(2m/σ

2)(ν)

∫ ∞
ν

e−(2m/σ2)(u)Φ (−z6) e
−(u−M1)2

2ψ du

− e−r(T−t) (A+K) e(2m/σ
2)(ν)L2

L0

∫ ∞
ν

e−(2m/σ2)(u)Φ (−z6) e
−(u−M2)2

2ψ du

(63)
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−e−r(T−t) (A+K)
L1

L0

√
2πψ

Φ

 −y∗+(m(T−t)+M1)

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2
− Φ2

 −y∗+(m(T−t)+M1)

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 , ν −M1√
ψ

;

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2




+ e−r(T−t) (A+K)
L2

L0

√
2πψ

Φ

 −y∗+(m(T−t)+M2)

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2
− Φ2

 −y∗+(m(T−t)+M2)

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 , ν −M2√
ψ

;

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2




+ e−r(T−t) (A+K)
L1

L0
e(2m/σ

2)(ν)
√

2πψeM1(−2m/σ2)+ψ(−2m/σ2)2/2

×

Φ

 −y
∗+(M1+(ψ(−2m/σ2)))+(m(T−t)+2ν)

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2
− Φ2

 −y
∗+(M1+ψ(−2m/σ2)2)+(m(T−t)+2ν)

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M1 + (ψ(−2m/σ2)))

√
ψ

;−

 −
√
ψ/(−σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2




− e−r(T−t) (A+K)
L2

L0
e(2m/σ

2)(ν)
√

2πψeM2(−2m/σ2)+ψ(−2m/σ2)2/2

×

Φ

 −y
∗+(M2+(ψ(−2m/σ2)))+(m(T−t)+2ν)

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2
− Φ2

 −y
∗+(M2+ψ(−2m/σ2))+(m(T−t)+2ν)

−σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M2 + (ψ(−2m/σ2)))

√
ψ

;−

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2


 (64)
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