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Abstract

The returns on US equity momentum exhibit a time-varying conditional skewness which deepens during the
so-called “momentum crashes”. This has important economic implications for managing the risk associated
to a standard momentum factor: a dynamic skewness adjustment within a maximum Sharpe ratio strategy
improves upon existing volatility-managed momentum portfolios. The importance of conditional skewness to
mitigate momentum risk lies in the fact that the portfolio risk-return trade-off may reflect a non-linear inter-
action between both conditional volatility and skewness. Notably, the dynamics of the conditional skewness
in momentum returns can not be fully reconciled by an asymmetric exposure to market risk.
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1 Introduction

One of the most studied capital market phenomenon is the relation between the future return

on a given asset and its past relative performance, termed the momentum factor. By betting on

past returns, a momentum portfolio that buys the past “winners” and sells the past “losers” have

historically delivered competitive risk-adjusted returns, and have therefore become central to the

market efficiency debate.1 Despite a strong historical performance, standard momentum portfolios

can be subject to “crashes”, meaning infrequent periods of large and persistent losses (see Daniel

and Moskowitz, 2016). These crashes are often associated with time-varying, asymmetric, market

betas; momentum portfolios formed during bear markets are likely to bet against high beta stocks,

thus potentially generating large losses when the market rebounds (see Grundy and Martin, 2001).

A conventional approach to mitigate downside risk in momentum strategies builds upon the idea

that the notional exposure to the winner-minus-loser (WML) strategy is levered up (scaled down) based

on the conditional volatility of the original portfolio returns (see, e.g., Barroso and Santa-Clara, 2015;

Moreira and Muir, 2017; Cederburg et al., 2020; Barroso and Detzel, 2021). This grounds on the

widespread empirical evidence that volatility tends to cluster over time and negatively correlates

with realised returns, whereas expected returns are often more difficult to measure being buried in

the noise of the realised portfolio performance. However, while focusing on conditional volatility

may certainly simplify an empirical analysis, it is based on the implicit assumption that momentum

returns are conditionally Normal at each time t. That is, skewness risk is ignored.2

In this paper we offer some new insight on how to manage the risk associated with standard

momentum investing. Our approach is based on the intuition that conditional skewness is poten-

tially time-varying, and its statistical and economic significance is not subsumed by conditional

volatility. That is, if returns asymmetry varies over time, volatility may not necessarily represent a

full representation of the strategy’s risk (see, e.g., Glosten et al., 1993; Wang and Yan, 2021). As a

result, adjusting the notional exposure to a momentum portfolio based uniquely on the inverse of

1Jegadeesh (1990) first document that stocks that performed well in the past have the tendency to outperform the
market, while stocks that performed poorly tend to underperform it. Grinblatt et al. (1995) find that momentum
strategies are common among investment funds, while several papers document the pervasiveness of this anomaly
across countries – including Rouwenhorst (1998); Fama and French (2012) – and asset classes (see, e.g., Moskowitz
and Grinblatt, 1999; Moskowitz et al., 2012; Asness et al., 2013).

2By skewness risk we mean the risk that results when observations are not spread symmetrically around an average
value, but instead have a skewed distribution. As a result, the conditional mean returns do not represent a robust
measure of expected returns, i.e., mean and median differ.
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the conditional volatility estimates may be sub-optimal, both in terms of risk-adjusted returns and

mean-variance efficiency. Yet, the explicit effect of skewness on momentum risk has been mostly

overlooked in the empirical asset pricing literature so far. Our goal is to fill this gap.

Intuitively, the reason why accounting for conditional skewness may be important to reduce

large losses in a standard momentum strategy is straightforward, if not often appreciated: simple

volatility targeting is based on the implicit assumption that the conditional distribution of the

returns is Normal. Put it differently, the conditional probability of a large positive or negative

return is symmetric at each time t. However, this assumption explicitly ignores the fact that (1)

negative shifts in expected returns can occur even in periods when the volatility does not change

significantly, and (2) higher volatility is not always a reflection of large losses. Therefore, standard

volatility adjustments could represent, at least a priori, an imperfect tool to mitigate momentum

risk especially during crash periods.3

Following this logic, some extension to simple volatility targeting has been proposed in the

literature (see, e.g., Wang and Yan, 2021; Hanauer and Windmüller, 2023). These are often based

on the idea that the conditional variance estimates can be replaced with semi-variance, meaning

the variance calculated only based on negative returns. However, semi-volatility scaling does not

necessarily represent an optimal allocation from the perspective of a mean-variance investor. Rather,

it is an agnostic risk-management approach that aims to mitigate the effect of “bad volatility” in face

of time-varying momentum risk. Instead, our approach represents an intuitive extension to a simple

conditional maximum Sharpe ratio strategy as in Daniel and Moskowitz (2016). Our empirical results

suggest that explicitly considering the dynamics of the conditional skewness provides additional

economic gains compared to both volatility and semi-volatility targeting.

Before discussing the main empirical results, two comments are in order. First, it is important

to note that our goal is not to modify the construction of the momentum factor per se (see, e.g.,

Novy-Marx and Velikov, 2016; Barroso and Detzel, 2021), but rather to build upon existing volatility

adjustments as in Barroso and Santa-Clara (2015); Daniel and Moskowitz (2016); Moreira and Muir

(2017); Cederburg et al. (2020), which in turn consider standard momentum factors following the

Jegadeesh and Titman (1993) blueprint. Second, although our results support the view that the

3In other words, by assuming that the portfolio returns are symmetrically distributed around the conditional mean
at each time t, when they may not be, could understate the overall risk of the strategy. This could be economically
costly especially during periods of large drawdowns.
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momentum premium can be rationalised based on asymmetric risk preferences (see Section 7), the

objective of this paper is not to provide a structural explanation of the momentum premium, but

rather to isolate the importance of higher-order moments to understand the trade-off between risks

and rewards in momentum, and as a result managing the risk associated with it.

1.1 Findings

In order to tease out the dynamics of the conditional skewness in a momentum factor, we propose

a time-varying parameter model which allows to recover the location, scale and asymmetry of the

portfolio returns’ distribution over time. In addition, our modelling framework allows to characterise

the momentum expected returns as a direct function of the returns asymmetry. As a result, we can

single out a skewness-hedging component within an otherwise standard maximum Sharpe ratio

strategy. Notice that our framework is general and can be applied to any factor portfolio returns,

above and beyond momentum. The main contribution of our paper is threefold.

First, we find a significant time variation in the conditional skewness associated with momentum

returns. The returns’ asymmetry is predominantly negative and tend to deepen during momentum

crashes. More specifically, its time variation reflects an heterogeneous pattern on the long and short

leg of the strategy. For instance, while the skewness of the past winners significantly decreased in the

aftermath of the great depression, the returns’ asymmetry on the past losers turned highly positive.

That is, towards the end of the great depression the momentum portfolio was implicitly buying a

lower downside risk, but at the same time selling a substantially higher upside risk, with the latter

more than offsetting the former. As a result, the skewness of the WML portfolio was increasingly

negative in the aftermath of the great depression.

The second main result of the paper relates to managing momentum risk. We improve upon

the maximum Sharpe ratio strategy proposed by Daniel and Moskowitz (2016) by leveraging on

the flexibility of our modeling framework. Specifically, we derive a skewness-hedging component

which adds to a conventional volatility adjustment of the original momentum factor (see, e.g.,

Moreira and Muir, 2017; Cederburg et al., 2020; Barroso and Santa-Clara, 2015). For a given

level of volatility, our extended maximum Sharpe ratio strategy further deleverage (leverage) the

notional invested in the original momentum portfolio as the returns’ skewness becomes more negative

(positive). Economically, our skewness-managed strategy fare better than both benchmark dynamic

3



or constant volatility adjustments as well as semi-volatility targeting. We show in simulation that

the economic gain from our time-varying skewness approach is linked to the implicit cost of the

mispecification embedded in a simple volatility targeting when in fact the conditional skewness of

the returns is non-zero. The more the original portfolio returns depart from a Normal distribution

at each time t, the lower the risk-adjusted returns from conventional volatility targeting compared

to our skewness-managed momentum.

Our third contribution pertains the role of the conditional skewness for the risk-return trade-off

in a standard momentum strategy. Specifically, we delve further into the interplay between expected

returns, conditional volatility, and conditional skewness. The results suggest that the reason why

the skewness adjustment is not subsumed by the conditional volatility estimates, lies in the role

of returns’ asymmetry for the dynamics of the strategy expected returns. For instance, a second-

order Taylor expansion of the model-implied expected returns points towards a non-exclusive role

of the conditional volatility as a measure of momentum risk, and instead highlights a joint effect of

volatility and skewness on expected returns over time.

We formalise this result and leverage on our modeling framework to explicitly characterise the

risk-return trade-off as a non-linear function of the original portfolio returns’ asymmetry. The results

show that a negative risk-return trade-off in momentum is consistent with the presence of a time-

varying, predominantly negative, conditional skewness in the portfolio returns. While the premium

pertaining volatility is only mildly negative, the nonlinear interaction with conditional skewness

further exacerbates the slope of the risk-return profile, which becomes even more negative. This

represents a challenge for common risk-based explanations and structural models of time-varying

expected returns (see, e.g., Kelly et al., 2021).

The presence of a negative and time-varying risk-return trade-off may be consistent with a

general equilibrium model with asymmetric preferences. We build upon the intuition of Kothari

and Shanken (1992) and Grundy and Martin (2001) and show both analytically and in simulation

that the time-variation in the conditional skewness of the returns can only be partly reconciled

by an asymmetric exposure to aggregate market risk (CAPM). The latter, can be thought of as

the reduced-form representation of an equilibrium endowment economy in which a representative

agent has a disappointment-aversion utility function (see, e.g., Ang et al., 2006). Furthermore, the

estimated conditional skewness only mildly correlates with the skewness on the market portfolio.
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1.2 Literature

In addition to Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016), our work con-

tributes to a long-standing literature that seeks to understand the origins and the dynamic properties

of momentum risk and returns, such as Jegadeesh (1990); Rouwenhorst (1998); Moskowitz and Grin-

blatt (1999); Griffin et al. (2003); Moskowitz et al. (2012); Novy-Marx (2012); Asness et al. (2013);

Kelly et al. (2021), among others. Jacobs et al. (2015) uncover a robust relation between expected

skewness and cross-sectional momentum, specifically in relation to past loser portfolios. Neverthe-

less, Theodossiou and Savva (2016) highlight how the evidence on the shape of the trade-off between

risks and rewards for momentum strategies has often been inconclusive. They argue that such ambi-

guity is primarily due to the fact that when the skewness of the returns’ distribution is negative, the

effect of volatility and skewness on expected returns tends to offset, generating a highly uncertain

dynamics for the risk-return trade-off.

A second strand of literature we contribute to, relates to the role of higher-order moments in

portfolio allocation (see, e.g, Guidolin and Timmermann, 2008) and asset pricing models (see, e.g.,

Dittmar, 2002; Harvey and Siddique, 2000; Kraus and Litzenberger, 1976). Within the context of

momentum strategies, a variety of approaches have been proposed; for instance, Barroso and Santa-

Clara (2015); Daniel and Moskowitz (2016) proposed a volatility adjustment that allows to regulate

the exposure of investors’ capital to momentum risk during crashes and periods of high volatility

at large. Wang and Yan (2021); Hanauer and Windmüller (2023) expands on Moreira and Muir

(2017); Cederburg et al. (2020) and show that by scaling by factor portfolio returns by downside

volatility one can obtain significantly better performance than strategies scaled by total volatility.

More recently, Barroso and Detzel (2021) investigate whether transaction costs, arbitrage risk, and

short-sale impediments explain the abnormal returns of volatility-managed equity portfolios.

2 Skewness in US equity momentum

We follow Daniel and Moskowitz (2016) and form portfolios based on all-firms breakpoints; that is,

an equal number of firms is present in each decile portfolio, rather than an equal number of just

NYSE firms as in Fama and French (1996).4 Momentum decile portfolios are constructed daily but

4The interested reader can find additional information on the original momentum strategy at http://www.

kentdaniel.net/data/momentum/mom_data.pdf.
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are rebalanced monthly. The risk free-rate is the daily 1-month T-bill rate, and the market return is

the value-weighted index of all the CRPS firms.5 Stocks are sorted into deciles, ranked on the basis

of their performance over the past J months; then the momentum strategy consists of investing 1$

in the portfolio of past winners (the 10th decile) and selling 1$ of past losers (the 1st decile),

with a one-month holding period. We skip the most recent month, which is our formation period,

to avoid the short-term reversal documented by Jegadeesh (1990) and Lehmann (1990).

The left panel of Figure 1 compares the cumulative performance of investing 1$ in the WML

portfolio based on an 11-month (J = 11) look-back period – from month t − 12 through t − 1

– against a buy-and-hold investment in the market and the risk-free rate. The performance is

calculated from the second half of the 1920s holding the investment until the end of 2020. The left

panel of Table 1 shows the corresponding descriptive statistics. Clearly, momentum has delivered

substantially higher profits with respect to both the aggregate stock market and the risk-free rate

over the last century. The average excess return of the WML portfolio is close to 19% annualised, more

than twice the 7.8% offered by the market (MKT). The Sharpe ratio for the momentum strategy is

0.78 on an annualised basis, which is almost double compared to the 0.42 of the market portfolio.6

Figure 1 also suggests that the unconditional market beta on the WML is also reasonably low.

Table 1 shows that a simple static CAPM beta is indeed slightly negative and significant (β =

−0.15, pval = 0.000). This couples with a highly positive and significant annualised Jensen’s alpha

(α = 22.2, pval = 0.000). The right panels of Figure 1 show that despite its strong performance,

momentum has experienced a few severe downturns. They are associated with extremely negative

monthly returns, ranging from -90% to -75%, in 1932 and 2009, respectively; at the daily frequency,

cumulative returns over the same months produced losses of -65% to -70%. Daniel and Moskowitz

(2016) define these events as “momentum crashes”.

The occurrence of sporadic but persistent large negative returns induces significant asymmetry in

the distribution of momentum portfolio returns. Table 1 reports both the sample skewness, defined

as the standardised third moment of the sample distribution of returns, as well as the corresponding

5Both the daily T-bill rate and the daily return on the market portfolio are obtained from Kenneth French data
library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

6Notice that, for comparison with Daniel and Moskowitz (2016), we do not consider transaction costs in calculating
the performance of the original momentum strategy. When adding reasonable transaction costs the performance of
the standard momentum strategy deteriorates (see, e.g., Novy-Marx and Velikov, 2016; Barroso and Detzel, 2021).
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p-values for the Bai and Ng (2005) significance test in parenthesis.7 The statistics suggest that

both past winners and the WML strategy all show significant, negative skewness, with the long-short

strategy displaying twice the asymmetry compared to past winners. In addition to the realised

skewness, we also report the Bowley asymmetry measure, calculated as QSα = q(α)+q(1−α)−2q(50)
q(α)−q(1−α) ,

with q(α) being the αth quantile of the data and q(50) the median. This measure is robust to the

presence of outliers (see Bowley, 1926). The last row in Table 1 reports the results of QSα, α = 99.

Even after accounting for outliers, WML returns, as well as past winners’, still display marked negative

asymmetry, as twice as large the MKT portfolio.

Table 1 also reports descriptive statistics and skewness measures for two alternative momentum

strategies which have been investigated in previous literature (see, e.g., Jegadeesh and Titman, 1993;

Novy-Marx, 2012). First, we look at the “short-term” momentum (6 2), whereby decile portfolios

are formed on the basis of six-month (J = 6) look-back periods, from months t − 6 through t − 1,

and are rebalanced each month. Similarly to the 12 2 case, we skip the most recent month, which

is our formation period. Second, we look at an “intermediate” momentum strategy (12 7), whereby

decile portfolios are formed monthly based on past returns from months t− 12 through t− 7.

Two facts emerge. First, the profitability of the momentum strategy is more tilted towards the

intermediate horizon. This is consistent with the intuition in Novy-Marx (2012). However, when the

exposure to the market portfolio is netted out, the annualised alpha is largely in favour of the typical

12 2 momentum: α12 2 = 22.2 (pval = 0.000) versus α12 7 = 16.9 (pval = 0.000). The short-term

momentum has both a lower Sharpe ratio and a lower alpha. Second, the unconditional skewness of

the 12 7 strategy is −0.768 (pval = 0.021), which is substantially lower than both the 12 2 strategy

(skew = −1.236, pval = 0.001) and 6 2 (skew = −1.554, pval = 0.001). The robust quantile

measure QSα suggests the discrepancy across strategies is due to the presence of different outlying

returns; that is, by accounting for outliers the QS99 of all momentum strategies are approximately

the same, i.e., -0.11 for 12 2, -0.096 for 6 2 and -0.089 for 12 7.

7Under the null hypothesis of no asymmetry in the returns, the Bai and Ng (2005) test statistic is

π̂3 =

√
T µ̂3

s (µ̂3)

d−→ N(0, 1),

with µ̂3 a sample estimate of the third central moment of the returns distribution and s (µ̂3) =
(
α̂2Γ̂22α̂

′
2

)
. Here,

α̂2 =
[
1, −3σ̂2

]
is a function of the sample variance estimate σ̂2 and Γ̂22 a consistent estimate of the 2× 2 sub-matrix

of Γ = lim
T→∞

TE
[
ZZ
′
]

with Z the sample mean of the deviation of the empirical centered first three moments from

their theoretical (Gaussian) counterparts.
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These sample descriptive statistics show, to a large extent, that the 12 2 strategy provides the

largest risk-adjusted performance while at the same time reporting an equally large negative skew-

ness, in fact even larger, compared to the short-term and intermediate momentum strategies. As

a result, we follow Barroso and Santa-Clara (2015); Daniel and Moskowitz (2016) and focus on

the 12 2 as a baseline momentum strategy to investigate the role of time-varying skewness for the

dynamics of risk and return within and outside crash periods.

2.1 A simple test for conditional skewness

The presence of unconditional skewness in the returns’ distribution does not mechanically imply

that after accounting for time-varying volatility the conditional distribution of the returns is still

asymmetric (see, e.g., Glosten et al., 1993; Carriero et al., 2020). A simple preliminary gauge of the

time variation in the conditional skewness of the momentum strategy returns can be obtained by

testing for the significance of realised skewness estimated recursively over smaller windows of data.

Figure 2 reports the time series of the Bai and Ng (2005) test statistics for asymmetry over differ-

ent rolling windows. We report the testing results by using one, two and five years of daily returns

on the past losers (left panel), past winners (middle panel) and the WML strategy (right panel).

The dashed horizontal lines represent the 90% and 95% confidence intervals. The null hypothesis of

no asymmetry is often rejected with periods of highly significant skewness. For instance, the returns

on past losers show a significant and positive skewness towards the end of the great depression of

the 1930’s, whereas past returns on the winners portfolio tend to show a mildly significant negative

skewness over the same period. As a result, the skewness of the WML strategy returns is significant

and negative throughout the momentum crash of the early 1930s, while becomes non-significant

again over the following decade.8 In general, both legs of the momentum strategy and the result-

ing WML portfolio show a highly time-varying conditional skewness, with the WML strategy reporting

significant spikes of negative skewness over time which tend to coincide with the momentum crashes.

In addition to the simple recursive Bai and Ng (2005) test reported in Figure 2, in Appendix

A we report the results of a more robust alternative likelihood-based testing procedure. The basic

idea is to assume that a given moment is constant in the data generating process and then look at

8Focusing on the great financial crisis of 2008/2009, the skewness of the WML returns tends to be negative and
significant both in the aftermath of the dot-com crash and the 2008/2009 financial crisis. This is primarily due to
the dynamics of the skewness on the past winners’ portfolio, which is significant and negative around the 2008/2009
period in particular.
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the information contained over time in the gradient of the log-likelihood function with respect to

that moment. Table A1 reports the results. The null hypothesis of a constant skewness is strongly

rejected against the alternative of time variation, with the values of test statistics that are well above

100 for both the long and the short legs of the momentum strategy as well as the WML portfolio.

3 Modelling time-varying skewness

We model the conditional distribution of the portfolio return at time t, rt, as a Skew-t distribution

with ν > 3 degrees of freedom and time-varying location, µt, scale, σt, and shape, ρt, parameters

(see, e.g., Arellano-Valle et al., 2005; Gómez et al., 2007),

rt = µt + σtεt, εt ∼ Sktν(0, 1, ρt), t = 1, . . . , T (1)

The shape parameter ρt ∈ (−1, 1) fully characterises the asymmetry of the conditional distribution

of the strategy returns. Positive (negative) values of ρt imply positively (negatively) skewed returns

and the ratio 1+ρt
1−ρt defines the probability mass on the right versus on the left of the mode µt.

This modelling framework is particularly flexible since it nests standard distributional choices –

with time-varying mean and variance –, as limiting cases. For instance, with both 1/ν → 0 and

ρt = 0, the conditional distribution collapses to a standard Normal. By restricting ρt = 0 we have the

symmetric Student-t distribution, whereas with 1/ν → 0 we retrieve the Skew-Normal distribution

of Mudholkar and Hutson (2000). As a result, our model does not impose, but rather allows for,

the presence of higher moments in the conditional distribution of the WML returns.

We follow Creal et al. (2013) and Harvey (2013) and model the time variation in the conditional

location µt, scale σt and asymmetry ρt parameters in a data-driven fashion based on the recursive

prediction errors. In order to ensure that the scale σt is positive and the asymmetry ρt ∈ (−1, 1), we

model γt = log (σt) and δt = arctanh (ρt). The vector of time-varying parameters ft = (µt, γt, δt)
′ is

updated at each time t as

ft+1 = ft +Ast, t = 1, . . . , T (2)

where A contains the parameters regulating the law of motion of the distribution parameters, and st
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contains the likelihood information from the prediction error ε̂t. Specifically, st = St∇t is the scaled

score, with ∇t = J ′t

[
∂`t
∂µt

, ∂`t
∂σ2
t
, ∂`t
∂ρt

]′
being the gradient of the log-likelihood function with respect

to the non-linear transformation of the parameters, and Jt the Jacobian matrix for σt and ρt.

The scaling matrix St is proportional to the diagonal of the information matrix It = E [∇t∇′t],

such that St = (J ′tdiag(It)Jt)−1. This makes the dynamics of the model parameters entirely

observation-driven in the sense of Cox (1981), i.e., the dynamics of the parameters is a function

of past prediction errors only. We assume that A is diagonal; hence, given the specification of

the scaled score, the update of each of the time-varying parameters is proportional to the infor-

mation conveyed by the likelihood with respect to that specific parameter. Blasques et al. (2015,

2022) show that score-driven updates – such as the one outlined in Equation 2 – reduce the local

Kullback-Leibler divergence between the true, unobserved, conditional density of the returns and

the model-implied estimate, even when the underlying model is potentially mis-specified.9

The updating mechanism of the time-varying parameters is based on the score vector. The latter

translates new information – which is summarized by the prediction error – into an update of the

parameters of the model. Given the specification in Eq.(1) and the conditional log-likelihood in

Eq.(5), the elements of the score vector are defined as:

sµ,t = χ(1 + ρ2
t )wtεt, sγ,t = χ(ν + 1)(wtε

2
t − σ2

t ), sδ,t = χs(εt)(1− s(εt)ρt)wt
ε2
t

3σ2
t

, (3)

where s(·) is the sign function, χ = (ν+3)
(ν+1) and

wt =
ν + 1

ν (1 + s (εt) ρt)
2 + ζ2

t

. (4)

represents the weights to the standardised prediction errors ζt=
εt
σt

. For the interested reader, a full

derivation of the information matrix It, the Jacobian Jt and the elements of the scaled score vector

st is provided in Appendix C. The updates in the parameters depend only on the standardised

prediction error and its square (see, e.g., Hansen, 1994). Notably, the updates on the transformed

scale and shape parameters are independent conditional on the prediction error. This means that

9Relatedly, Koopman et al. (2016) show that score-driven time-varying parameter models produce similar forecast-
ing precision to parameter-driven state–space models, even if the latter constitute the true data generating process.
In this respect, score-driven updates of the time-varying parameters are optimal from an information theoretic per-
spective.
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there is no overlapping information between the conditional volatility and the conditional skewness.

As highlighted by Delle Monache and Petrella (2017), the scalar wt plays a key role as it serves as

an implicit weight of the information contained in the prediction error. For the interested reader we

report in Appendix C the key properties of the parameters updating scheme. To summarise, the joint

role of the conditional estimates allows for a timely detection of shifts in the shape of the conditional

distribution of the returns, while at the same time discounting the effect of outlying observations. In

addition, while the scores for the location and shape parameters are negatively correlated, updates

of σt are unconditionally uncorrelated with revisions of the other parameters. Nevertheless, during

crashes, when prediction errors are large and negative, updates on the scale and the shape parameters

positively co-move, so that the conditional distribution of the momentum returns features negative

shifts in the location, increasing dispersion and deepening negative skewness, consistent with a

standard leverage effect (see, e.g., Glosten et al., 1993).

3.1 Estimation procedure

A feature of observation-driven models is the straightforward computation of the likelihood function

(see, e.g., Creal et al., 2013; Harvey, 2013). Arellano-Valle et al. (2005) show that any symmetric

density on R can be uniquely determined from a density on R+, and a Skew-t distribution can

then be expressed as a combination of strictly positive densities. For the model specified in Eq.(1),

we characterise the conditional log-likelihood as a two-piece distribution (see Fernández and Steel,

1998);

`t(rt|θ, ft) = const− 1

2
log σ2

t −
1 + ν

2


log
[
1 +

ε2t
ν(1+sgn(εt)ρt)2σ2

t

]
, rt ≥ µt

log
[
1 +

ε2t
ν(1−sgn(εt)ρt)2σ2

t

]
, rt < µt

(5)

where θ = (ν,A) collects the time-invariant degrees of freedom and the score loadings. Appendix

C.1 provides more details. In principle, maximum likelihood estimation of the latent states ft and

static parameters θ can be achieved via a prediction error decomposition (see Blasques et al., 2022).

However, given the random-walk nature of the time-varying parameters, the maximum likelihood

estimator tend to put a large point mass at zero, an issue known as the “pile-up problem” (see, e.g.,

Sargan and Bhargava, 1983; Anderson and Takemura, 1986; Tanaka and Satchell, 1989; Stock and

Watson, 1998). To address this issue, we discipline the parameter space by introducing a minimum
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set of priors on the score loadings and the degrees of freedom which, while excluding zero, are also

quite uninformative, in that any evidence on time variation reflects a strong evidence in the data.

Let aj the jth element on the diagonal of A, ν is the Skew-t degrees of freedom and f̄0 =

[µ̄0, δ̄0, γ̄0] collects the initial values of the time-varying parameters. Our prior specifications for

these parameters is as follows: an inverse Gamma prior aj ∼ IG(aκ, bκ) for each element in the

diagonal matrix A; a truncated Gamma prior ν ∼ G(dν , Dν) · I(ν≥3) for the degrees of freedom;

and a standard multivariate Gaussian f̄0 ∼ N (m0,M0) for the initial values of the time-varying

parameters. We choose an inverse Gamma prior for the score loadings in line with the properties

of the score-driven filters (for further discussion, see Juárez and Steel, 2010; Blasques et al., 2015).

We set aκ = 2, and bκ = 1, so that a priori the loadings in A are positive, with a mode of 0.3.

The hyper-parameters for the Gamma prior on the degrees of freedom ν reflect a rather uninfor-

mative prior view on the parameters, with dν = 2 and Dν = 5. These values allow the distribution

to explore a wide range of feasible values for ν, with a mean of 10 and a mode of 8 (see, e.g., Juárez

and Steel, 2010).10 The initial values of the time-varying parameters are drawn from a multivariate

Gaussian distribution, with mean vector m0, and M0, both estimated over a pre-sample of data. The

small time variation embedded into the prior of the latent states is a prerequisite for the optimality

of the score-driven updating (see, Blasques et al., 2014). The posterior distribution is not available

in closed form and is numerically evaluated based on draws from the priors and the conditional

likelihood in Eq.(5). For each draw θi =
(
Ai, νi, f i0

)
∼ π (θ), we estimate the time-varying parame-

ters
{
f it |θi, f i0

}T
t=0

, and evaluate the log-likelihood `(r|θi) =
∑T

t=1 `t(rt|θi, f it ). We approximate the

corresponding posterior distribution π
(
θi|r
)
∝ `(r|θi)π

(
θi
)

for each draw θi. Then, the parameters

of the model are estimated as θ∗ = arg maxθ π
(
θi|r
)
.

3.2 Conditional skewness and expected returns

Existing literature suggests that downside risk predicts future returns better than volatility (see,

e.g., Wang and Yan, 2021). Our modelling framework directly embeds this observation and explicitly

consider the effect of returns’ asymmetry ρt, in addition to the location µt and scale σt parameters,

on the dynamics of the strategy expected returns. The latter are of particular relevance for our

purpose. Within the context of reduced-form empirical asset pricing models, the ex-ante conditional

10In order to ensure the existence of at least the first three moments, we assume ν > 3.
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expected returns on zero-cost long-short portfolios are often considered a proxy for the strategy risk

premium (see, e.g., Gu et al., 2020).

The expected future returns conditional on the information available at time t can be derived by

re-parametrising the Skew-t density in Eq.(1) as a two-piece distribution (see Gómez et al., 2007).

This allows us to model the conditional moments as a weighted average of the moments of a Half-t

distribution (see Arellano-Valle et al., 2005). Thus, the expected one-step ahead return at time t on

the momentum strategy is defined as:

Et(rt+1) = µt + g(ν)ρtσt, ν > 3 with g(ν) =
4νC(ν)

ν − 1
(6)

where C(·) is a combination of Gamma functions and constants, and ν is the degrees of freedom

parameter. For the interested reader, a full derivation of the moment-generating function and the

corresponding expected returns from the two-piece Half-t distribution is provided in Appendix D.

Based on Equation 6, the expected future returns on the momentum strategy depend on both the

scale and the asymmetry ρt of the returns’ distribution at each time t. To better understand the

role of these parameters on expected returns, we implement a comparative static analysis by looking

at the changes in expected returns from ρt, σt, and the degrees of freedom ν in conjunction.

Figure 3 shows the comparative statics as a heat map. For simplicity, we assume that µt = 0.

The left panel reports the expected value as a function of ρt and σt. To increase the readability

of the heat map, we also report the partial derivative of Equation 6 with respect to ρt and ν for

varying values of σt. Two facts emerge: first, the effect of ρt on the expected returns is amplified by

the scale σt. For instance, for negatively skewed returns, i.e., ρt < 0, the higher the volatility the

lower is the conditional expected returns. This is consistent with the idea that high volatility with

negative skewness is associated with large losses from the strategy.

The second property that emerges from Figure 3 is that the interplay between asymmetry and

volatility on expected returns is multiplicative. This means that the curvature of the expected

returns as a function of the scale σt increases more than linearly as a function of the returns’

asymmetry ρt. The steepness of the curvature is regulated by the degrees of freedom ν (see the

partial derivatives). This means that the more extreme the return observations are, the higher the

sensitivity of the conditional expectations to changes in the returns’ scale and asymmetry.
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The right panel of Figure 3 shows the effect of ρt and ν on the conditional expected returns.

Thicker tails, meaning lower values of ν, push the strategy expected returns to more extreme values,

depending on the sign of the returns’ asymmetry. For instance, for a small value ν = 2, the expected

returns range between -3 and +2 for ρt = 1 and ρt = −1, respectively. For higher values of ν, the

sensitivity of the expected returns to changes in the asymmetry parameter decreases. The effect of

a change in the shape parameter depends on ν is more visible in the plot of the partial derivative of

Equation 6 with respect to ρt: the correlation between skewness and expected returns is mitigated

by the thinner tails of the returns’ distribution. Nevertheless, the conditional skewness still dictates

the sign of the expected returns.

4 Time-varying skewness of momentum returns

In order to initially gauge the magnitude and the dynamic of the returns’ asymmetry we look at the

estimates of µt against the conditional mean Et(rt+1) as per Equation 6. The conditional location

parameter µt captures the centre of the distribution and is equivalent to the conditional mean only

for models with symmetric distributional assumptions – when the returns’ asymmetry ρt = 0. The

left panel of Figure 4 reports the estimates for the WML portfolio. Two things emerge: first, there is

a considerable time variation in the location parameter (red line), which supports the idea of time-

varying expected returns in momentum strategies (see, e.g., Grundy and Martin, 2001; Kelly et al.,

2021). Second, there is a major disconnect between µt and the conditional mean Et(rt+1). This is

particularly pronounced during the momentum crashes of 1932-1939 and 2008-2009. For instance,

while the expected returns from the WML portfolio become largely negative in the aftermath of the

great depression and the great financial crisis, the location µt remains largely in positive territory

for both periods.11

The top-right panel of Figure 4 shows that the disconnection between µt and Et(rt+1) < µt is

particularly strong for past winners. The estimate of the location parameter is primarily positive,

while the conditional expected returns are often negative, especially during momentum crashes.

Instead, the bottom-right panel of Figure 4 shows that the returns’ asymmetry is less pronounced

for the past losers portfolio. The location and the conditional expected returns tend to align

11Recall that for a given σt, the disconnect Et(rt+1) < µt implies that the returns’ asymmetry is negative, i.e.,
ρt < 0 (see Eq.6).
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fairly closely, with the notable exception of the 2001 and 2008 crashes where expected returns are

substantially lower than µt. Figure 4 points towards a compounding effect between the large negative

skewness in past winners and the relatively smaller negative skewness of past losers. Overall, the

fact that the conditional expected returns are lower than the location of the distribution, and that

such a discrepancy tends to exacerbate during momentum crashes, suggests that there is indeed

significant, time-varying, pro-cyclical, asymmetry for both legs of the momentum strategy.

The left panel of Figure 5 shows the estimate of the conditional skewness for the WML portfolio

returns. To increase readability, the figure reports the daily estimates in black, and a five-year

smoothed trend in green. The dashed red horizontal line represents the sample mean of the condi-

tional skewness. There is substantial time variation of the momentum returns’ asymmetry, especially

around recessions and momentum crashes. In particular, momentum returns show a mildly negative

skewness ahead of crashes, which then drops quite substantially during crashes. For instance, in Au-

gust 1932 momentum skewness remains below its mean value for about two decades before it starts

increasing steadily. This is in line with the pattern observed for the cumulative performance of the

strategy, where a full recovery from the loss incurred in 1932 only happened during the 1950s.12

The right panels shows the conditional skewness estimates of the past winners’ (top panel)

and the past losers’ (bottom panel) portfolios. There is an interesting discrepancy between the

asymmetry of the returns on past winners versus losers portfolios. For instance, the time-varying

skewness for past winners is in deep negative territory, essentially for the whole sample. On the

other hand, past losers tend to have a significant upside exposure towards the tail of recessions;

that is, the skewness becomes positive at the latest stages of the great depression, the dot-com bubble

and the great financial crisis. As a result, the conditional skewness of the momentum strategy tends

to become more negative during the tail of recessions and throughout momentum crashes: the WML

portfolio implicitly is “buying” a moderately lower downside risk, but at the same time was “selling”

a substantially higher upside risk, with the latter more than offsetting the former.

Figure 6 delves into the two major momentum crash periods of 1932–1939 (top panels) and

2001–2009 (bottom panels), as indicated by Daniel and Moskowitz (2016). The left panels shows

12The average value of the dynamic skewness estimate is roughly -0.3 (red dotted line), which is smaller than
the sample skewness of -1.2 (see Table 1). The discrepancy between the sample skewness estimate and the average
skewness from our model is due to the robustness of the score-driven model to outliers (see Harvey and Luati, 2014;
Delle Monache et al., 2021).
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the conditional skewness for the WML portfolio. To a large extent, consistent with the estimates in

Figure 4, the asymmetry of the returns is most negative during the momentum crash of 1932–1939,

and significantly drops from -0.1 to -0.4 towards the tail of the great financial crisis. The mid and

right panels show that this is mostly due to the increasing risk on the upside for the past losers’

portfolio, which represents the short leg of the momentum strategy. Interestingly, the dynamics

of the conditional skewness during the 2009 momentum crash is slightly different: it is really the

incremental risk on the downside of past winners that seems to weigh more for the WML portfolio.

Both legs of the momentum strategy turn out to have negative skewness during the 2001 momentum

crash, which results in a relatively mild risk on the downside for the WML strategy.

5 Skewness-managed momentum

A list of papers have attempted to improve the profitability of a standard momentum strategy as

originally proposed by Jegadeesh and Titman (1993). For instance, Grundy and Martin (2001)

propose to hedge the exposure to market risk to attenuate the effect of momentum crashes. Other

approaches attempt to time the volatility associated with momentum returns (see Barroso and

Santa-Clara, 2015, Daniel and Moskowitz, 2016 and Moreira and Muir, 2017).

Within this setting, during periods of higher (lower) volatility – relative to the unconditional

mean volatility – the notional capital exposure to the to the WML portfolio is reduced (increased) by

an amount proportional to the inverse of the previous month’s realised variance. In practice, this

should improve the risk-adjusted returns on the momentum strategy by leveraging on a “stop-loss”

rule based on conditional volatility estimates. Based on a similar logic, Daniel and Moskowitz (2016)

put forward a dynamic strategy aimed at maximising the conditional Sharpe ratio with weights:

wt =
1

2γ

Et(rt+1)

Vt(rt+1)
(7)

where γ is a constant calibrated to match the unconditional volatility of the strategy. In the original

framework of Daniel and Moskowitz (2016), the conditional expectation Et(rt+1) is assumed positive

and constant during bull markets, while it varies during bear market periods. In addition, the

conditional variance Vt(rt+1) is estimated as a weighted average of asymmetric GARCH variance

(Glosten et al., 1993), and a six-month realised variance. We expand on Daniel and Moskowitz
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(2016) and exploit the flexibility of our modeling framework to decompose the optimal Sharpe ratio

weights in two parts:

wt =
1

2γ

Et(rt+1)

Vt(rt+1)
=

1

2γ

µt + g(ν)ρtσt
Vt(rt+1)

=
1

2γ

µt
Vt(rt+1)︸ ︷︷ ︸
w1,t

+
1

2γ

g(ν)σtρt
Vt(rt+1)︸ ︷︷ ︸
w2,t

. (8)

where the conditional variance of the momentum returns can be derived analytically based on the

moment generating function (see Appendix D) as,

Vt(rt+1) = σ2
t

(
ν

ν − 2
+ h(ν)ρ2

t

)
, ν > 2, (9)

with h(ν) = 3
ν−2 − g(ν)2 � 0 gauging the interaction between the fat-tailedness of the distribu-

tion via ν, and the asymmetry parameter ρt.
13 The first component w1,t in Eq.(8) is akin to the

maximum conditional Sharpe ratio adjustment proposed by Daniel and Moskowitz (2016) under the

assumption of symmetric returns, i.e., ρt = 0, µt = Et(rt+1) and w2,t = 0. The second component

w2,t captures the capital adjustment due to time-varying momentum returns’ asymmetry: for a

given level of conditional variance, the additional leverage component w2,t becomes more negative

(positive) as the asymmetry ρt becomes more negative (positive).14 As a result, during periods of

high negative (positive) skewness, our skewness-adjusted momentum portfolio wt unwinds (leverage

up) the investment in the original WML factor more than a dynamic volatility targeting does. Put

it differently, the w2,t component can be interpreted as skewness hedging component within the

context of an otherwise standard maximum Sharpe ratio strategy.

Before discussing the empirical results one comment is in order. A growing body of literature is

concerned with the extension of the well-known mean-variance framework towards considering the

skewness dynamics (see, e.g., Menćıa and Sentana, 2009). This is typically implemented by including

higher-order moments in the agents’ utility maximisation and asset allocation problem. Differently,

our modelling framework focuses on eliciting the effect of conditional skewness in adjusting the

capital exposure to an otherwise standard risk-managed momentum strategy. The main advantage

is that we can still gauge the benefit of explicitly modelling time-varying returns’ asymmetry within

the context of the benchmark maximum Sharpe ratio approach, as in Barroso and Santa-Clara (2015)

13Notice that for ρt = 0, Vt(rt+1) reduces to the Student-t variance, σ2
t

ν
ν−2

.
14Remember that the asymmetry parameter has a sizable effect on the mean of the returns, whereas it has little

impact on their variance since enter squared.
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and Daniel and Moskowitz (2016). In fact, compared to a model where ρ = 0, our specification

captures returns’ underlying asymmetry via the first two moments. For instance, Equation 6 shows

that a more negative ρt implies a lower conditional mean for a given value of the scale σt.

5.1 Out-of-sample managed momentum returns

We now compare our skewness-managed strategy – the maximum skewed-Sharpe ratio (mSSR) –

against a variety of alternative volatility-targeting approaches. First we consider two benchmark

approaches based on a conditional maximum Sharpe ratio as in Daniel and Moskowitz (2016) (mSR),

and constant volatility targeting as in Barroso and Santa-Clara (2015) (cVol). These are based

on the estimates of Et(rt+1),Vt(rt+1) under the restriction ρt = 0.15 In addition, for the sake of

comparability with our model-implied managed portfolios, we also compare the same exact imple-

mentation of Daniel and Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015)

which are based on recursive estimates of the realised variance.16 Finally, we also compare out

skewness-adjusted momentum strategy against a constant volatility targeting with skewness (cSVol)

and realised semi-volatility as in Wang and Yan (2021); Hanauer and Windmüller (2023) (cdVol).

For each strategy implementation the structural parameters of the model, with or without time-

varying skewness, are re-estimated each month; that is, the time-varying parameters µt, σt and ρt

are extracted on a daily basis assuming that the structural parameters of the score-driven transition

remain constant within a given month. The reason is primarily to reduce the computational cost

of the real-time estimation procedure. The random walk dynamics of the parameters in ft implies

that are in general very stable and therefore re-estimating the model daily likely has virtually no

impact on the empirical estimates. The initial forecast and portfolio choice is generated in January

1st 1930 – that is, we use three years of daily returns as an initial burn-in sample for the recursive

forecasts. For the monthly implementation, we re-scale the model-implied conditional mean and

variance from daily to monthly.

15To tease out the effect of conditional asymmetry vs volatility alone, the daily returns on the strategies that
overlook skewness risk are computed by re-estimating the model constraining ρt = 0. More specifically, we estimate
the model restricting the parameter to be ρt = 0, t = 1, . . ., while the conditional volatility evolves over time based on
the score-driven dynamics.

16Barroso and Santa-Clara (2015) use daily momentum strategy returns to compute six-months realised volatility,
rv126t , measures to implement a volatility-managed momentum strategy. Instead, Daniel and Moskowitz (2016) target
a maximum Sharpe ratio strategy, where the mean signal, µt, is obtained as the fitted values of a regression of the
WML portfolio returns on market risk – proxied by rv126t ) in bear market states. The conditional volatility estimate,
σ2
t , is the fitted value of a regression of 22-days WML realised volatility, rv22t , on rv126t and daily asymmetric GARCH

volatility as in (Glosten et al., 1993).
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We evaluate the portfolios by means of several distinct sets of performance measures. The first

is the Sharpe ratio, SRi = E[R̃i]

V ol(R̃i)
, which measures the reward of the investment once volatility has

been accounted for. We test for the significance of the improvements in the SRs compared to the

WML original factor based on the bootstrap procedure proposed by Ledoit and Wolf (2008). We also

compare the portfolios by means of a second measure, namely the Sortino ratio (see, e.g., Sortino

and Van Der Meer, 1991). The Sortino ratio entails a penalisation only for returns that fall below

a certain threshold. The threshold, commonly referred to as the minimum accepted return (MAR),

is generally set at the risk-free rate. The denominator of this ratio is dVol= V ol(R̃i|R̃i < 0), with

R̃i being the excess return of strategy i. To account for downside risk, we also report a series of

additional performance measures, such as the maximum drawdown (henceforth MaxDD), the sample

skewness, the Value-at-Risk (henceforth VaR), and the Expected Shortfall (henceforth ES).

Panel A of Table (2) reports the results for the daily returns. The Sharpe ratio of the skew-

managed strategy, mSSR, is 1.57 (pval = 0.000) in annualised term. This is about twice as large

as the SR delivered by the original momentum factor. Consistent with the existing literature,

the dynamic adjustment of Daniel and Moskowitz (2016) and the constant volatility targeting of

Barroso and Santa-Clara (2015) do improve in risk-adjusted terms versus the WML portfolio, with

a SR of 1.37 and 1.26, respectively (pval = 0.001). Scaling by semi-volatility and accounting for

skewness in the constant volatility targeting strategy also marginally improves upon both DM2016

and BS2015. Nevertheless, our skewness-adjusted maximum Sharpe ratio generates the highest SR

of 1.57 annualised (pval = 0.001). The same pattern holds for the Sortino ratio. For instance, our

mSSR strategy produces a 2.5 Sortino ratio against 2 from the cSVol, cVol, cdVol, and DM2016. By

comparison, the original WML factor has a Sortino ratio of 1.

Higher Sharpe and Sortino ratios do not translate in higher MaxDD, ES, or more negative

skewness. In fact, the opposite holds. Interestingly, both DM2016 and BS2015 do compare favourably

against the semi-volatility scaling when it comes to MaxDD. In addition, with the exception of our

mSSR adjustment, the maximum Sharpe ratio adjustment of Daniel and Moskowitz (2016) produces

a lower VaR compared to other competing volatility targeting strategies. To a large extent, the

Sortino ratios, the MaxDD and the VaR suggest even bigger gains associated with our skew-managed

strategy: risk-adjusted returns are not only higher, but may be less exposed to downside risk.

We formally test this assumption by reporting in Table (2) two additional downside risk perfor-
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mance measures across portfolios. Specifically, we compute the Stable Tail Adjusted Return Ratio

(henceforth STARR), which replaces volatility with ES as denominator in the Sharpe ratio, and the

Rachev ratio (henceforth RR), which is calculated as the ratio between the Expected Longrise over

the ES (see, e.g. Fabozzi et al., 2005).17 Our skewness-adjusted maximum Sharpe ratio portfolios

outperform all competing methods, with a STARR (RR) of 14.2 (1.3) against 11.4 and 10.1 (1.1 and

0.97) obtained from Daniel and Moskowitz (2016) and Barroso and Santa-Clara (2015), respectively.

Panel B of Table (2) reports the results for the monthly portfolio implementation. The perfor-

mance measures on a monthly basis are smaller across the board. This applies to any risk-managed

momentum strategy as well as the original WML portfolio. Both the Daniel and Moskowitz (2016) and

Barroso and Santa-Clara (2015) volatility-managed portfolios improve upon the original momentum

strategy. The higher Sharpe ratio and the smaller maximum drawdown is in line with the existing

evidence. Notably, while it performs on par in risk-adjusted terms to other competing strategies, our

baseline skewness-managed momentum mSSR outperforms all competing volatility targeting meth-

ods in terms of realised downside risk. For instance, our skewness-adjusted strategy produces the

lowest semi-volatility, the highest skewness, the lowest VaR, the lowest ES and the highest STARR

measure.

5.1.1 The role of skewness hedging. Panel C in Table (2) disentangle the effect of skewness

by separating the performance of the two components w1,t and w2,t separately. We report the same

set of statistics as in the main daily portfolio results. The results show some interesting insight

into the origins of the performance of skewness adjusting. For instance w1,t in isolation delivers

substantially higher SR and Sortino ratios compared to w2,t on itself. This reflects in a marginally

lower risk-adjusted performance of wt compared to w1,t.

On the other hand, the returns from the skewness hedging component show a lower VaR, MaxDD,

ES and semi-volatility. This result supports the idea that within the context of our model, skewness

hedging represents an insurance component in the portfolio construction; that is, a representative

investor is willing to give up part of the risk premium to mitigate the effect of low-probability large-

impact losses. This is consistent with the fact that investors dislike negative returns and weight

losses more than gains (see Kraus and Litzenberger, 1976; Kahneman and Tversky, 2013).

17The Expected Longrise is simply the opposite of the ES. It is the expected valued of the area above the 95th
percentile of the distribution. The Rachev ratio captures the asymmetry of the returns distribution based on the
imbalance between extreme losses vs gains.
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5.1.2 Transaction costs and risk aversion. The last column in Panel A and B in Table 2

shows the average scaling wt implied by our mSSR strategy as well as all competing methods. The

results show that our skewness-based scaling implies, on average, a more conservative leverage of

the notional invested in the original WML factor. Indeed, the average weight wt is 0.57 for the

mSSR against 1.6 and 0.97 from the cdVol and DM2016, respectively. Interestingly, by scaling for a

long-term estimates of the realised variance the amount of leverage implied by volatility targeting is

substantially reduced. For instance, scaling by the six-month realised variance as in BS2015 produces

the lowest average leverage. This is consistent with some of the existing evidence in the literature,

such as Barroso and Detzel (2021) and Bernardi et al. (2022).

We now investigate the implications for turnover and leveraging by evaluating the portfolio

performances net of transaction costs and performance fees. Specifically, we implement three

difference exercises: first, let Ri,t = 1 + Ri,t denote the gross returns at time t for strategy i,

i = mSSR, cSvol, DM2016, BS2015. Rebalancing the portfolios each day requires adjusting the

position in momentum returns by the amount |wi,t+1 − wi,t| and cost c. Following DeMiguel et al.

(2009), we define the evolution of wealth for strategy i as Wi,t+1 = Wi,tRi,t (1− c|wi,t+1 − wi,t|),

such that returns, net of transaction fees, can be computed as r−c =
Wi,t+1

Wi,t
−1. As a second measure

of net economic value we follow Fleming et al. (2003) and evaluate the maximum performance fee

an investor with constant relative risk aversion (CRRA) utility function would be willing to pay to

access the signal from a model. For any pair (i, j) of strategies, the fee F arises as the solution of,

T−1∑
t=0

(Ri,t −F)(1−δ)

1− δ
=

T−1∑
t=0

R(1−δ)
j,t

1− δ
, (10)

where δ is the degree of relative risk aversion. Finally, as a third measure to further understand

the outperformance of our strategy, we also consider a measure of abnormal return measure, dA,

as in Modigliani and Modigliani (1997). For any pair of strategies (i, j), we leverage up or down

strategy i so as to match the downside-risk profile of strategy j, and we evaluate the annualized,

risk-adjusted abnormal returns as follows dAi,j = dV oli(Sortinoi − Sortinoj).18

18Notice that our goal is not to propose an actual trading strategy that can be implemented “off the shelf”, but
rather to show the economic value of expanding the notion of risk to the third moment within the context of managed
momentum portfolios. In other words, although simplistic, we believe that considering different types of cost measures
could help to shed further light on the incremental value of controlling for time-varying skewness when constructing
managed momentum portfolios.
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Table 3 reports the results. We compute both the performance fees and abnormal returns with

respect to the unmanaged WML strategy. We consider several level of transaction costs, ranging from

0 to 14 bps (see Moreira and Muir, 2017); for the performance fees we set δ = 5 (see, e.g., Rapach

et al., 2010; Rapach and Zhou, 2013; Pettenuzzo et al., 2014; Gu et al., 2020; Bianchi et al., 2021 and

the references therein). Overall, relative to the simple WML strategy, a skewness-managed portfolio

realises higher annualised average returns net of notional transaction costs. In addition, such a

strategy commands higher performance fees to be access by a CRRA investor. The performance

fee of our model remains relatively large compared to the original WML factor for several values of

transaction costs. For instance, for 14 basis points of notional costs the abnormal performance –

relatively to WML – of the mSSR is 13%, against 11.9% and 9.8% annualised from the DM2016 and

BS2015, respectively.

In addition to different transaction costs, we also consider different levels of risk aversion. We

repeat the economic evaluation of Table 3 controlling for different levels of risk aversion of δ = 2, 7, 15.

For the ease of readability, we report the results in B and discuss the results in the main text. Table

B1 shows that explicitly considering time-varying skewness for modelling momentum risk become

even more valuable for an investor that is more risk averse.

5.2 Simulation-based evidence of the role of skewness

The results in Table 2 highlight the economic value of skewness hedging compared to more traditional

volatility targeting in momentum portfolios. In this section, we provide some practical justification

on the origins of such economic gain based on a simple simulation exercise whereby the returns

are generated based on different distributional assumptions on the residual term εt ∼ D in a data

generating process of the form yt = µ + σtεt. Our goal is to show that when the conditional

distribution of the returns departs from a Normal, a simple time-varying volatility scaling to mitigate

risk is sub-optimal, both from a statistical and economic perspective. Our intuition is that the more

misplaced is the assumption of Normality compared to the true data generating process, the larger

the cost that will be paid by a mean-variance investor in risk adjusted terms.

We consider five different assumptions for the distribution D: Gaussian (N ), Skew-Gaussian

(Skew−N ), Student-t (t), and asymmetric Student-t (Skew−t) with constant skewness and an

asymmetric Student-t with time-varying asymmetry (Skewtv−t). For simplicity we consider all
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Student-t distributions with 5 degrees of freedom and calibrate the unconditional mean µ with the

sample mean of the historical WML returns. Time-varying volatility σt is simulated from a stationary

GARCH(1,1) model calibrated based on historical WML returns. For each distribution assumption,

we simulate 100 paths of 10,000 observations. The Skew−N and Skew−t distributions feature -0.12

and -0.3 unconditional skewness, respectively.

Figure 7 shows the simulation results. The panels show the distribution of the Sharpe ratio

(a), Sortino ratio (b), and expected shortfall (c), for the simulated data (blue) and three portfolios:

constant volatility (cVol, red), maximum Sharpe ratio (mSR, yellow) and maximum Sharpe ratio

with time-varying skewness (mSSR, purple). Constant volatility portfolio returns are obtained by

standardizing the simulated returns by GARCH(1,1) volatility estimates, while maximum Sharpe

ratio strategies are obtained as per Section 5; we target an annualized volatility of 18% across all

strategies consistent with the market portfolio returns (see Table 1).

Two interesting facts emerge. First, constant volatility targeting does indeed improve upon the

original returns when the unconditional distribution of the returns is non-normal. This is reflected in

a higher Sharpe and Sortino ratios when the returns distribution is fat-tailed or negatively skewed,

unconditionally. Furthermore, when targeting is based not only on the conditional variance but also

on the conditional mean, i.e., maximum Sharpe ratio, the loss-mitigation effect is larger. That is, the

mSR strategy performs almost on par in risk-adjusted terms to our time-varying skewness adjustment

mSSR. Second, and perhaps more interestingly, when the skewness of the returns distribution is time

varying the gap between our mSSR and a more conventional maximum Sharpe ratio portfolio mSR

becomes large and positive. This suggests that the economic gain from our skewness managed

momentum strategy lies in the ability of our modeling framework to capture the dynamics of the

conditional skewness.

More generally, the results reported in Figure 7 highlight the costs of overlooking higher order mo-

ments in the conditional distribution of the returns, when they are present in the data. Specifically,

even when returns do not feature skewness, considering robust volatility estimates tend to improve

the upside risk of the returns. When data feature time-varying skewness, a maximum Sharpe ratio

strategy that explicitly accounts for it delivers returns with meaningful positive skewness. When

skewness and heavy-tails are explicitly modelled and they are featured in the data, the economic

gains are even more pronounced.
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6 Skewness and momentum risk

A well documented result in the momentum literature is that momentum returns have time-varying

volatility (see Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016). This is an intuitive

finding because, as shown by Grundy and Martin (2001), momentum investing has a time-varying

exposure to market risk, whereby outside of bear markets winners are low-beta stocks and losers

have high betas. Following this intuition, existing research, such as Barroso and Santa-Clara (2015);

Daniel and Moskowitz (2016); Moreira and Muir (2017); Cederburg et al. (2020), argue that ad-

justing the capital exposure to momentum based on its conditional volatility would suffice to hedge

momentum risk in real time. This contrasts with our finding that the risk of momentum is also signif-

icantly linked to conditional skewness (see Section 4), and taking that into account offers substantial

economic gains (see Section 5).

However, why does skewness matter beyond conditional volatility? We conjecture that this is

because the dynamics of the conditional skewness has first-order implications for the evolution of

the strategy risk-return trade-off over time. Equation 6 shows that, within our model, we can

distinguish two components for the variation in the conditional expected returns Et(rt+1): the

location parameter, µt, and a nonlinear function of higher-order moments, homt = g(ν)σtρt. A

negative (positive) ρt amplifies the negative (positive) effect of a large value of the scale parameter

σt (see Section 3.2 for more details). In order to isolate the effect of returns’ asymmetry ρt on

expected returns, we perform a second-order Taylor expansion of Eq. (6) around the mean values

f = (µ, σ, ρ)′. Specifically, let f̃t = ft − f , the expected returns on the momentum strategy can be

decomposed as:

Et(rt+1) = constant + µ̃t + g(ν)ρσ̃t + g(ν)σρ̃t + g(ν)σ̃tρ̃t

Figure 8 reports the sensitivity of the expected returns to a change in ft, times the estimated change

in ft − f , i.e., ∂ Et(rt+1)/∂ft ×
(
ft − f

)
. The different coloured areas represent the five components

of the decomposition; in addition to conditional expected returns (black line), we report the effect

of the changes in the location µt (green), the scale σt (light pink), and the asymmetry ρt (violet) of

the conditional distribution, and the interplay between scale and asymmetry σtρt (purple). Notice

that ∂ Et(rt+1)/∂µt > 0, ∂ Et(rt+1)/∂ρt > 0, and ∂ Et(rt+1)/∂σt < 0.
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When we look at the full sample (top panel), one can see that a higher-than-average volatility has

primarily positive effect on expected returns. However, the effect of volatility on expected returns

seem to be inverted during recessions and the major momentum crash periods highlighted in pink

shaded areas. The bottom panels of Figure 8 zoom in the two main momentum crashes of 1932–

1939 and 2001–2009, as indicated by Daniel and Moskowitz (2016). The effects of volatility and

asymmetry on the dynamics of expected returns are much cleaner. Contrary to the conventional

wisdom, during the momentum crash between 1932 and 1938 higher expected returns do not uniquely

depends on higher volatility (see Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016).

Towards the end of the momentum crash period of the 30s the effect of ρt becomes fairly relevant;

in fact it is dominant from mid-1935 to the end of the 1938 recession. Put it differently, what

emerges from Figure 8 is that when volatility is above average, the drag exerted by the conditional

skewness increases and becomes potentially predominant. In the aftermath of the 1932 recession this

relationship steadily changes: the effect of returns’ skewness on expected returns increases, while

the volatility term and the second-order term, ∂ Et(rt+1)/∂σt∂ρt, becomes more muted due to a

significant decrease in volatility. This suggests that while volatility risk is particularly prominent

within the recession period, the returns’ skewness plays a significant role for the dynamics of the

strategy expected returns during the crash following the great depression.

A slightly different pattern emerges for the dot-com bubble and the great financial crisis of

2008/2009, as shown in the bottom-right panel of Figure 8. The negative impact of higher volatility

on expected returns is rather clear. The term ∂ Et(rt+1)/∂σt×(σt−σ) is largely negative from 2001 to

late 2002. However, the joint effect of volatility and skewness on expected returns is highly positive.

This produces a positive expected returns, and suggests that that despite the negative effect of a

higher volatility on expected returns in the aftermath of the dot-com bubble, this negative effect is

offset by a large and positive effect due to a lower-than-average returns’ asymmetry (see also left

panels in Figure 6). In other words, the relatively lower skewness of the returns mitigates the effect

of a large spike in volatility.

To summarise, momentum expected returns during the great financial crisis of 2008/2009 were

primarily driven by an outlying spike in volatility throughout the recession period, rather than a

reflection of skewness itself. Despite the returns’ asymmetry being relatively lower than average dur-

ing the post-2008 momentum crash, the effect of volatility is so large that the conditional expected

25



returns are essentially dominated by the second moment. Interestingly, outside the two momen-

tum crashes of 2001 and 2009, only the location play any significant role for the dynamics of the

momentum expected returns.

For the interested reader, in Appendix B we report the estimates of
√
Vt(rt+1) for the past

winners, past losers and the WML strategy. Returns on the past losers tend to be more volatile;

in fact, they are almost twice as volatile as the returns for the past winners, especially around

momentum crashes. This is reflected in a highly time-varying volatility for the WML strategy, with

volatility spiking around both during the 1929–1932 recession, the dot-com bubble, and the great

financial crisis of 2008/2009. This is consistent with the findings in Barroso and Santa-Clara (2015)

and Daniel and Moskowitz (2016), and suggests that not only might the distribution be more

asymmetric around momentum crashes, but also that both tails of the distribution tend to be

thicker, in particular towards the end of recession periods.

6.1 Skewness and the momentum risk-return trade-off

Figure 8 shows that the role of volatility on the dynamics of momentum expected returns should

be red in conjunction with time-varying skewness. For instance, when the strategy asymmetry is

close to zero, as in the tail of the dot-com bubble, a larger volatility does not translate in a negative

expected return since its effect is offset by a smaller asymmetry in the returns. In addition, the

results show that the effect of skewness risk on expected returns changes during momentum crashes;

while a lower skewness drags down returns during the post-1932 momentum crash, the opposite

holds for the momentum crashes of 2002 and 2009.

Overall, Figure 8 points towards a negative risk-return trade-off, especially during recessions and

momentum crashes. Clearly, this trade-off does not uniquely depend on the returns’ volatility, but

also depends on the dynamics of the returns asymmetry. By rearranging Eq. (6) and using the

definition of the conditional variance in Eq. (9), we can re-define the expected returns as:

Et(rt+1) = µt + λt
√

Vt(rt+1), (11)

where λt captures the trade-off between risk and return as a nonlinear function of the time-varying
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asymmetry parameter ρt:

λt =
g(ν)√

ν
ν−2 + h(ν)ρ2

t

ρt (12)

Equation 11 implies that the shape of the risk-return trade-off is a function of the returns’ asymmetry.

This function is slightly concave in ρt, and therefore allows for a nonlinear interaction between

conditional skewness, volatility and the conditional expected returns.

Figure 9 compares the theoretical and the actual shape of the risk-return trade-off λt. The more

negative the skewness, the more negative is the trade-off between expected returns and volatility.

These results expands and complement the evidence in Theodossiou and Savva (2016), which argues

that the sign of the trade-off between risks and rewards for momentum strategies is often unclear.

According to them, this inconclusiveness is due to the fact that when the skewness of the returns

distribution is negative, the effects of volatility and skewness tend to offset each other, generating a

highly uncertain dynamics for the risk-return trade-off. Our results suggest that by allowing for a

more general non-linear, time-varying, interaction between skewness and volatility risk, the trade-off

between risk and rewards in momentum investing is persistently negative.

Figure 10 delves deeper into the role of conditional skewness for the risk-return trade-off in

the WML portfolio. In particular, the figure reports the scatter plots of the expected return and the

conditional volatility, the slope, and the interaction λt
√
Vt(rt+1). The red and blue crosses highlight

observations from the 1932 and 2009 crash periods, respectively. The left panel shows that for low

levels of conditional volatility, expected returns cluster around zero, with higher dispersion towards

positive figures, and the least square fit (gray line) points to a mildly negative correlation. The mild

negative correlation between the conditional volatility and expected returns is mainly due to higher

volatility associated with the crashes.

When we look at the trade-off between Et(rt+1) and
√
Vt(rt+1) during momentum crashes, we see

that the negative correlation is much more pronounced, with all outlying values of the scale clustered

over these two periods. These results indicate a strong performance of the strategy for moderate

levels of volatility risk, in line with the intuition in Barroso and Maio (2019). The correlation

between expected return and the slope parameter λt displays instead a mildly positive correlation:

lower values of ρt – which imply larger negative skewness and lower λt – depress expected returns.
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Notably, the relationship between expected returns and the slope on conditional volatility is rather

non-linear during momentum crashes.

When the slope and the conditional volatility are interacted, there is a remarkable fit to the

conditional expected returns. The right panel of Figure 10 highlights how the interaction of the two

parameters results in a strongly negative effect on Et(rt+1): low values of conditional volatility and

ρt are associated with very small values of returns’ asymmetry. When both the scale increases and

the shape of the distribution becomes more tilted to the left, the amplification mechanism leads to

a larger negative effect on expected returns than that exerted by the sole asymmetry. This result

confirms the intuition that the high expected returns associated with the momentum strategy is not

only related to time-varying volatility, but it is also significantly affected by the time variation of

returns’ conditional skewness.

7 Implications for asset pricing

Grundy and Martin (2001) argue that long-short portfolios formed during bear markets are likely

to sell high-beta/buy low-beta stocks as firms dropping with the market will still be high-beta

firms. Building upon this intuition, Daniel and Moskowitz (2016) document how the asymmetric

nature of the market risk exposure of momentum strategies is at the core of momentum crashes

and is primarily due to the past losers portfolio.19 Similarly, Dobrynskaya (2015) finds that –

unconditionally – decile momentum portfolios show a remarkable monotonic increase in the level

of downside risk, suggesting that past winners tend to be associated with higher downside risk,

whereas past losers show higher upside risk.

We now build upon this evidence and the empirical results in Section 4, and attempt to rationalise,

from an asset pricing perspective, the uncovered time-varying skewness risk in momentum returns.

Let us consider a standard conditional CAPM specification which separates up-market and down-

market betas (see, e.g., Lettau et al., 2014),

rt = α+ βmtI(mt ≥ µm) + βmtI(mt < µm)︸ ︷︷ ︸
βmt

+et (13)

19During bear markets and high volatility, the short leg of the strategy commands a higher premium, resulting in
higher gains as the market rebounds.
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with mt ∼ N
(
µm, σ

2
m

)
the normally distributed market portfolio and I(mt ≥ µm) (I(mt < µm)) an

indicator function that takes value one if the market returns are above (below) the mode µm and

zero otherwise. As highlighted by Ang et al. (2006), a state-dependent CAPM formulation as in

Equation 13 can be thought of as the reduced form representation of a general equilibrium model

in which a representative investor is endowed with a disappointment-aversion utility function that

embeds a higher sensitivity to losses versus gains (see, e.g., Gul, 1991).

The distribution of the systematic pricing component, βmt, conditional on the indicator I(·), can

be modelled as a two-piece Normal distribution (see Johnson et al., 1995), such that the difference

between the expected value E [βmt] and the mode βµm takes the form (see Appendix E),

E [βmt]− βµm =

√
2

π
(σm − σm) ∝ σm

(
β − β

)
(14)

with σ2
m = β2σ2

m and σ2
m = β

2
σ2
m. Under the assumption of equal betas across market states,

i.e., β = β = β, we obtain that E [βmt] = βµm, V [βmt] = β2σ2
m; that is, the marginal dis-

tribution of the momentum strategy returns is equivalent to a standard CAPM formulation rt ∼

N
(
α+ βµm, β

2σ2
m + σ2

e

)
(see Arnold and Groeneveld, 1995). On the other hand, with asymmetric

betas β 6= β and sign
(
β
)

= sign
(
β
)
, Equation 14 shows that for β < β (β > β) the expected value of

the systematic CAPM component is lower (higher) than the mode; that is, the marginal distribution

of the returns is negatively (positively) skewed. This holds even assuming that the market returns

and the residual et are both normally distributed.20

Appendix B reports the unconditional estimates of the upside and downside market betas for

both the past losers and winners as well as the WML strategy. The daily estimates show that

the losers’ portfolio is more exposed to upside market risk (β = 1.36) as compared to downside

market risk (β = 1.27), in relative terms compared to the unconditional market beta (β = 1.31).

The opposite holds for the winners’ portfolio (β = 1.09, β = 1.22, β = 1.16), consistent with the

findings in Grundy and Martin (2001). As a result, the WML strategy has a quite sizable and negative

up-market beta (β = −0.27), while the down-market beta is close to zero (β = −0.04).

Panel A in Figure 11 shows the simulated marginal distribution and joint distributions of the

20Notice this holds with the sign of the betas being the same, i.e., sgn
(
β
)

= sgn
(
β
)
. As a matter of fact, under

sgn
(
β
)
6= sgn

(
β
)

the distribution of βmt conditional on the indicator I(·) is no longer a split-Normal but a mixture
of Gaussians with different means.
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returns on the WML strategy and the market portfolio. Returns are drawn from a two-piece Normal

distribution by using the unconditional β and β estimates outlined above, and assuming the market

portfolio and the error term et are normally distributed with mean zero and volatility either equal

to the historical standard deviation or one, respectively. Interestingly, the negative spread in market

betas alone can generate a slightly negatively skewed (skew = -0.1) marginal distribution.

We expand the full sample results by calculating the downside market beta for the past losers

and past winners as well as the WML at different points in time. Estimates are based on time-varying

CAPM with asymmetric betas (see Ang et al., 2006 and Appendix B for more details). The middle

and the right parts Panel A show the simulation results based on the conditional estimates for two

specific timestamps of the momentum crashes as indicated by Daniel et al. (2021). Consistent with

the intuition outlined in Equation 14, the conditional skewness of momentum returns markedly

differs from the full sample estimates. For instance, in March 1935 – in the middle of the largest

momentum crash – the average quarterly difference β−β is as large as -1.5. As a result, the marginal

distribution of the momentum returns (middle panel) is more negatively skewed (-0.805). Similarly,

sampling a date from the great financial crisis of 2008/2009, the average betas spread is -1.4, with

a corresponding returns skewness of -0.529.

7.1 Time-varying skewness and the conditional CAPM

Panel A in Figure 11 suggests a bridge between the asymmetric market exposure highlighted by

Grundy and Martin (2001); Daniel and Moskowitz (2016) and our empirical evidence of a time-

varying conditional skewness in momentum returns. Nevertheless, our conjecture is that simple

model with dynamic betas cannot capture the full extent of the dynamics of the returns’ skewness

and its implication for momentum risk. Panel B of Figure 11 makes this case in point. The figure

shows the sample correlation between the conditional skewness implied by the spread βt − βt (see

Figure B3 in Appendix B) and the empirical estimates reported in Section 4. There is a quite

substantial and positive correlation (0.39, pval = 0.000) between the skewness implied by the state-

dependent CAPM and our estimated skewness over the sample. However, such correlation is flatten

out during the two major momentum crashes of 1932 (red dots) and 2009 (blue dots).

This suggests that a conditional CAPM with Gaussian residuals is likely not flexible enough to

capture the extent of the time variation in the returns’ conditional skewness. Intuitively, the reason
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could be twofold. First, the CAPM residuals are not normally distributed. A set of unreported

results shows that the WML portfolio returns, net of market risk exposure, are still quite negatively

skewed. Second, our simulation is based on the assumption of normally distributed market returns.

Table 1 shows that market returns are indeed quite significantly negatively skewed, at least uncon-

ditionally (skewness= -0.476, pval = 0.059). Nevertheless, the correlation between the market and

momentum conditional skewness is far from obvious. Panel B in Figure 11 shows this case in point.

The daily estimates of the conditional skewness of the market and the WML are only mildly negatively

correlated, with the correlation that is essentially zero once smoother, five-year average, estimates

are considered.

These results are instrumental to highlight one key advantage of our modelling framework: by

explicitly modelling the conditional skewness of the momentum returns, we can capture sources

of asymmetries beyond the spread in the upside and downside market betas. While a fair deal of

asymmetry in the returns’ conditional distribution can be captured by asymmetric betas, there is

still a considerable amount of skewness in momentum returns which can not be reconciled by a

state-dependent CAPM or by the correlation between the conditional skewness of the momentum

strategy and the market portfolio.

8 Conclusions

We investigate the dynamics of the conditional skewness in daily US equity momentum through

the lens of a flexible dynamic parametric model which features time-varying location, scale and

asymmetry in the conditional distribution of returns. Empirically, we show that the conditional

skewness of the strategy returns is time-varying and deepens during the so-called momentum crashes.

This has first-order implications for managing risk in momentum portfolios: an adjusted momentum

portfolio that hedges in real time for both volatility and skewness risk outperforms benchmark

constant and dynamic volatility-managed momentum strategies. This is due to the role of the

conditional skewness for the dynamics of the strategy risk-return trade-off.
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Table 1: Skewness in US equity momentum

This table reports different descriptive statistics and measures of skewness for both past winner and losers portfolios,
as well as the WML momentum strategy for three alternative momentum specifications as in Jegadeesh and Titman
(1993) and Novy-Marx (2012). In addition, we report the sample skewness, with p-values for the Bai and Ng (2005)

test in parentheses, and the quantile skewness (QSα), computed as q(α)+q(1−α)−2q(50)
q(α)−q(1−α) , with α = 99. The sample period

is from July 1st 1926 to September 30th 2020, daily.

12-2 6-2 12-7 MKT

losers winners WML losers winners WML losers winners WML

r − rf (%) −3.500 15.415 18.915 −0.130 12.928 13.059 −0.075 15.126 15.201 7.786

σ (%) 28.570 23.626 24.104 27.975 23.135 22.942 25.650 23.539 19.913 18.643

SR −0.123 0.652 0.785 −0.005 0.559 0.569 −0.003 0.643 0.763 0.418

α (%) −12.640 6.803 22.242 −9.657 4.208 15.341 −9.083 6.326 16.941

β 1.317 1.162 −0.155 1.313 1.153 −0.159 1.242 1.183 −0.060

Skewness 0.140 −0.682 −1.236 0.228 −0.717 −1.554 −0.059 −0.747 −0.768 -0.476

(0.264) (0.022) (0.001) (0.184) (0.018) (0.001) (0.102) (0.028) (0.021) (0.059)

QS99 0.021 −0.108 −0.110 0.001 −0.093 −0.096 −0.025 −0.079 −0.089 -0.045
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Table 2: Managed momentum strategies

The table reports the ranking of different risk-managed portfolios. Panel A reports the daily returns on our skewness-
managed strategy (mSSR) against a variety of alternative volatility-targeting approaches. First we consider two bench-
mark approaches based on a conditional maximum Sharpe ratio (mSR), and constant volatility targeting (cVol). These
are based on the estimates of Et(rt+1),Vt(rt+1) under the restriction ρt = 0. In addition, we also compare the same
exact implementation of Daniel and Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which
are based on recursive estimates of the realised variance. Finally, we also compare out skewness-adjusted momentum
strategy against a constant volatility targeting with skewness (cSVol) and realised semi-volatility adjustment (cdVol).
Panel B reports the same strategies with returns estimated on a monthly basis. We report in parentheses the boot-
strapped p-values for the differences in consecutive Sharpe ratios as in Ledoit and Wolf (2008). The sample period
is from July 1nd 1926 to September 30th 2020. Portfolio weights are generated in real-time by recursive forecasts of
the conditional mean and variance of the returns based on the model parameters. The first three years are used as
burn-in period. Panel C reports a decomposition of the performance of our skewness-managed momentum strategy
between the location component w1 and the skewness hedging component w2 as in Eq. (8)

Panel A: Daily returns

Strategies Sharpe Sortino dVol MaxDD Skew VaR ES STARR RR leverage

mSSR 1.573
(0.001)

2.513 10.738 0.349 0.153 −3.231 −4.770 14.256 1.309 0.573

mSR 1.352
(0.001)

2.118 10.950 0.432 0.133 −3.284 −4.855 12.038 1.266 0.515

cSVol 1.414
(0.001)

2.067 11.737 0.563 −0.043 −4.205 −5.338 11.454 0.998 1.119

cVol 1.407
(0.001)

2.055 11.745 0.567 −0.044 −4.203 −5.343 11.386 0.996 1.125

cdVol 1.394
(0.001)

2.035 11.751 0.558 −0.047 −4.188 −5.349 11.262 0.992 1.652

DM2016 1.375
(0.001)

2.011 11.731 0.427 0.021 −3.870 −5.179 11.479 1.077 0.970

BS2015 1.262
(0.001)

1.812 11.950 0.462 −0.043 −4.156 −5.384 10.135 0.974 0.243

WML 0.737 1.017 12.435 1.137 −0.056 −3.791 −5.387 5.914 0.936

Panel B: Monthly returns

Strategies Sharpe Sortino dVol MaxDD Skew VaR ES STARR RR leverage

mSSR 1.093
(0.012)

2.561 7.936 0.349 0.405 −0.525 −0.869 2.807 2.101 0.684

mSR 1.069
(0.012)

2.420 8.208 0.450 0.376 −0.537 −0.874 2.726 2.153 0.665

cSVol 1.141
(0.002)

2.073 10.233 0.364 0.010 −0.842 −1.116 2.280 1.351 0.562

cVol 1.141
(0.002)

2.065 10.268 0.366 0.006 −0.854 −1.121 2.269 1.331 0.564

cdVol 1.173
(0.001)

2.055 10.611 0.487 −0.067 −0.870 −1.158 2.260 1.176 1.223

DM2016 1.159
(0.001)

2.311 9.323 0.547 0.221 −0.684 −0.982 2.632 1.703 0.910

BS2015 1.082
(0.001)

1.836 10.957 0.506 −0.010 −0.841 −1.176 2.053 1.209 0.351

WML 0.641 0.877 13.599 1.028 −0.092 −0.881 −1.326 1.079 0.925

Panel C: Skewness-managed portfolio decomposition (daily returns)

Component Sharpe Sortino dVol MaxDD Skew VaR ES STARR RR

w 1.573 2.513 10.738 0.349 0.153 -3.231 -4.770 14.256 1.309

w1 1.652 2.571 13.623 0.496 0.100 -4.408 -6.206 14.223 1.226

w2 0.645 0.926 8.833 1.416 -0.002 -3.035 -4.176 12.933 0.974
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Table 3: Transaction costs and performance fees

The table reports the out-of-sample terminal returns net of transaction costs (r − c, DeMiguel et al., 2009), the
performance fee (F) of Fleming et al., 2003), and the downside-abnormal return (dA, Modigliani and Modigliani,
1997). We report the results for our skewness-managed strategy (mSSR) against a constant volatility targeting with
skewness (cSVol) and the same exact implementation of Daniel and Moskowitz (2016) (DM2016) and Barroso and
Santa-Clara (2015) (BS2015) which are based on recursive estimates of the realised variance. The performance fees are
computed for a risk aversion coefficient of 5. All the measures are reported in annual basis points. The sample period
is from July 1nd 1926 to September 30th 2020. Portfolio weights are generated in real-time by recursive forecasts of
the conditional mean and variance of the returns based on the model parameters. The first three years are used as
burn-in period.

Costs (bps) mSSR cSVol DM2016 BS2015

r − c dA F r − c dA F r − c dA F r − c dA F

0 14.328 18.594 10.595 11.597 13.025 7.946 10.902 12.291 7.189 8.957 9.809 5.297

1 13.897 18.057 10.216 11.450 12.860 7.820 10.866 12.251 7.189 8.953 9.805 5.297

5 12.176 15.921 8.450 10.863 12.198 7.189 10.724 12.090 7.063 8.937 9.788 5.297

14 10.024 13.278 6.306 10.130 11.374 6.432 10.547 11.889 6.811 8.918 9.767 5.171
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Figure 1: Cumulative performance of the WML strategy

The plot reports the cumulative performance of a 12 2 momentum strategy, the market and treasury bond returns.
The cumulative performance is reported in log-scale. Gray shaded bands highlight NBER recession. Red shaded bands
indicate momentum crash periods, as indicated in Daniel and Moskowitz (2016).

(a) Full sample

(b) 1930-1940 crash

(c) 2000-2009 crash
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Figure 2: Recursive Bai and Ng (2005) skewness test

The three panels report the report the time series of the Bai and Ng (2005) test statistics for asymmetry over different
rolling window of returns. We report the testing results by using one, two and five years of daily returns on the past
losers (left panel), past winners (middle panel) and the WML strategy (right panel). The dashed horizontal lines
represent the 90% and 95% confidence intervals. NBER recession are identified by gray shaded areas, while red shaded
areas highlight momentum crashes periods, as indicated in Daniel and Moskowitz (2016). The sample period is from
July 1st 1926 to September 30th 2020, daily.

(a) WML portfolio

(b) Past winners

(c) Past losers
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Figure 3: The role of scale and shape parameters for expected returns

The left panel reports the expected value surface for values of ρt and σt; the smaller windows in the plot illustrate
the partial derivative of Eq.(6) with respect to ρt and ν for varying values of σt. Similarly, the right panel reports the
expected value surface for values of ρt and ν; the smaller windows in the plot illustrate the partial derivative of the
expected value with respect to ρt and ν for varying values of ν. Both surfaces are reported for zero location.

(a) ρt and σt (b) ρt and ν
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Figure 4: Conditional expected returns and the location parameter

The plot reports the time-varying location parameter µt (red line) and the conditional expected returns as in Eq.(6)
(black line). We report the values for the WML portfolio (left panel), the past losers (bottom-right panel) and the past
winners (top-right panel) sub-portfolios. NBER recession are identified by gray shaded areas, while red shaded areas
highlight momentum crashes periods, as indicated in Daniel and Moskowitz (2016). The sample period is from July
1st 1926 to September 30th 2020, daily.

(a) WML portfolio

(b) Past winners

(c) Past losers
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Figure 5: Conditional skewness

The plot reports the time-varying skewness estimates for the WML portfolio (left panel), the past losers (bottom-right
panel) and the past winners (top-right panel) sub-portfolio returns. The horizontal red dashed line represents the
sample mean of the conditional skewness estimates. The green line represents a smoothed representation of the daily
conditional skewness estimates. NBER recession are identified by gray shaded areas, while red shaded areas highlight
momentum crashes periods, as indicated in Daniel and Moskowitz (2016). The sample period is from July 1st 1926 to
September 30th 2020, daily.

(a) WML portfolio

(b) Past winners

(c) Past losers
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Figure 6: Conditional skewness during momentum crashes

The plot reports the time-varying skewness estimates for the WML portfolio (left panels), the past losers (mid panels)
and the past winners (right panels) sub-portfolio returns. We report the results for both the 1930-1940 (top panels) and
the 2001-2009 (bottom panels) periods. The horizontal red dashed line represents the sample mean of the conditional
skewness estimates. The green line represents a smoothed representation of the daily conditional skewness estimates.
NBER recession are identified by gray shaded areas, while red shaded areas highlight momentum crashes periods, as
indicated in Daniel and Moskowitz (2016).

(a) WML portfolio (b) Past losers (c) Past winners

(d) WML portfolio (e) Past losers (f) Past winners
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Figure 7: Simulation study

The box plots report the distributions of the sample Sharpe ratios (a), Sortino ratios (b) and maximum drawdown
(c) of 100 return paths (Data, blue), simulated assuming the following distributions: Gaussian (N ), Skew-Gaussian
(Skew−N ), Student-t (t), and asymmetric Student-t (Skew−t) with constant skewness and an asymmetric Student-
t with time-varying asymmetry (Skewtv−t). For each distribution assumption, we simulate 100 paths of 10,000
observations. The Skew−N and Skew−t distributions feature -0.12 and -0.3 unconditional skewness, respectively.
We report the performance of three portfolios: a constant volatility targeting (cVol, red), a maximum Sharpe ratio
(mSR, yellow) and maximum Sharpe ratio with time-varying skewness (mSSR, purple). Constant volatility portfolio
returns are obtained by standardizing the simulated returns by GARCH(1,1) volatility estimates, while maximum
Sharpe ratio strategies are obtained as per Section 5; we target an annualized volatility of 18% across all strategies
consistent with the market portfolio returns.
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Figure 8: Expected returns decomposition

The figure reports the decomposition of the expected returns, in black, into a location component (green shaded area),
a scale component (pink shaded area), an asymmetry component (purple shaded area) and the interplay between
volatility and asymmetry (magenta shaded area) and the hom component (purple shaded area). NBER recession are
identified by gray shaded areas, while red shaded areas highlight momentum crashes periods, as indicated in Daniel
and Moskowitz (2016).

(a) Full sample

(b) 1932-1939 period (c) 2001-2009 period

47



Figure 9: Conditional skewness and the risk-return trade-off

The figure reports the theoretical shape of λ(ρt) (dashed curve), its realized value (blue marks), and the unconditional
sample mean (red circle). The sample period is from July 1st 1926 to September 30th 2020, daily.

Figure 10: Decomposing the risk-return trade-off

The three panels report the the correlation plots between the expected return and the volatility, the slope parameter
λ (ρt) and the fitted value of the risk-return trade-off in Eq.(11). Red crosses highlight observations relative to the
1932 crash. Blue crosses highlight observations relative to the 2009 crash.

(a) Expected returns vs volatility (b) Expected returns vs slope (c) Realised vs fitted expected returns
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Figure 11: State-dependent CAPM and simulated momentum returns

This figure reports the marginal distribution of the returns on the momentum strategy (y-axis) and the returns on the
market portfolio (x-axis) and the corresponding joint distribution. Returns are simulated assuming a two-piece Normal
distribution as in Eq.(E2) in Appendix E. The left panel shows the joint distribution for the full sample whereby the
middle and the right panels show the joint distributions of the market and momentum returns during momentum
crashes.

Panel A: Joint and marginal distribution of simulated WML and MKT returns

(a) Full sample (b) 22/03/1935 (c) 30/09/2008

Panel B: Skewness from our model vs state-dependent CAPM

(d) Model-implied skewness of the MKT vs WML (e) Model-implied vs CAPM-implied skewness of WML
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Internet Appendix to

“Taming Momentum Crashes”

This appendix provide a set of additional empirical results as well as outline our econometric model.

More specifically, we provide detailed derivations for the scaled-scores vector and the conditional

mean and variance of the returns under the distributional assumptions outlined in the main text.

The appendix also provides a simple mapping between the asymmetric CAPM beta and conditional

returns asymmetry. Finally, we also report some simulation results to highlight the role of conditional

skewness for risk-adjusted returns. Both the additional empirical analysis and the simulation results

are referred to in the main text where appropriate.

A A likelihood-based test on conditional skewness

The basic idea is to assume a given moment is constant in the data generating process and then look

at the information contained over time in the gradient of the log-likelihood function (or score) with

respect to that moment (see Harvey (2013)). Assume the conditional distribution of the portfolio

returns being a Skew-t of Gómez et al. (2007) with time-varying location µt and scale σt, but fixed

shape ρ parameters which pins down the degree of asymmetry in the conditional distribution of

the returns, that is rt|F t−1 ∼ Sktν(µt, σ
2
t , ρ). The gradient associated with the transformed shape

(asymmetry) parameter δ = arctanh ρ is defined as

∇δ,t =
s (εt)

(
1− ρ2

)
(1 + s (εt) ρ)

wtζ
2
t , (A1)

with ζt = εt/σt the standardised residuals εt = rt − µt, and wt = (1 + ν)/
(
ν (1 + s (εt)) ρ+ ζ2

t

)
the

weight given to the squared of standardised residuals at each time t (see Section 3 and Appendix C.1

for more details). By looking at the autocorrelation properties of the score in Eq.(A1), a Lagrange

multiplier principle (LM) can be employed to formally test for the time variation of ρ (see, e.g.,

Calvori et al., 2017). More specifically, tests for the time variation of ρ can be carried out using the

score autocorrelation function and implementing otherwise standard Portmanteau (P ) and Ljung-

Box (Q) tests for the null hypothesis of absence of autocorrelation in the score ∇δ,t, that is no time

variation in ρ. The optimal lag-length for the P and Q tests is selected following the methodology

by Escanciano and Lobato (2009). In addition to the Portmanteau and Ljung-Box tests, we also

report the results from a general test for the null of constant parameters against a random-walk

alternative based on the LM principle as proposed by Nyblom (1989). In our case, the test statistics
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Table A1: Score-based test for time variation in conditional skewness

P is the portmanteau test, Q is the Ljung-Box extension and N corresponds to the Nyblom test. The lag length for
the Portmanteau and Ljung-Box tests are selected following Escanciano and Lobato (2009). P and Q are distributed
as a χ2

1, while N is distributed as a Cramer von-Mises distribution with 1 degree of freedom. ∗p < 10%, ∗ ∗ p <
5%, ∗ ∗ ∗p < 1%.

Portfolios Autocorrelation tests

P Q N

losers > 100∗∗∗ > 100∗∗∗ 3.374∗∗∗

winners > 100∗∗∗ > 100∗∗∗ 7.991∗∗∗

WML > 100∗∗∗ > 100∗∗∗ 6.751∗∗∗

reads as follows:

N = σ−2
∇ T−2

T∑
j=1

 T∑
k=j

∇δ,k

2

, (A2)

where ∇δ,k denotes the score of the distribution with respect to the transformed shape parameter

δ = arctanh ρ at time k and σ2
∇ represents the sample variance of the score. Harvey and Streibel

(1998) showed that although the Nyblom (1989) test is regarded as a test against a random walk

alternative it can also be interpreted as a general test against the alternative hypothesis of time

variation of a given model parameters (see, e.g., Delle Monache et al., 2021). Table A1 reports the

results. The null hypothesis of a constant skewness is strongly rejected against the alternative of

time variation, with the values of test statistics which are well above 100 for both the long and

the short legs of the momentum strategy as well as the WML portfolio. The Nyblom test statistic

follows a Cramer-von Mises distribution with a 5% critical value of 0.462. The last column in Table

A1 shows that the Nyblom test suggests that the asymmetry, meaning the shape parameter, of the

conditional distribution of each portfolios and the WML strategy is possibly not constant over time.

B Additional Results

In this section, we report a set of additional results related to the dynamics of the conditional

volatility estimates and the relationship between asymmetric betas and conditional skewness.

B.1 Risk aversion

In this Section, we repeat the economic evaluation of Table 3 controlling for different levels of risk

aversion. Table B1 reports the performance fees F for risk aversion levels of 2, 7 and 15. These

levels compare agents with a strong risk aversion to investors prone to take on more risks. Overall,

the main results largely hold: considering time-varying skewness when maximising the Sharpe ratio

delivers the highest performance fees across different levels of risk aversion. These results suggest
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Table B1: Transaction costs and risk aversion

The table reports the performance fees, F , relative to the managed portfolios for different values of risk aversion. We
consider δ = 1, 7, 15. The fees are computed with respect to the plain WML strategy. All the measures are reported
in annual basis points. The first column reports the level of transaction costs, expressed in basis points (bps). The
sample period is from July 2nd 1929 to September 30th 2020, daily. Portfolio weights are generated in real-time by
recursive forecasts of the conditional mean and variance of the returns based on the model parameters.

mSSR cSVol DM2016 BS2015

c (bps) δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15

0 15.514 15.009 16.775 12.739 12.108 13.748 12.108 11.225 11.730 10.090 9.333 10.342

1 15.135 14.631 16.396 12.613 11.982 13.495 11.982 11.225 11.730 10.090 9.333 10.342

5 13.369 12.865 14.631 11.982 11.351 12.991 11.856 11.099 11.604 10.090 9.333 10.342

10 11.225 10.721 12.486 11.225 10.595 12.234 11.730 10.973 11.351 10.090 9.333 10.216

hedging for predictable variations in the returns skewness is economically meaningful, regardless the

level of risk aversion.

B.2 Conditional volatility estimates

Figure B1 shows the estimates of V olt =
√
V art [rt+1] based on Eq.(9) for both the past winners

(top-right) and losers (top-right) sub-portfolios. Returns on the past losers portfolio tend to be

more volatile, in fact almost twice more volatile than the returns for the past winners, especially

around momentum crashes. This is reflected in a highly time-varying volatility for the WML strategy

(right panel), with volatility spikes around both during the 1929-1932 recessions, the dot-com bubble

and the great financial crisis of 2008/2009 and subsequent momentum crashes. Such time variation

in the strategy risk is consistent with the findings in Barroso and Santa-Clara (2015); Daniel and

Moskowitz (2016) and suggest that not only the distribution is more asymmetric around momentum

crashes, but also that both tails of the distribution tend to be thicker in particular towards the end

of recessions.

One comment is in order. Section 3.2 shows that larger negative skewness triggers a downward

correction of the expected returns on the momentum strategy, whereas the impact of skewness on

the variance of the returns is less pervasive. This is primarily due to the fact that ρt ∈ (−1, 1) and

enters squared in the conditional variance – see Eq. (9) –, while enters in level in the dynamics of

expected returns – see Eq. (6). The limited effect of the skewness on volatility is likely mitigated

by the presence of heavier tails in the returns distribution, which are explicitly accounted for by the

model. Nevertheless, the conditional skewness still affect conditional volatility of the returns, and

therefore the risk-return trade-off in relative terms.

B.3 State-dependent CAPM estimates

Figure B2 reports the unconditional estimates of the upside and downside market betas for both the

past losers and winners as well as the WML strategy. The left (right) panel reports the estimates

based on daily (monthly) returns. The estimates of the upside, β, and downside, β betas are based
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Figure B1: Conditional volatility of momentum returns

The plot reports the time-varying volatility estimates based on Eq.(9) for the WML portfolio (left panel), the past
losers (bottom-right panel) and the past winners (top-right panel) sub-portfolios. NBER recession are identified by
gray shaded areas, while red shaded areas highlight momentum crashes periods, as indicated in Daniel and Moskowitz
(2016). The sample period is from July 1st 1926 to September 30th 2020, daily.

(a) WML portfolio

(b) Past winners

(c) Past losers

on the following regression:

rit = α+ βi min(rmt , 0) + β
i
max(rmt , 0) + εt, i = losers, winners, WML.

The daily estimates show that the losers’ portfolio is more exposed to upside market risk

(β = 1.36) as compared to downside market risk (β = 1.27), in relative terms compared to the

unconditional market beta (β = 1.31). The opposite holds for the winners’ portfolio (β = 1.09,

β = 1.22, β = 1.16), consistent with the findings in Grundy and Martin (2001). As a result, the

WML strategy has a quite sizable and negative up-market beta (β = −0.27), while the down-market

beta is close to zero (β = −0.04). The magnitude of the spreads in the upside and downside market

betas is even higher at the monthly frequency.
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Figure B2: Static upside vs downside market betas

The figures plot the upside, β, and downside, β, for the losers, winners and WML portfolios give by the following
regression:

rit = α+ βi min(rmt , 0) + β
i
max(rmt , 0) + εt, i = losers, winners, WML.

The sample period is from July 1st 1926 to September 30th 2020. The left (right) panel reports the estimates based
on daily (monthly) returns.

(a) Daily (b) Monthly

B.3.1 Time-varying market betas. We follow Ang et al. (2006), and calculate the downside

market beta over time for the losers, winners portfolios and the WML at different points in time

based on a time-varying CAPM with asymmetric betas as follows,

βi
t

=
covt(r̃

i
t+1,min{m̃t+1, 0})

vart(min{m̃t+1, 0})
i = losers, winners, WML, (B1)

where r̃it and m̃t are the demeaned returns for the momentum strategy and the demeaned excess

market returns, respectively (see, e.g., Hogan and Warren, 1974). The denominator of Eq. (B1) cap-

tures the variance of the downside market excess returns, and is generally referred to as the relative

semi-variance. Therefore, high downside betas imply that return is significantly exposed to market’s

downswings. Upside betas β
i
t hold a similar interpretation and are computed by substituting the

min function in Equation (B1) with the max operator.

Fig. B3 reports the estimates for the spread Bt = β
WML

t − βWML
t

for the periods indicated as

momentum crashes by Daniel and Moskowitz (2016).21 To estimate the time-varying downside

and upside betas for the momentum strategy returns, we follow Bali and Engle (2010); Tsai et al.

(2014) and implement a dynamic conditional correlation (DCC) model as originally proposed by

Engle (2002). For the easy of exposition we report both the daily DCC estimates of Bt as well as

a smoothed version of the estimates based on a quarterly moving average of the daily estimates.

21For the ease of exposition, the estimates for both the losers and the winners portfolios are not reported in the
main text. They are available upon request to the authors.
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Figure B3: Momentum crashes and the exposure to downside and upside risk

The plots report the spread between the upside and downside betas, Bt. The left panel span the 1927-1940 period,
while the right panel cover from 2000 to 2020. Gray shaded bands highlight NBER recession. Red shaded bands
indicate momentum crash periods, as indicated in Daniel and Moskowitz (2016).

(a) 1927-1940 period (b) 2000-2020 period

Recessions are highlighted in gray where momentum crashes are color-coded in red shading. Except

few nuances, the spread Bt is primarily negative during the momentum crash of the 30’s (left

panel). The difference between upside and downside betas tend to spike in 1935 and 1938, although

remains persistently large and negative for the entire decade. The momentum crash of the 2001/2002

(right panel) shows a slightly different dynamics, with Bt > 0 during the dot-com bubble collapse,

which then switch negative towards the tail of the recession. The momentum crash during the great

financial crisis of 2008/2009 is characterised by a large negative spread between upside and downside

betas for the WML portfolio returns. The Bt difference is persistently negative and is as large as -2.5

on a daily basis.

C Modeling framework

Assume that the return yt is generated by the observation density D(θ, ft), with θ collecting the

static parameters of the distribution and ft a series of time-varying parameters which characterize

the first three moments of the conditional distribution:

ft+1 = ft +Ast, t = 1, . . . , T (C1)

where A contains the structural parameters regulating the law of motion of the distribution pa-

rameters, and st containing the likelihood information from the prediction error ε̂t. Specifically,

st = St∇t is the scaled score, with ∇t = J ′t

[
∂`t
∂µt

, ∂`t
∂σ2
t
, ∂`t
∂ρt

]′
being the gradient of the log-likelihood

function with respect to the (nonlinear transformation of the) location, squared scale and asymmetry
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parameters, Jt the Jacobian matrix associated to the non-linear transformation of the parameters

for σt and ρt and

St = I−1
t = −E

(
∂2`t
∂ft∂f ′t

)−1

,

the scaling matrix proportional to the square-root generalized inverse of the Information matrix

It−1.22 Within this framework, the parameters are updated in the direction of the steepest ascent,

in order to maximize the local fit of the model. In the following, we are going to derive both gradient

of the log-likelihood function and the Jacobian matrix in order to define the scaled-scores vector.

C.1 Score derivations

The scaled score st is a non-linear function of past observations and past parameters’ values. For

`t = logD(θ, ft) being the Skew-t of Gómez et al. (2007), yt|Yt−1 ∼ sktν(µt, σ
2
t , ρt), the log-likelihood

takes the form

`t(rt|θ,Ft−1) = log C(ν)− 1

2
log σ2

t −
1 + ν

2
log

[
1 +

ε2
t

ν(1 + s(εt)ρt)2σ2
t

]
, (C2)

log C(ν) = log Γ

(
ν + 1

2

)
− log Γ

(ν
2

)
− 1

2
log ν − 1

2
log π,

where Γ(·) is the Gamma function and ν > 3 are the degrees of freedom. Differentiating (C2) with

respect to location, scale and asymmetry we obtain the gradient vector ∇t =
[
∂`t
∂µ ,

∂`t
∂σ2
t
, ∂`t∂ρt

]′
. Recall

that εt = yt − µt, ζt = εt
σt

and let

f(µt, σ
2
t , ρt) = 1 +

ε2
t

ν(1 + s(εt)ρt)2σ2
t

=
ν(1 + s(εt)ρt)

2σ2
t + ε2

t

ν(1 + s(εt)ρt)2σ2
t

To avoid overburdening the notation, in what follows ∂f(x)
∂x = f ′x and a = −1+ν

2 . The score with

respect to the location parameter reads

∂`t
∂µt

= wt
ζt
σt
, with wt =

ν + 1

ν (1 + s (εt) ρt)
2 + ζ2

t

.

Proof. Define

g(µt) = a log f(µt, σ
2
t , ρt),

such that ∂`t
∂µt

= ∂g(µt)
∂µt

= a
f ′µt

f(µt,σ2
t ,ρt)

. For

f ′µt = − 2

ν(1 + s(εt)ρt)2σ2
t

εt,

22Refer to Creal et al. (2013) for additional details on this choice.
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it follows:

∂`t
∂µt

=
1 + ν

2

2

ν(1 + s(εt)ρt)2σ2
t

· εt ·
ν(1 + s(εt)ρt)

2σ2
t

ν(1 + s(εt)ρt)2σ2
t + ε2

t

=
(1 + ν)

ν(1 + s(εt)ρt)2σ2
t + ε2

t

εt

= ωt
ζt
σt

.

The score with respect to the squared scale parameter reads

∂`t
∂σ2

t

=
(wtζ

2
t − 1)

2σ2
t

.

Proof. Define

g(σ2
t ) = − log σ2

t

2
+ a log f(µt, σ

2
t , ρt),

such that ∂`t
∂σ2
t

=
∂g(σ2

t )

∂σ2
t

= − 1
2σ2
t

+ a
f ′
σ2t

f(µt,σ2
t ,ρt)

, with f ′
σ2
t

= − ε2t
ν(1+s(εt)ρt)2σ4

t
. It follows that:

∂`t
∂σ2

t

= − 1

2σ2
t

− 1 + ν

2
·
[
− ε2

t

ν(1 + s(εt)ρt)2σ4
t

· ν(1 + s(εt)ρt)
2σ2
t

ν(1 + s(εt)ρt)2σ2
t + ε2

t

]
= − 1

2σ2
t

− 1 + ν

2
·
[
− ε2

t

σ2
t

· 1

ν(1 + s(εt)ρt)2σ2
t + ε2

t

]
= − 1

2σ2
t

+
wtζ

2
t

2σ2
t

=
(wtζ

2
t − 1)

2σ2
t

.

The score with respect to the shape parameter reads as

∂`t
∂ρt

=
s(εt)

(1 + s(εt)ρt)
wtζ

2
t .

Proof. Define

g(ρt) = a log f(µt, σ
2
t , ρt),

such that ∂`t
∂ρt

= ∂g(ρt)
∂σ2
t

= a
f ′ρt

f(µt,σ2
t ,ρt)

, with f ′ρt = − 2(s(εt)+ρt)ε2t
ν(1+s(εt)ρt)4σ2

t
. It follows that:

∂`t
∂ρt

=
1 + ν

2
· 2(s(εt) + ρt)ε

2
t

ν(1 + s(εt)ρt)4σ2
t

· ν(1 + s(εt)ρt)
2σ2
t

ν(1 + s(εt)ρt)2σ2
t + ε2

t

=
(s(εt) + ρt)ε

2
t

(1 + s(εt)ρt)2

wt
σ2
t

=
s(εt)

(1 + s(εt)ρt)
wtζ

2
t

.
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C.2 Scaled scores

Given we model γt = log σt and δt = atanh(ρt), for the chain rule we have:

∂`t
∂γt

=
∂`t
∂σ2

t

∂σ2
t

∂γt
,

∂`t
∂δt

=
∂`t
∂ρt

∂ρt
∂δt

, (C3)

where
∂σ2
t

∂γt
= 2σ2

t and ∂ρt
∂δt

= (1 − ρ2
t ). We can thus define the vector of interest as ft = (µt, γt, δt)

′

with the associated Jacobian matrix

Jt =
∂(µt, σ

2
t , ρt)

∂f ′t
=

 1 0 0

0 2σ2
t 0

0 0 1− ρ2
t

 . (C4)

The Fisher information matrix is computed as the expected value of outer product of the gradient

vector. Given the degrees of freedom ν > 3 this is computed as:

It = Et−1[∇t∇′t] =


(1+ν)

(ν+3)(1−ρ2t )σ2
t

0 4(1+ν)
σt(1−ρ2t )(3+ν)

0 1
2(3+ν)σ4

t
0

4(1+ν)
σt(1−ρ2t )(3+ν)

0 3(1+ν)
(1−ρ2t )(3+ν)

 . (C5)

As a result, the vector of scaled scores reads as:

st = (J ′tdiag(It)Jt)−1J ′t∇t =

 sµt

sσt

sρt

 = χ


(1− ρ2

t )wtεt

(ν + 1)(wtε
2
t − σ2

t )

s(εt)(1− s(εt)ρt)wt
ε2t

3σ2
t

 . (C6)

with χ = (ν+3)
(ν+1) and wt = ν+1

ν(1+s(εt)ρt)
2+ζ2t

.

C.3 Model properties

As highlighted by Delle Monache and Petrella (2017), the scalar factor wt plays a key role as it serves

as an implicit weight of the information contained in the prediction error. We summarise some its key

properties in turn. The top-left panel of Fig. C1 plots the weights associated with the prediction error

for alternative model parametrisations. Under a Normal distribution assumption, prediction errors

are assumed to carry the same information regardless of their magnitude, i.e., wt = 1, ∀t. When

we consider thick tails but no asymmetry (red line), the weights tend to discount symmetrically

extreme prediction errors, as is typical of Student-t distributions (see, e.g., Delle Monache and

Petrella, 2017). When the distribution is negatively skewed (dashed blue line), positive prediction

errors are less likely and as such command a more significant update of the parameters when they

occur. The opposite holds when the distribution is positively skewed (green dashed line); large

negative prediction errors are less likely and so command a larger update on the parameters. The

asymmetric effect of prediction errors increases as the skewness grows larger, i.e., ρt → 1.
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Figure C1: News impact curves

The figure reports the weighting scheme implied by wt, and the news impact curve (NICs) for different values of the
prediction error ζt = εt/σt. We consider the Gaussian (black), the Student-t with ν = 5 (red), and positively (blue)
and negatively (green) Skew-t with ν = 5.

(a) Updating weights (b) Location

(c) Scale (d) Shape

The remaining plots display Engle and Ng (1993)’s news impact curve, i.e. how new information

– measured by the standardised prediction error – translates into updates of the parameters of the

model. The location parameter (top-right panel) updates in the direction of the prediction error.

Updates of the scale parameter (bottom-left panel) are positive whenever the prediction error is

larger than the scale of the distribution, appropriately adapted to account for the difference in

positive and negative dispersion. Finally, the shape parameter (bottom-right panel) updates in the

opposite direction of the prediction error, so that for negative prediction errors the distribution

becomes more left skewed. Yet the “news” contained in a given prediction error depends on how

“unlikely” a priori is such news, given the ex-ante conditional distribution of returns, and whether

the prediction error is perceived to be a tail observation. In fact, when the underlying distribution

is fat tailed, prediction errors that are large – given the scale of the underlying distribution –
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are discounted, as they are partially characterised as “outliers” and, as such, are associated with

smaller updates of the underlying distribution. For the location parameter (top-right panel), this

property translates into the typical S-shaped function of the location in contrast with a classical

linear updating in a Gaussian setting (see, e.g., Harvey and Luati, 2014). The asymmetry of the

distribution also plays a key role in mapping the prediction errors onto the updating mechanism.

When the distribution is left skewed, a positive (negative) prediction error is ex-ante less (more)

likely, and therefore when observed it commands stronger (weaker) revisions in the underlying

distribution. The opposite holds for right-skewed returns.

The joint role of the conditional estimates in the updating mechanism of the parameters allows

for timely detecting of shifts in the shape of the conditional distribution of the returns, while at

the same time discounting the effect of outlying observations. In addition, while the scores for

the location and shape parameters are negatively correlated, updates of σt are (unconditionally)

uncorrelated with revisions of the other parameters. Yet, during crashes, when prediction errors are

large and negative, updates on the scale and the shape parameters positively co-move, so that the

conditional distribution of the momentum returns features negative shifts in the location, increasing

dispersion and deepening negative skewness.

D Moments of the Skew-t distribution

In this Section, to simplify the notation, we drop the time subscript from the time-varying parame-

ters. Consider the Skew-t distribution proposed by Gómez et al. (2007):

p(y|µ, σ, ρ, ν) =
C
σ

[
1 +

1

ν

(
y − µ

σ(1 + sgn(y − µ)ρ)

)2
]− 1+ν

2

, (D7)

where C =
Γ( ν+1

2 )
√
νπΓ( ν2 )

. Arellano-Valle et al. (2005) shows that any symmetric density on R can be

uniquely determined from a density on R+, and a Skew − t distribution can then be expressed

in terms of strictly positive densities. Specifically, we can re-parametrize the density in D7 as a

two-piece distribution (Fernández and Steel, 1998):

p(y|µ, σ, ρ, ν) =


C
σ

[
1 + 1

ν

(
y−µ
σ+

)2
]− 1+ν

2

, y ≥ µ

C
σ

[
1 + 1

ν

(
y−µ
σ−

)2
]− 1+ν

2

, y < µ

(D8)

where σ+ = (1 + ρ)σ and σ− = (1− ρ)σ are the scale parameters of the two Half-t densities on each

side

P (y ≥ µ) =
σ+

σ+ + σ−
=

1 + ρ

2
, P (y < µ) =

σ−
σ+ + σ−

=
1− ρ

2
. (D9)

The two-piece formulation allows to consider separately the two half of the distribution when
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taking expectations: for y = µ+σζ, where ζ ∼ Sktν(0, 1, ρ), the moments of y are weighted averages

of the moments of |ζ|, where |ζ| ∼ Htν , is an Half-t distribution (see, e.g., Gómez et al., 2007).23

Specifically:

E[ζr] = µ̂r =
1

2

[
(1 + ρ)r+1 + (−1)r(1− ρ)r+1

]
dr(ν), (D10)

where dr(ν) =
∫∞
−∞ |ζ|

rp(ζ)dζ < ∞ is the rth moment of the Half-t distribution (Johnson et al.,

1995). Starting from D10, the moments of y are the computed as:

E[yj ] =

j∑
k=0

(
j

k

)
σkµj−kµ̂k.

Therefore, the expected value y is given by:

E[y] = µ+ µ̂1σ

= µ+
4νC(ν)

ν − 1
ρσ, ν > 1 (D11)

and the variance is calculated as:

E[y2] = µ2 + 2µσµ̂1 + σ2µ̂2

= µ2 + 2µσ
4νC(ν)

ν − 1
ρ+ σ2 (1 + 3ρ2)ν

ν − 2
, ν > 2 (D12)

V ar(y) = E[y2]− E[y]

= µ2 + 2µσ
4νC(ν)

ν − 1
ρ+ σ2 (1 + 3ρ2)ν

ν − 2
−
(
µ+

4νC(ν)

ν − 1
ρσ

)2

= σ2

(
(1 + 3ρ2)ν

ν − 2
−
(

4νC(ν)

ν − 1
ρ

)2
)

= σ2

[
ν

ν − 2
+

(
3

ν − 2
−
(

4νC(ν)

ν − 1

)2
)
ρ2

]
, ν > 2 (D13)

E Asymmetric betas and returns asymmetry

In this section we provide some simple intuition on how a state-dependent CAPM with asymmetric

market betas can generate asymmetry in the marginal distribution of returns. Let consider the

conditional regression model in Eq.(13),

rt = α+ βmtI(mt ≥ µm) + βmtI(mt < µm)︸ ︷︷ ︸
βmt

+et (E1)

23Notice that the Half-t distribution is a special case of the folded-f distribution (Psarakis and Panaretoes, 1990).
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with mt ∼ N
(
µm, σ

2
m

)
the normal distributed market portfolio and I(mt ≥ µm) (I(mt < µm)) an

indicator function that takes value one if the market returns are above (below) the mode µm and zero

otherwise. Theoretically, Ang et al. (2006) show that this upside vs downside CAPM formulation

can be rationalised based on a disappointment aversion utility function that embeds downside risk

following Gul (1991).

The distribution of βmt conditional on the indicator I(·) can be defined as a split-Normal (or

two-piece Normal) distribution of the form (see Johnson et al., 1995; del Castillo and Daoudi, 2009),

f (βmt) =

{
C exp

{
− 1

2σ2
m

(
βmt − βµm

)2}
if mt ≤ µm

C exp
{
− 1

2σ2
m

(
βmt − βµm

)2}
if mt > µm

(E2)

with C =
√

2
π (σm + σm)−1 and σ2

m = β2σ2
m and σ2

m = β
2
σ2
m. Following Wallis (2014), the expected

value of the distribution takes the form

E [βmt] =

√
2

π
(σm − σm) + βµm, (E3)

Notice that for β = β = β, then we have σ2
m = σ2

m = σ2
m, such that E [βmt] = βµm. That is,

the mean and the mode of the conditional distribution of the momentum returns coincide, i.e.,

E [rt] = α+ βµm. Similarly, the variance of the split-Normal in Eq.(E2) takes the form ,

V [βmt] =

(
1− 2

π

)(
σ2
m − σ2

m

)2
+ σmσm (E4)

such that for no asymmetry in the betas estimates the first component
(
1− 2

π

) (
σ2
m − σ2

m

)2
= 0,

and we are left with V [βmt] =
√
β2σ2

m

√
β2σ2

m = β2σ2
m. As a result, for β = β = β, and given

et ∼ N(0, σ2
e), we obtain that the marginal distribution of the momentum strategy returns is rt ∼

N
(
α+ βµm, β

2σ2
m + σ2

e

)
. Now let us assume that β 6= β, and indicator of the asymmetry of the

returns distribution can be defined as the difference between the expected value E [βmt] and the

mode βµm, which is given by

E [βmt]− βµm =

√
2

π
(σm − σm) ∝

√
β

2
σ2
m −

√
β2σ2

m,

= σm

(√
β

2 −
√
β2

)
= σm

(
β − β

)
(E5)

that is, for β = β there is no returns asymmetry, whereas for β < β (β > β) the expected value is

lower (higher) than the mode, that is the marginal distribution of the returns is negatively (posi-

tively) skewed.
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