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Abstract

Derivatives, especially equity and volatility options, contain valuable and oftentimes essential in-

formation for estimating stochastic volatility models. Absent strong assumptions, their typically

highly nonlinear pricing dependence on the state vector prevents or at least severely impedes their

inclusion into standard estimation approaches. This paper develops a novel and unified methodology

to incorporate moments involving derivatives prices into a GMM estimation procedure. Invoking

new results from generalized transform analysis, we derive analytically tractable expressions for

exact moments and devise a computationally attractive approximation procedure. We exemplify our

methodology with an estimation problem that jointly accounts for stock returns as well as prices of

equity and volatility options. Finally, we provide numerical results that support the effectiveness of

our methodology.
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1 Introduction

On many occasions in finance, the researcher encounters a situation in which the estimation of a model

featuring latent state variables becomes required or desired. The latent character of certain state variables

can significantly complicate the estimation of model parameters. While latent state variables, by their

very nature, are not directly observable, there are oftentimes derivatives contracts available, in particular

options, whose observable prices depend on the latent state variables. Even if derivatives pricing itself

is not the primary concern, relying only on the time series of observable state variables and completely

neglecting the information contained in derivatives prices may have serious adverse consequences. Possible

consequences range from inaccurate parameter estimates to even the failure to properly identify important

parameters. Time series information generally allows to identify only those model parameters driving the

real-world dynamics of the state vector. Parameters determining various types of risk premia, thereby

linking the real-world to the risk-neutral state dynamics relevant for derivatives pricing, can remain

unidentified. In that situation, observable derivatives prices may serve as surrogate for unobservable

state variables to estimate the real-world dynamics and, beyond that, introduce information about risk

premia. By contributing accurate information about otherwise poorly identified or unidentfied parameters,

including derivatives prices into the estimation procedure can be expected to yield substantial statistical

efficiency gains and overcome various identification issues. At the same time, one needs to be aware

of potential ”dark matter” issues in the sense of Chen et al. (2019) when asset prices dominate the

estimation procedure relative to alternative information sources.

The case of stochastic volatility models, describing the joint evolution of an equity index and its

instantaneous volatility, is an ideal candidate to exemplify the above-described situation. To capture

important stylized facts of the data, state-of-the-art continuous-time stochastic volatility models, such

as extensions of the classical Heston (1993) model, typically feature multiple latent state variables, one

of which usually represents the instantaneous volatility level.1 Not only are the dynamics sufficiently

interesting, but also is a rich set of different derivatives contracts available, such as options on the equity

index itself and on an associated volatility index, which represents an (equity) option-implied volatility

measure.2 What makes stochastic volatility models particularly appealing for our purposes is that each

of the derivatives markets is found to contribute distinct information about state dynamics and risk

premia. Pertaining to the equity derivatives, Bates (2000) and Eraker (2004), among others, document

that estimates of some parameters differ significantly depending on whether options are included into the

estimation procedure. Moreover, Barras and Malkhozov (2016) identify significant differences in variance

risk premia when measured in equity underlying and option markets. Bardgett et al. (2019) further

conclude that volatility derivatives contain incremental information about stock return volatility that is

not already spanned by equity derivatives. In addition, Song and Xiu (2016) find evidence that standard

model specifications capture risk premia reflected by equity options well, but fail to adequately account

for risk premia embedded in volatility options. These findings raise the bar for stochastic volatility models

to jointly capture the core features of all involved underlying and derivatives markets.

Despite the apparent benefits of including derivatives prices into the estimation process, they are often

neglected in many estimation procedures. Besides potential data availability issues, the primary reason

for this is the typically highly nonlinear functional dependence of derivatives prices on the latent state

variables, which impedes their analytical tractability and inclusion into standard estimation procedures.

In fact, as discussed in more detail below, available estimation approaches incorporating derivatives prices

typically rely on computationally intensive techniques, such as extensive simulations and large-dimensional

1This is different for most discrete-time GARCH-type stochastic volatility specifications, in which the stochastic volatility
is a function of observable realized returns.

2The most prominent volatility index is probably CBOE’s VIX, which is derived from the prices of S&P 500 options.
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optimizations, and may additionally impose strong and somewhat arbitrary assumptions on measurement

errors of derivatives prices. Considerable data downsampling is required in order to actually implement

these approaches, affecting usually both the time series (weekly or even monthly observations) and the

cross section (few derivatives contracts at each point in time), thereby leading to a substantial economic

information loss in the estimation process. The adverse effects of downsampling can be expected to turn

out particularly severe for the case of stochastic volatility models, which are known to feature a rich

multi-factor structure and a prominent short-term component.

This paper develops a novel and unified approach to incorporate a broad class of derivatives into

a GMM estimation procedure, which is both computationally attractive without the need for data

downsampling and compatible with realistic measurement error models.3 As a starting point, we develop

a general derivatives pricing formula, based on the generalized transform analysis introduced in Chen and

Joslin (2012) and further developed in Dillschneider (2020). This unified formula is valid for a broad class

of derivatives and, among others, covers equity options and volatility options. Using the general pricing

formula, we then derive exact expressions for moments involving polynomials of derivatives prices. Our

results rely on advanced tools from generalized transform analysis, allowing us to express the respective

moments in analytically tractable form, assuming the availability of certain standard transforms of the

state vector. To our knowledge, expressions of this kind are novel and may be interesting in their own

right. However, practical computation of these exact moments generally requires numerical integration of

dimensionality equal to the order of the polynomial. Without the use of sophisticated numerical integration

techniques, which are beyond the scope of this paper, exact moments are computationally feasible only for

low orders. To overcome these limitations, we proceed to derive approximate moments using polynomial

expansion, requiring only the evaluation of first-order exact moments. Thus constructed approximate

moments involving polynomials of derivatives prices can be computed efficiently using standard numerical

integration techniques. Moreover, we theoretically verify convergence of the approximate moments to

their exact counterparts under standard regularity conditions. In a numerical study, we further provide

evidence that approximate moments are generally sufficiently accurate even for low approximation orders.

Deriving exact and approximate moment conditions using our methodology, we devise a GMM estimation

procedure that incorporates moments involving polynomials of derivatives prices, which is able to jointly

account for equity and volatility derivatives.

As a concrete setting for illustrating our methodology, due to their high relevance and analytical

tractability, we focus on stochastic volatility models in the affine jump diffusion class (e.g., Duffie et al.

(2003, 2000) and Filipović and Mayerhofer (2009)). Extending previous results in the literature, we

derive the required standard transforms of the state vector in an explicit multi-period setting, relying

on recursive relations involving solutions of a system of generalized Riccati differential equations (cf.

Dillschneider (2020)). In practical applications, these can be solved numerically in an efficient way

by using vectorization techniques. As a special case, we additionally provide a method to arrive at

closed-form expressions for polynomial moments of the state vector.

Despite presenting our methodological results in this particular setting, their scope extends much

farther. Beyond affine jump diffusions, it suffices to consider models for which the required standard

transforms of the state vector are sufficiently tractable. This covers, among others, discrete-time affine

processes as well as certain Lévy-type processes (see also Chen and Joslin (2012) and Dillschneider (2020)

for further examples). With this sort of tractability assured, various different model types apart from

stochastic volatility models may be studied with our methodology. Indeed, a broad class of derivatives

prices can be expressed in the required form. Examples include various interest rate derivatives, credit

derivatives, dividend derivatives, and exchange rate derivatives.

3Explicitly accounting for measurement errors in derivatives prices has been advocated in several recent contributions,
including Andersen et al. (2020) and Duarte et al. (2020).
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Our methodological approach is naturally related to the strand of literature devoted to devising

estimation procedures for stochastic volatility models. The existing literature comprises essentially three

groups of estimation approaches, each incorporating a different granularity of the information conveyed

by derivatives. A first group contains a large number of estimation approaches that do not directly

account for derivatives as such.4 Within these, latent state variables are generally proxied by observable

variables or ”integrated out,” either numerically or through simulations. Natural candidates to proxy

the instantaneous volatility level could be volatility indices or closely related quotes of instruments like

variance swaps. Instead of degrading their role to proxy variables, a second group of approaches explicitly

models these derivatives prices as mostly affine functions of the state vector and, thereby, incorporates

a limited amount of the information available in derivatives markets.5 Yet, most of the much finer

information contained in the cross section of option prices is not directly accounted for. This is only

achieved by a third group of approaches, which in fact incorporate individual option prices and are,

therefore, most closely comparable to our approach in terms of capabilities.

Historically, the focus was initially on including equity options into existing estimation approaches,

building on analytically tractable and computationally efficient transform-based pricing formulas (e.g.,

Bakshi and Madan (2000), Carr and Madan (1999), and Duffie et al. (2000)). In essence, the developed

estimation approaches — either directly or indirectly — implement filtering procedures for latent state

variables in various degrees of sophistication.

Without any simplifying assumptions regarding measurement errors of option prices, the exact filter for

latent state variables is computationally infeasible. Instead, simulation-based methods can be relied upon

to generate an approximation. Situated in a Bayesian framework, Eraker (2004) achieve this by Markov

chain Monte Carlo methods, while Christoffersen et al. (2010) and Fulop and Li (2019) rely on particle

filtering. Relatedly, Andersen et al. (2002) and Chernov and Ghysels (2000) extend the simulation-based

efficient method of moments approach of Gallant and Tauchen (1996). While being versatile, the required

extensive simulations create a huge computational burden for implementing simulation-based estimation

procedures.

Other suggested estimation approaches explicitly treat latent states as additional parameters that

need to be estimated, such as Bates (2000), Boswijk et al. (2016), and Huang and Wu (2004). Thereby,

they incorporate a time series dimension into traditional calibration exercises, in which only a risk-neutral

pricing model is fitted to a cross section of options prices on a day-by-day basis (e.g., Bakshi et al. (1997))

or using option panels (e.g., Andersen et al. (2015, 2018)). Despite getting rid of the need to perform

extensive simulations, the computational burden is simply relocated to the requirement of optimizing

over a large-dimensional parameter space.

Imposing sufficiently strict assumptions on measurement errors simplifies the filtering problem up

to the point where latent state variables can be exactly recovered from observed option prices by

(numerically) inverting the pricing formula. Following this route, Pan (2000, 2002) proposes a so-called

implied-state GMM approach, which Garcia et al. (2011) extend to additionally include moments of

integrated volatility.6 Equivalent assumptions in a maximum likelihood framework allow Äıt-Sahalia and

4These include maximum likelihood (e.g., Aı̈t-Sahalia and Kimmel (2007), Bakshi et al. (2006), and Bates (2006)),
quasi-maximum likelihood (e.g., Harvey and Shephard (1996) and Ruiz (1994)), simulated maximum likelihood (e.g.,
Durham (2006) and Sandmann and Koopman (1998)), generalized method of moments (e.g., Aı̈t-Sahalia et al. (2015b),
Bollerslev and Zhou (2002), and Jiang and Oomen (2007)), simulated method of moments (e.g., Duffie and Singleton (1993)),
efficient method of moments (e.g., Chernov et al. (2003) and Gallant and Tauchen (1996)), empirical characteristic function
estimation (e.g., Carrasco et al. (2007), Chacko and Viceira (2003), and Singleton (2001)), and simulation-based Markov
chain Monte Carlo methods (e.g., Eraker (2001), Eraker et al. (2003), and Jacquier et al. (1994)), among others.

5Examples for this approach include Bollerslev et al. (2011), Duan and Yeh (2010), Durham (2013), Egloff et al. (2010),
Jones (2003), and Wu (2011) as well as, somewhat relatedly, Aı̈t-Sahalia et al. (2015a). This approach can be extended to
include portfolios having polynomial dependence on the state vector (e.g., Feunou and Okou (2018)).

6For single-factor stochastic volatility models, Äıt-Sahalia et al. (2021b) develop a GMM approach based on closed-form
implied volatility expansions for equity options. Gagliardini et al. (2011) also propose a GMM approach involving option
prices, which, however, rests on the assumption that the state vector is observable.
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Kimmel (2007) to obtain (approximate) transition densities involving option prices. In addition to the

computational burden embedded in explicit pricing function inversions, these approaches maintain strict

and somewhat arbitrary assumptions regarding measurement errors, which can lead to robustness issues

as well as inherent inconsistencies when comparing different models.

With the advent of analytically tractable pricing formulas, such as those stemming from the generalized

transform analysis of Chen and Joslin (2012), attention is increasingly devoted to investigating volatility

options.7 Methodologically, most estimation approaches previously invoked for incorporating equity

derivatives can straightforwardly be extended to incorporate volatility derivatives, either on a stand-alone

basis or jointly with equity derivatives. For the former, Branger et al. (2016) rely on quasi-maximum

likelihood methods, while for the latter, empirical studies have primarily focused on calibration exercises

(e.g., Carr and Madan (2014), Fouque and Saporito (2018), Kokholm and Stisen (2015), and Papanicolaou

and Sircar (2014)). To our knowledge, only Bardgett et al. (2019) attempt a fully-fledged estimation,

employing simulation-based Markov chain Monte Carlo techniques.

Since our approach partly relies on approximation techniques, this paper is also related to the strands of

the literature developing approximation methods for parameter estimation or derivatives pricing. Beyond

simulation-based approaches, which naturally involve stochastic approximations, several deterministic

approximation methods are employed for the purpose of parameter estimation when exact expressions

are unavailable or prohibitively costly to compute. These include likelihood expansions (e.g., Aı̈t-Sahalia

(2002, 2008), Bakshi and Ju (2005), Filipović et al. (2013), and Yu (2007)) as well as approximate moment

conditions (e.g., Aı̈t-Sahalia et al. (2015b) and Stanton (1997)).8 A vast literature exists also on the use

of various approximation techniques for the purpose of option pricing.9 Predominantly, the intention of

these methods is to simplify the pricing formula in a way that avoids numerical integration. Our primary

intention is different, as we instead aim at simplifying the functional dependence of derivatives prices on

the state vector.

The remainder of this paper is organized as follows. Section 2 introduces the general stochastic

volatility model and some of its properties. Subsequently, section 3 presents a unified framework for

pricing derivatives, which is then used in section 4 to derive moments involving derivatives prices. Building

on these results, section 5 formulates our GMM estimation approach. Numerical results supporting our

methodology are presented in section 6. Finally, section 7 concludes the paper. The appendix contains

additional details, including derivations and proofs.

2 Affine stochastic volatility models

This section introduces the generic stochastic volatility model, for which we choose an affine jump diffusion

framekwork. While there is a broad consensus about the necessity of multi-factor stochastic volatility

models, less agreement is achieved with regard to the concrete factor structure. Yet, it is largely agreed

upon that both diffusion and jump factors are required. Accounting for the large number of potential

specifications, we present our model in a versatile setup that allows for multiple diffusive and jump risk

sources.

7Instead of using a consistent model for the volatility index derived from stock price dynamics, a pragmatic approach is
to model its dynamics on a stand-alone basis. This allows to resort to significantly simpler methods for derivatives pricing
and parameter estimation (e.g., Dotsis et al. (2007) and Menćıa and Sentana (2013)).

8See also Kristensen and Salanié (2017) for other types of approximations and potential improvements of the resulting
estimation approaches.

9Existing approximation approaches for option prices include orthogonal polynomial expansion (e.g., Ackerer and Filipović
(2019), Barletta and Nicolato (2017), Madan and Milne (1994), and Xiu (2014)), eigenfunction expansion (e.g., Davydov and
Linetsky (2003), Lewis (1998), and Linetsky (2004, 2007)), Edgeworth expansion (e.g., Jarrow and Rudd (1982)), Fourier
cosine expansion (e.g., Fang and Oosterlee (2009)), saddlepoint approximation (e.g., Glasserman and Kim (2009)), and
auxiliary model approximation (e.g., Kristensen and Mele (2011)), among others. Relatedly, Aı̈t-Sahalia et al. (2021a)
propose a closed-form expansion method for option-implied volatilities.
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The remainder of this section is organized as follows. Section 2.1 introduces the generic affine stochastic

volatility model. A large number of state-of-the-art models are special cases of this model class. Some

examples of such models are provided in section 2.2, without attempting an exhaustive enumeration.

Subsequently, section 2.3 presents important results from standard transform analysis, which we will

heavily draw upon in the remainder of this paper.

2.1 Generic affine model

Throughout, for each model considered, the state process (Xt)t≥0 takes values in the state space X ⊂ RnX

and is defined on the real-world filtered probability space (Ω,Σ,F ,P), in which the sample space Ω

is equipped with a σ-algebra Σ and the natural filtration F = (Ft)t≥0 of the respective state process,

modeling the evolution of information. While the data is generated under the real-world probability

measure P, we assume that markets are arbitrage-free, which guarantees the existence of a risk-neutral

probability measure Q. On many occasions in this paper, to avoid redundancies, we will make statements

under a generic probability measure M, referring to either P or Q.

The joint state vector Xt = [logSt;Zt] in our generic model, taking values in X = R×Z for Z ⊂ RnZ ,

is composed of the stock price St and the nZ-element vector Zt containing additional state variables. In

order to simplify the exposition and terminology, we assume that the stock price St is observable, while

all state variables in Zt are latent, i.e., not directly observable. Handling additional observable state

variables results in rather straightforward modifications. Throughout, we will moreover assume that the

latent state process (Zt)t≥0 is strictly stationary.

Under the generic probability measure M, the state vector Xt = [logSt;Zt] is governed by the jump

diffusion dynamics

d logSt = µM
S (Zt−) dt+ σS(Zt−) dWM

t + JS,t dNt (2.1a)

dZt = µM
Z (Zt−) dt+ σZ(Zt−) dWM

t + JZ,t dNt , (2.1b)

where WM
t is an nD-element vector standard Brownian motion and Nt is an nJ -element vector Poisson

process with intensity λM(Zt−). Employing the definitions µM
X = [µM

S ;µM
Z ], σX = [σS ;σZ ], and JX,t =

[JS,t; JZ,t], we can write the dynamics in equation (2.1) in the general form

dXt = µM
X(Zt−) dt+ σX(Zt−) dWM

t + JX,t dNt .

Analogous to Duffie et al. (2000), we impose the following affine restrictions on the drift vector µM
X ,

instantaneous diffusive covariance matrix ΩX = σXσ
>
X , jump intensity vector λM, and joint distribution

νM of jump sizes JX,t:

• µM
X(z) = AM

µ,X +BM
µ,Xz with AM

µ,X ∈ RnX and BM
µ,X ∈ RnX×nZ ,

• vec[ΩX(z)] = AΩ,X +BΩ,Xz with AΩ,X ∈ Rn2
X and BΩ,X ∈ Rn2

X×nZ ,

• λM(z) = AM
λ +BM

λ z with AM
λ ∈ RnJ and BM

λ ∈ RnJ×nZ , and

• JX,t ∼ νM and i.i.d. over time.

Loosely speaking, these restrictions require affine functions of the latent state vector, subject to implicitly

imposed coefficient restrictions assuring that all functions are well-defined. E.g., Duffie and Kan (1996)

formulate a generalized Feller condition for affine diffusive covariance matrices.

Reflected in the dependence on M in drifts, jump intensities, and jump size distributions, the

specification (2.1) allows for diffusive, jump intensity, and jump size risk premia, respectively. Specifically,

for diffusive risk premia, we follow the general affine risk premium specification of Cheridito et al. (2007).

Absence of arbitrage further dictates restrictions on the risk-neutral drift of the stock price process:

• AQ
µ,S = r − q − 1

2AΩ,S − (ΦQ
ν ([1; 0])− ι)>AQ

λ and
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• BQ
µ,S = − 1

2BΩ,S − (ΦQ
ν ([1; 0])− ι)>BQ

λ

for instantaneous diffusive stock price variance ΩS(z) = AΩ,S +BΩ,Sz, denoting by ι the vector of ones

and by ΦM
ν the vector of marginal jump transforms of jump sizes under the law νM. Specifically, the

i-th element of ΦM
ν (ω) ∈ CnJ for ω ∈ CnX is given by

∫
exp(ω · J•i,X) dνM. Under standard integrability

conditions, this assures that exp((q−r)t)St is a Q-martingale. As is customary within stochastic volatility

models, we assume that interest rates and dividend yields are constant, given by r and q, respectively.

It should be noted that this assumption is not prerequisite for our methodology, but simplifies the

exposition.10

2.2 Specification examples

The specification of the affine stochastic volatility model in equation (2.1) covers many state-of-the-art

models advocated in the literature. In what follows, we briefly discuss several popular models, but by no

means attempt to provide an exhaustive overview.

2.2.1 Heston model

As the basis for all further examples, consider a jump diffusion extension of the Heston (1993) stochastic

volatility model. The single latent state variable Z1,t within this model is the instantaneous diffusion

variance of the stock price process, which follows a square-root process such that the state vector

Xt = [logSt;Z1,t] satisfies

d logSt = (bM0 + bM1 Z1,t−) dt+ Z
1/2
1,t− dW̃M

1,t + J11,X,t dN1,t (2.2a)

dZ1,t = κM1 (θM1 − Z1,t−) dt+ ς1Z
1/2
1,t− dWM

2,t + J21,X,t dN1,t , (2.2b)

where dW̃M
1,t = (1 − ρ2

1)1/2 dWM
1,t + ρ1 dWM

2,t with constant correlation ρ1 and λM(z) = λM0 + λM1 z1.

Equation (2.2) takes into account that jumps in stock prices and volatility tend to occur simultaneously

with intensity depending on the variance level (e.g., Eraker (2004)). The jump sizes J11,X,t and J21,X,t

are usually assumed to be independent, since estimation of their dependencies is notoriously difficult (e.g.,

Branger et al. (2010)). Typically, price jumps are assumed to be normally distributed or follow some fat

tailed distribution such as a double exponential (e.g., Kou and Wang (2004)), while variance jumps are

usually assumed to be exponentially distributed.

2.2.2 Volatility components

The Heston model, even after introducing jumps, is typically found to be unable to adequately capture

important properties of stock returns and option prices. For this reason, Bates (2000), among others,

considers a multivariate extension of the Heston model, in which two independent square-root processes

Z1,t and Z2,t determine the instantaneous diffusion variance Z1,t + Z2,t of the stock price process. The

idea can be further extended to an arbitrary number of components. In the bivariate case, the state

vector Xt = [logSt;Z1,t;Z2,t] follows dynamics of the form

d logSt = (bM0 + bM1 Z1,t− + bM2 Z2,t−) dt+ (Z1,t− + Z2,t−)1/2 dW̃M
1,t + J11,X,t dN1,t (2.3a)

dZ1,t = κM1 (θM1 − Z1,t−) dt+ ς1Z
1/2
1,t− dWM

2,t + J21,X,t dN1,t (2.3b)

dZ2,t = κM2 (θM2 − Z2,t−) dt+ ς2Z
1/2
2,t− dWM

3,t + J21,X,t dN1,t , (2.3c)

10Our methodology is fully compatible with general affine interest rate and dividend yield specifications. The established
results carry over with mostly minor modifications. Merely the derivation of the affine relation in lemma 3.2, which is
required for the pricing of volatility derivatives, necessitates stronger assumptions regarding the interest rate process.
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where dW̃M
1,t = (1− %2

1,t− − %2
2,t−)1/2 dWM

1,t + %1,t− dWM
2,t + %2,t− dWM

3,t with stochastic correlation %i,t =

ρi Z
1/2
i,t /(Z1,t+Z2,t)

1/2. Moreover, jump intensities are given by λM(z) = λM0 +λM1 z1+λM2 z2. For simplicity,

jumps in the stock price and both components are assumed to be simultaneous in equation (2.3), which

may easily be relaxed. The same choices for the jump size distributions can be made as in the univariate

Heston case.

2.2.3 Stochastic mean reversion

Taking a different route, Duffie et al. (2000) propose an extension of the original Heston model by replacing

the deterministic mean reversion level θM1 by a stochastic one, driven by an autonomous process. In this

model, Z1,t represents the instantaneous diffusion variance of the stock price, whereas Z2,t determines

the stochastic mean reversion level of Z1,t. Since Z2,t is expected to reflect slowly moving trends in the

variance level, it is usually assumed that Z2,t is continuous and does not affect the jump intensity. The

resulting dynamics of the state vector Xt = [logSt;Z1,t;Z2,t] are

d logSt = (bM0 + bM1 Z1,t−) dt+ Z
1/2
1,t− dW̃M

1,t + J11,X,t dN1,t (2.4a)

dZ1,t = κM1 ([κM1 ]−1κQ1Z2,t− − Z1,t−) dt+ ς1Z
1/2
1,t− dWM

2,t + J21,X,t dN1,t (2.4b)

dZ2,t = κM2 (θM2 − Z2,t−) dt+ ς2Z
1/2
2,t− dWM

3,t , (2.4c)

where dW̃M
1,t = (1− ρ2

1)1/2 dWM
1,t + ρ1 dWM

2,t with constant correlation ρ1 and λM(z) = λM0 + λM1 z1.

2.2.4 Autonomous jump intensities

In the examples considered so far, jump intensities are determined as an affine function of the components

driving the instantaneous diffusion variance of the stock price process. The latent state dynamics in

equation (2.1) also allow to specify jump intensities by an autonomous process, so that Z1,t determines

the instantaneous diffusion variance of the stock price, while Z2,t determines the jump intensity. For

the latter, the literature usually considers either a pure diffusion (e.g., Wachter (2013)) or a pure jump

process (e.g., Aı̈t-Sahalia et al. (2015b)). Allowing the dynamics of the jump intensity process to be

driven by a jump diffusion, the state vector Xt = [logSt;Z1,t;Z2,t] is governed by

d logSt = (bM0 + bM1 Z1,t− + bQ2Z2,t−) dt+ Z
1/2
1,t− dW̃M

1,t + J11,X,t dN1,t (2.5a)

dZ1,t = κM1 (θM1 − Z1,t−) dt+ ς1Z
1/2
1,t− dWM

2,t + J21,X,t dN1,t (2.5b)

dZ2,t = κM2 (θM2 − Z2,t−) dt+ ς2Z
1/2
2,t− dWM

3,t + J31,X,t dN1,t , (2.5c)

where dW̃M
1,t = (1− ρ2

1)1/2 dWM
1,t + ρ1 dWM

2,t with constant correlation ρ1 and λM(z) = λM0 + λM2 z2.

2.3 Standard transform analysis

The methodology developed in this paper relies on the tractability of certain classes of moments of the

state vector. Variants of the standard transform analysis for affine jump diffusions yield the required

expressions for the generic dynamics (2.1). To make these accessible, this section briefly reviews the main

results from standard transform analysis required for the remainder of this paper. Technical details are

delegated to appendix A.

Before proceeding, we introduce some further notation. For a non-decreasing time vector τ̃ ∈ Rñ+,

corresponding to a non-decreasing sequence of time points τ̃i such that τ̃i+1 ≥ τ̃i ≥ 0 with the convention

that τ̃0 = 0, define the stacked vectors Yt+τ̃ = [logSt+τ̃1 − logSt+τ̃0 ; . . . ; logSt+τ̃ñ − logSt+τ̃ñ−1
] and

Zt+τ̃ = [Zt+τ̃1 ; . . . ;Zt+τ̃ñ ]. From these, moreover define the vector Xt⊕τ̃ = [Yt+τ̃ ;Zt+τ̃ ]. Economically,
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the elements of Yt+τ̃ thus correspond to log returns between consecutive time points in τ̃ . In what follows,

we state expressions for certain moments of Xt⊕τ̃ .

We start the discussion by considering exponential moments, which can be derived from the standard

transform analysis of Duffie et al. (2000); details and derivations of the expressions are provided in

appendix A.2. Under the regularity conditions established by Duffie et al. (2000), single-period exponential

moments can be determined from the solution of the system of ODEs (A.8) of generalized Riccati type (cf.

propositions A.2 and A.3). Except for few special cases possessing closed-form solutions, the ODEs need

to be solved numerically. Efficient numerical solution schemes can be based on vectorization techniques.

Building on these single-period moments, we can iteratively derive multi-period exponential moments

of Xt⊕τ̃ via recursive relations (cf. propositions A.4 and A.5). The following proposition summarizes the

construction. It should be noted that under the dynamics specified by equation (2.1), the conditional

exponential moments of Xt⊕τ̃ directly depend only on the initial value of the latent state variable Zt,

but not on the initial level of the stock price St. We use this property to characterize unconditional

exponential moments of Xt⊕τ̃ by a limiting procedure.

Proposition 2.1. Consider an argument ω ∈ CnX ñ.

(i) Let assumption A.3 hold for τ = 0. Then we have

ΦM(ω; τ̃ , 0, Zt) = EM[exp(ω ·Xt⊕τ̃ ) |Ft]

= exp(AΦ(ω; τ̃ , 0) +BΦ(ω; τ̃ , 0) · Zt)
(2.6)

with coefficients AΦ(ω; τ̃ , 0) ∈ C and BΦ(ω; τ̃ , 0) ∈ CnZ given in equation (A.11).

(ii) Let assumption A.4 hold. Then we have

ΦM(ω; τ̃ ,∞) = EM[exp(ω ·Xt⊕τ̃ )]

= exp(AΦ(ω; τ̃ ,∞))
(2.7)

with coefficient AΦ(ω; τ̃ ,∞) ∈ C given in equation (A.14).

Following the terminology of Chen and Joslin (2012), we proceed to study the so-called polynomial-log-

linear (henceforth pl-linear) moments. The derivation of the expressions in appendix A.3 heavily relies on

a version of the Faà di Bruno formula (cf. proposition A.1), which is stated in appendix A.1. Extending

the regularity conditions of the exponential case analogous to Dillschneider (2020), single-period pl-linear

moments can be determined by solving the augmented system of ODEs (A.18) of generalized Riccati

type (cf. propositions A.6 and A.7). This augmented system jointly characterizes the derivatives of the

coefficients of single-period exponential moments in equation (A.8). Again, solving this system generally

calls for a numerical solution procedure in conjunction with vectorization techniques.

Exploiting these single-period expressions allows to iteratively derive multi-period pl-linear moments

of Xt⊕τ̃ via recursive relations (cf. propositions A.8 and A.9). The following proposition summarizes the

construction. In essence, under the imposed regularity conditions, the respective moment expressions are

formed by differentiation of the expressions obtained in proposition 2.1, so that ΦM,[α] = ΦM,(α) = ∂αωΦM

holds. It is therefore not surprising that the resulting conditional pl-linear moments ofXt⊕τ̃ directly depend

only on the initial value of the latent state variable Zt, which once again allows to form unconditional

pl-linear moments of Xt⊕τ̃ by a limiting argument.

Proposition 2.2. Consider an argument ω ∈ CnX ñ and a multi-index α ∈ NnX ñ.

9



(i) Let assumption A.7 hold for τ = 0. Then we have

ΦM,[α](ω; τ̃ , 0, Zt) = EM[exp(ω ·Xt⊕τ̃ ) (Xt⊕τ̃ )α |Ft]

= ΦM(ω; τ̃ , 0, Zt)
∑
Q̃(α)

Mα
k,` (A

(`)
Φ (ω; τ̃ , 0) +B

(`)
Φ (ω; τ̃ , 0) · Zt)k (2.8)

with coefficients A
(β)
Φ (ω; τ̃ , 0) ∈ C and B

(β)
Φ (ω; τ̃ , 0) ∈ CnZ for β ≤ α given in equation (A.21).

(ii) Let assumption A.8 hold. Then we have

ΦM,[α](ω; τ̃ ,∞) = EM[exp(ω ·Xt⊕τ̃ ) (Xt⊕τ̃ )α]

= ΦM(ω; τ̃ ,∞)
∑
Q̃(α)

Mα
k,` (A

(`)
Φ (ω; τ̃ ,∞))k (2.9)

with coefficients A
(β)
Φ (ω; τ̃ ,∞) for β ≤ α given in equation (A.24).

In equations (2.8) and (2.9), Q̃(α) =
⋃
|β|≤|α|Q(α, β) is a disjoint union and each Q(α, β) is a set of multi-

multi-indices k and `, defined in equation (A.2). Moreover, Mα
k,` denotes the associated multi-multinomial

coefficient, defined in equation (A.3). Finally, the tensor notation is defined in equation (A.4).

Evidently, polynomial moments may be computed as special cases of the pl-linear moments in propo-

sition 2.2. This approach requires jointly solving systems of ODEs, which generally has to be performed

numerically. Instead, closed-form expressions for polynomial moments can be obtained when treating

affine jump diffusions as a particular instance of polynomial processes, which are formally introduced

and studied in Cuchiero et al. (2012). Details of this approach are given in appendix A.4. Following

Dillschneider (2020), single-period polynomial moments obtain from matrix expressions, which may be

either determined analytically or numerically at virtually no computational cost (cf. propositions A.10

and A.11). Using these single-period expressions, multi-period polynomial moments of Xt⊕τ̃ result

by running through recursive relations (cf. propositions A.12 and A.13). The upcoming proposition

summarizes the construction.

Proposition 2.3. Consider a multi-index α ∈ NnX ñ.

(i) Let assumption A.11 hold for τ = 0. Then we have

ΦM,[α](0; τ̃ , 0, Zt) = EM[(Xt⊕τ̃ )α |Ft]

=
∑
|β|≤|α|

b
(α)
Φ,β(τ̃ , 0)Zβt

(2.10)

with coefficients b
(α)
Φ,β(τ̃ , 0) ∈ R for |β| ≤ |α| given in equation (A.33).

(ii) Let assumption A.12 hold. Then we have

ΦM,[α](0; τ̃ ,∞) = EM[(Xt⊕τ̃ )α]

= b
(α)
Φ,0(τ̃ ,∞)

(2.11)

with coefficient b
(α)
Φ,0(τ̃ ,∞) ∈ R given in equation (A.36).
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3 Transform-based derivatives pricing

To present our methodology in a general form, we start with a unified theory for pricing a broad spectrum

of derivatives. Our research agenda commands that the resultant pricing formula ought to be rather

generic, but also analytically tractable and admitting a computationally efficient implementation. For

this purpose, we rely on the generalized transform analysis introduced in Chen and Joslin (2012) and

further studied in Dillschneider (2020), whose foundations are briefly reviewed in section 3.1; further

details are discussed in Dillschneider (2020). To provide a common basis for the remainder of this paper,

section 3.2 then derives a general transform-based derivatives pricing formula satisfying the requisite

criteria. Subsequently, we specialize this formula to two important derivatives classes that occupy an

exposed position within stochastic volatility modeling, namely equity derivatives in section 3.3 and

volatility derivatives in section 3.4. Proofs of our results are given in appendix B. Further extensions are

discussed in section 3.5, with details provided in appendix C.

3.1 Basic Schwartz distribution theory

By S(Rm), referred to as the Schwartz space, we denote the space of rapidly decaying smooth functions,11

regularly succinctly referred to as Schwartz functions. The associated continuous dual space S∗(Rm),

whose elements are called tempered distributions, contains all continuous linear functionals on S(Rm).

To denote the action of a tempered distribution g ∈ S∗(Rm) on a Schwartz function f ∈ S(Rm), we use

the duality pairing notation 〈g(y), f(y)〉. A sufficiently well-behaved ordinary function g identifies with

a regular tempered distribution via integration, 〈g(y), f(y)〉 =
∫
Rm g(y) f(y) dy. Using a regularization

approach, this notion can be extended to a larger class of functions for which the ordinary integrals do

not exist, yielding instances of a singular tempered distribution. Another prominent example in the

class of singular tempered distributions is the Dirac delta functional δ, defined through the assignment

〈δ(y), f(y)〉 = f(0).

Any Schwartz function f ∈ S(Rm) has a Fourier transform f̂ = Ff ∈ S(Rm) with f̂(y) =∫
Rm f(ỹ) exp(−iy · ỹ) dỹ. This allows to define the Fourier transform ĝ = Fg ∈ S∗(Rm) of the tempered

distribution g ∈ S∗(Rm) via the requirement that 〈ĝ(y), f(y)〉 = 〈g(y), f̂(y)〉 holds for all f ∈ S(Rm).

For several of our applications, it is necessary to regard a Schwartz function as a function f(y, z) of a

pair of variables y ∈ Rm, z ∈ Rn. Such a function resides in the space S(Rm ×Rn). In that case, we may

consistently define the distributional tensor product ((y, z) 7→ g(y)⊗ h(z)) ∈ S∗(Rm × Rn) by

〈g(y)⊗ h(z), f(y, z)〉 = 〈g(y), 〈h(z), f(y, z)〉〉 = 〈h(z), 〈g(y), f(y, z)〉〉 . (3.1)

This equation transports a distributional analogue to the classical Fubini integral theorem.

We extend the definitions above to subsets Y ⊂ Rm as follows. The space S(Y) consists of all

functions f such that there exists some f̃ ∈ S(Rm) coinciding with f on Y. Likewise, the dual space

S∗(Y) consists of those g ∈ S∗(Rm) whose support is contained in Y. Consequently, we can define

〈g(y), f(y)〉 = 〈g(y), f̃(y)〉 for g ∈ S(Y) and f ∈ S∗(Y), where the choice of f̃ ∈ S(Rm) is inconsequential.

3.2 General derivatives

In order to compute derivatives prices corresponding to general payoff functions, we follow the standard

risk-neutral pricing approach. For the ease of illustration, we suppose that all derivatives require premia to

11Formally, the requirement is that each semi-norm ‖·‖α,β defined through ‖f‖α,β = supy∈Rm |yα ∂
β
y f(y)| is finite for any

multi-indices α, β ∈ Nm.
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be paid immediately at inception of the contract. Other empirically relevant features, such as futures-style

margining, can be incorporated by minor modifications.12

To cover a broad class of relevant derivatives prices, fix a non-decreasing time vector T̃ ∈ Rm̃

and suppose that the derivative contract features a single payoff, which occurs T̃m̃ periods ahead and

is determined by h(Xt⊕T̃ ;K) for some payoff function h, where K is an additional parameter, e.g.,

representing the strike when considering an option. For the purpose of this paper, we restrict our attention

to h of a particular form.

Assumption 3.1. The payoff function h satisfies

h(x̃;K) =

nh∑
i=1

exp(ω̄i · x̃) gi(ω̂ · x̃;K) (3.2)

for ω̄i, ω̂ ∈ RnXm̃ and (ỹ 7→ gi(ỹ;K)) ∈ S∗(R).

Within this setting, denote by Dt(τ) = exp(−r τ) the τ -period discount factor. Using ΦQ in the

exponentially affine form of equation (2.6) under the conditions of proposition 2.1, we can then define the

pricing transform for valuing derivatives written on Xt⊕T̃ by

Π(ω; T̃ , Zt) = EQ[Dt(T̃m̃) exp(ω ·Xt⊕T̃ ) |Ft]

= exp(AΠ(ω; T̃ ) +BΠ(ω; T̃ ) · Zt) ,
(3.3)

where AΠ(ω; T̃ ) = AQ
Φ(ω; T̃ )−r T̃m̃ and BΠ(ω; T̃ ) = BQ

Φ(ω; T̃ ). In order to access the results of generalized

transform analysis, we impose the following assumption on Π in equation (3.3).

Assumption 3.2. (y 7→ Π(b(y); T̃ , z)) ∈ S(Y) for b([ω; ỹ]) = ω + iỹω̂, Y =
⋃nh
i=1{ω̄i} ×R, and all z ∈ Z.

With the general payoff function (3.2) and the pricing transform in equation (3.3), we are ready

to approach derivatives pricing using the results from generalized transform analysis. The following

proposition states a compact form of the associated price function V in terms of distributional tensor

products.

Proposition 3.1. Let assumptions 3.1 and 3.2 hold. Then we have

V(Zt;K, T̃ ) = EQ[Dt(T̃m̃)h(Xt⊕T̃ ;K) |Ft]

= 〈w(y;K),Π(b(y); T̃ , Zt)〉 ,
(3.4)

where y = [ω̃; ỹ] and b([ω̃; ỹ]) = ω̃ + iỹω̂. Moreover, (y 7→ w(y;K)) ∈ S∗(Y) is given by the distributional

tensor product

w([ω̃; ỹ];K) =
1

2π

nh∑
i=1

δ(ω̃ − ω̄i)⊗ ĝi(ỹ;K) , (3.5)

in terms of the distributional Fourier transforms (ỹ 7→ ĝi(ỹ;K)) ∈ S∗(R).

Expressing V in terms of a single tempered distribution w instead of a sum appears to be a purely

cosmetic manipulation for the purpose of derivatives pricing, but will enormously simplify the analysis

in subsequent sections when considering moments of derivatives prices. In the cases relevant for this

paper, it will be possible to represent the action of the tempered distributions ĝi in proposition 3.1 by

regularized integrals. Since Π needs to be determined numerically in most cases, evaluation of the price

12E.g., for futures-style margining, the results hold with the risk-neutral transform ΦQ replacing the pricing transform Π
defined in equation (3.3) below (e.g., Cox et al. (1981)).
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function V in equation (3.4) will, therefore, generally require solving a series of one-dimensional numerical

integration problems.

3.3 Equity derivatives

Equity derivatives written on the stock price constitute an important class of derivatives that is covered

as a special case of section 3.2. To be precise, consider a plain-vanilla European option on the stock

price St+τ for some τ ∈ R+, whose price is normalized by the current stock price St in order to achieve

stationarity.13 Fixing the time vector T̃ = [τ ] as well as the log moneyness strike K, the call and put

payoff of this option are given by hCstock(Xt⊕T̃ ;K) and hPstock(Xt⊕T̃ ;K), respectively, where

hCstock(x̃;K) = (exp([1; 0] · x̃)− exp(K))U([1; 0] · x̃−K) (3.6a)

hPstock(x̃;K) = (exp(K)− exp([1; 0] · x̃))U(K − [1; 0] · x̃) . (3.6b)

Here, U denotes the Heaviside step function. Each of the payoff functions in equation (3.6) satisfies the

conditions of assumption 3.1 and can straightforwardly be expressed in the form of equation (3.2).

Denote the derivatives price associated to hOstock in equation (3.6) by VOstock for option type O ∈ {C,P}.
The following corollary to proposition 3.1 yields an expression for VOstock as a special case of equation (3.4).

Corollary 3.1. Let hOstock be as in equation (3.6). Moreover, let assumption 3.2 hold for ω̄1 = [1; 0],

ω̄2 = [0; 0], ω̂ = [1; 0]. Then we have

VOstock(Zt;K, T̃ ) = 〈wOstock(y;K),Π(bstock(y); T̃ , Zt)〉 , (3.7)

where y = [ω̃; ỹ] and bstock([ω̃; ỹ]) = ω̃ + iỹ[1; 0]. The associated (y 7→ wOstock(y;K)) ∈ S∗(Y) are given by

wCstock([ω̃; ỹ];K) = (δ(ω̃ − [1; 0])− exp(K) δ(ω̃))⊗ ( 1
2 δ(ỹ) + FCstock(ỹ;K) (iỹ)−1) (3.8a)

wPstock([ω̃; ỹ];K) = (exp(K) δ(ω̃)− δ(ω̃ − [1; 0]))⊗ ( 1
2 δ(ỹ)− FPstock(ỹ;K) (iỹ)−1) (3.8b)

with FOstock(ỹ;K) = 1
2π exp(−iKỹ).

The statement of the preceding corollary 3.1 extends to the (prepaid) forward contract with payoff

hCstock(Xt⊕T̃ ;−∞). As a limiting case of the call price in corollary 3.1 when letting K → −∞, its

price function is given by VCstock(Zt;−∞, T̃ ) = Π([1; 0]; T̃ , Zt), with associated tempered distribution

wCstock([ω̃; ỹ];−∞) = δ(ω̃ − [1; 0])⊗ δ(ỹ).

For practical implementation, we give an integral representation of the tempered distribution wOstock

in corollary 3.1. Applications arising in the further course of this paper not only require evaluation for

Π as in equation (3.7), but also for other transforms. Therefore, the following lemma treats a generic

transform Υ, which covers Π as a special case. When applied to Π, the integral representation of wOstock

in equation (3.9) essentially recovers well-known transform-based option pricing formulas in, e.g., Bakshi

and Madan (2000) and Duffie et al. (2000) (see also Chen and Joslin (2012) for further discussion).

Lemma 3.1. Let (y 7→ Υ(bstock(y))) ∈ S(Y). Then wOstock in corollary 3.1 can be represented in integral

13This normalization is possible whenever the non-normalized option price is homogeneous of degree one in the initial
stock price, which is the case for the specification in equation (2.1). Merton (1973) advocates such homogeneity as a natural
property of option prices.
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form as

〈wOstock(y;K),Υ(bstock(y))〉 =

(
cO

2
Υ([1; 0]) +

∫
R+

∆
(1)
ỹ (FOstock(ỹ;K) Υ([1; 0] + iỹ[1; 0]))

iỹ
dỹ

)

− exp(K)

(
cO

2
Υ([0; 0]) +

∫
R+

∆
(1)
ỹ (FOstock(ỹ;K) Υ(iỹ[1; 0]))

iỹ
dỹ

)
,

(3.9)

with regularization ∆
(1)
ỹ f(ỹ) = f(ỹ)− f(−ỹ) as well as option indicators cC = +1 and cP = −1.

Lemma 3.1 states the integral representation of wOstock(y;K) for arbitrary generic transforms. The

associated regularization requires evaluation of the transform along the whole real line. A computationally

more efficient regularization may be employed whenever Υ(bstock([ω̃; ỹ])) is Hermitian as a function

of ỹ, which will generally be the case for the transforms considered in this paper. In that situation,

equation (3.9) continues to hold when replacing ∆
(1)
ỹ with ∆̃

(1)
ỹ defined by ∆̃

(1)
ỹ f(ỹ) = 2i=f(ỹ). The latter

requires evaluation of the transform only along the positive real half-line.

3.4 Volatility derivatives

An important class of volatility derivatives is written on volatility indices constructed by the methodology

of CBOE’s VIX. To consistently model the evolution of the VIX associated to the state dynamics (2.1),

we employ the usual theoretical representation of the squared VIX by a static portfolio comprising a

continuum of out-of-the-money equity options (e.g., Carr and Madan (2001)). Fixing the reference period

for the VIX at τvix equal to 30 calendar days, we obtain the representation

VIX 2
t =

2 exp(rτvix)

τvix

(∫ 0

−∞
exp(−K)VPstock(Zt;K, τvix) dK +

∫ ∞
0

exp(−K)VCstock(Zt;K, τvix) dK

)
.

(3.10)

This theoretical construction forms the conceptual basis for practical VIX-type indices, which aim at

approximating the right-hand side of equation (3.10) using a finite number of observed option quotes.14

For the purpose of derivatives pricing, the thus constructed VIX is hardly tractable in the form of

equation (3.10). As articulated in Carr and Wu (2009), however, it can be expressed in terms of a

jump-adjusted quadratic variation of the (forward) stock price. Exploiting this insight, the following

lemma establishes an affine dependence of VIX 2
t on the latent state vector Zt for the state dynamics in

equation (2.1).

Lemma 3.2. Let VIX 2
t be given as in equation (3.10). It holds that

VIX 2
t = avix + bvix · Zt (3.11)

for coefficients avix ∈ R and bvix ∈ RnZ given in equation (B.26).

The affine relation in lemma 3.2 allows us to study the pricing of options written on the VIX as a

special case of the results in section 3.2. Specifically, consider a plain-vanilla European option on the

volatility index VIX t+τ for some τ ∈ R+. Fixing the time vector T̃ = [τ ] and the squared strike K ≥ 0,

we denote the call and put payoff of this option by hCvix(Xt⊕T̃ ;K) and hPvix(Xt⊕T̃ ;K), respectively. Using

14For an analysis of the approximation errors incurred in the practical realization of equation (3.10), the interested reader
is referred to, e.g., Jiang and Tian (2005, 2007).
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the affine expression for VIX 2
t in equation (3.11), we have

hCvix(x̃;K) = ((avix + [0; bvix] · x̃)1/2 −K1/2)U((avix + [0; bvix] · x̃)−K) (3.12a)

hPvix(x̃;K) = (K1/2 − (avix + [0; bvix] · x̃)1/2)U(K − (avix + [0; bvix] · x̃)) . (3.12b)

As before, U denotes the Heaviside step function. Each of the payoff functions in equation (3.12) satisfies

the conditions of assumption 3.1 and constitutes a special case of equation (3.2).

Denote the derivatives price associated to hOvix in equation (3.12) by VOvix for option type O ∈ {C,P}.
The following corollary to proposition 3.1 states an expression for VOvix as a special case of equation (3.4).

Corollary 3.2. Let hOvix be as in equation (3.12). Moreover, let assumption 3.2 hold for ω̄1 = [0; 0],

ω̂ = [0; bvix]. Then we have

VOvix(Zt;K, T̃ ) = 〈wOvix(y;K),Π(bvix(y); T̃ , Zt)〉 , (3.13)

where y = [ω̃; ỹ] and bvix([ω̃; ỹ]) = ω̃ + iỹ[0; bvix]. The associated (y 7→ wOvix(y;K)) ∈ S∗(Y) are given by

wCvix([ω̃; ỹ];K) = δ(ω̃)⊗ FCvix(ỹ;K) (iỹ)−3/2 (3.14a)

wPvix([ω̃; ỹ];K) = δ(ω̃)⊗ (K1/2 δ(ỹ) + FPvix(ỹ;K) (iỹ)−3/2) (3.14b)

with FCvix(ỹ;K) = + 1
4π exp(iavixỹ) Γ(1/2, iKỹ) and FPvix(ỹ;K) = − 1

4π exp(iavixỹ) γ(1/2, iKỹ). Here, Γ

and γ denote the upper and lower incomplete Gamma function, respectively.

The (prepaid) forward contract with payoff hCvix(Xt⊕T̃ ; 0) has the price price function VCvix(Zt; 0, T̃ ),

which results as a special case of the call price in corollary 3.2 when setting K = 0.

For practical implementation, we present an integral representation of the tempered distribution

wOvix in corollary 3.2. Analogous to lemma 3.1, the upcoming lemma gives such a representation for a

generic transform Υ, which covers Π in equation (3.13) as a special case. When applied to Π, the integral

representation of wOvix in equation (3.15) yields a similar pricing formula as those in, e.g., Branger et al.

(2016), Lian and Zhu (2013), Pacati et al. (2018), and Sepp (2008b).15

Lemma 3.3. Let (y 7→ Υ(bvix(y))) ∈ S(Y). Then wOvix in corollary 3.2 can be represented in integral

form as

〈wOvix(y;K),Υ(bvix(y))〉 =
1− cO

2
K1/2 Υ([0; 0]) +

∫
R+

∆
(3/2)
ỹ (FOvix(ỹ;K) Υ(iỹ[0; bvix]))

(iỹ)3/2
dỹ , (3.15)

with regularization ∆
(3/2)
ỹ f(ỹ) = f(ỹ)− i f(−ỹ)− (1− i) f(0) as well as option indicators cC = +1 and

cP = −1.

The integral representation of wOvix in lemma 3.3 may be employed for arbitrary generic transforms.

For the special case of Υ(bvix([ω̃; ỹ])) being Hermitian as a function of ỹ, we may alternatively devise a

computationally more efficient regularization. Specifically, in that case, equation (3.15) continues to hold

with ∆̃
(3/2)
ỹ replacing ∆

(3/2)
ỹ , where we define ∆̃

(3/2)
ỹ f(ỹ) = (1− i) (<f(ỹ)−=f(ỹ)− f(0)).

15Related pricing formulas are also derived for the case of derivatives on quadratic variation (e.g., Broadie and Jain
(2008), Carr and Lee (2009), Friz and Gatheral (2005), and Sepp (2008a)).
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3.5 Extensions using complex Fourier theory

The derivatives pricing formula established in proposition 3.1 is given in terms of distributional Fourier

transforms. For important special cases, such as the equity and volatility derivatives treated in corol-

laries 3.1 and 3.2, respectively, these distributional Fourier transforms may admit regularized integral

representations, as in lemmas 3.1 and 3.3. In certain cases, the derivatives pricing formula can even

be rewritten in terms of ordinary (square-integrable) Fourier transforms, admitting a regular integral

representation. Appendix C discusses the case of functions exhibiting exponential growth using so-called

complex Fourier theory.

Specifically, suppose that the payoff function h in the form of equation (3.2) may be written in terms

of functions gi exhibiting exponential growth. By exponential scaling, we can easily construct another

representation of h in terms of square-integrable functions in accordance with assumption 3.1. Given that

the pricing transform satisfies assumption 3.2 after scaling, proposition 3.1 justifies a derivatives pricing

formula (3.4) in the integral form

V(Zt;K, T̃ ) =

∫
Yε
wε(y;K) Π(b(y); T̃ , Zt) dy , (3.16)

with wε given analogous to equation (3.5) and employing the functional definition of the Dirac delta. Here,

ε reflects the exponential scaling. By construction, wε is now given in terms of the (square-integrable)

complex Fourier transforms of gi, whereas the respective ordinary Fourier transforms may not exist. In

essence, the derivatives price in equation (3.16) can thus be represented as a sum of ordinary integrals.

Particular examples of functions exhibiting exponential growth arise for the equity and volatility

derivatives considered in sections 3.3 and 3.4, respectively. Following an exponential scaling procedure

that is thoroughly outlined in appendix C, we can establish regular transform-based pricing formulas

in the form of equation (3.16). We provide these formulas in corollaries C.1 and C.2, leading to the

ordinary integral representations in lemmas C.3 and C.4, respectively. Intuitively, one may think of

the distributional pricing formulas and their regularized integral representations derived in sections 3.3

and 3.4 as limiting cases (as ε→ 0) of the corresponding ordinary ones.

In principle, a derivation of the thus discussed results can rely on the distribution-based theory of this

section. What appendix C conveys in addition is that these results may as well be derived by largely

relying on distribution-free techniques from ordinary Fourier and integration theory. When limiting

the attention to payoff functions of this particular form, one may even completely abandon Schwartz

distribution theory and instead rely on ordinary Fourier and integration techniques, at the expense of

lower generality with respect to the structure of payoff functions and more intricate regularity conditions.

Details of this are discussed in Dillschneider (2020).

4 Moments involving derivatives prices

Based on the unified derivatives pricing theory established in section 3, this section develops expressions

for moments involving polynomials of derivatives prices, which will form the basis for section 5, where we

devise our GMM-type estimation approach. Section 4.1 describes the basic setup for studying moments

of derivatives prices. For determining these moments, section 4.2 introduces an extension of Schwartz

distribution theory. Section 4.3 then derives expressions for exact moments that will be shown to

be analytically tractable, but computationally feasible only for low orders. Nevertheless, the derived

expressions can be used to develop an effective approximation procedure in section 4.4. Finally, to make

our results more easily accessible, section 4.5 studies several concrete examples. While not the focus of

our presentation, section 4.6 shows that our methodology can straightforwardly be extended to include
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realistic measurement errors in derivatives prices. Derivations and proofs are contained in appendix D.

4.1 Basic setup

To cover a broad class of interesting moments, we now turn to a general setting in which multiple

derivatives prices are available at each given date. Specifically, consider a vector of derivatives prices

at time t, denoted by Vt and taking values in RnV . Each of its elements may correspond to a different

underlying and contract specification. To preserve generality of our results, we merely require that all

derivatives prices are determined according to the general formula in proposition 3.1. By equation (3.4),

each element of Vt can thus be expressed as

Vi,t = Vi(Zt;Ki, T̃i) = 〈wi(yi;Ki),Π(bi(yi); T̃i, Zt)〉 (4.1)

in terms of a tempered distribution (yi 7→ wi(yi;Ki)) ∈ S∗(Yi) and the pricing transform Π in equa-

tion (3.3). For the expression in equation (4.1) to be well-defined, we suppose that assumption 3.2 holds

accordingly, so that (yi 7→ Π(bi(yi); T̃i, z)) ∈ S(Yi) for any z ∈ Z. As before, for a non-decreasing time

vector τ̃ ∈ Rñ, we moreover construct the stacked vector Vt+τ̃ = [Vt+τ̃1 ; . . . ;Vt+τ̃ñ ].

4.2 Extended Schwartz distribution theory

Expressions for moments involving derivatives prices may be derived under ordinary Schwartz distribution

theory. However, it turns out that we may further relax the required conditions. As in Dillschneider

(2020), we therefore extend the notion of a Schwartz space to include also functions that are Schwartz

only after appropriate regularization.

Formally, we denote by S̃(Rm; v) an extended Schwartz space as follows. Take some positive weighting

function v ∈ C∞(Rm). Construct the space S̃(Rm; v) to contain all smooth functions f ∈ C∞(Rm) such

that f̃ = vf ∈ S(Rm). When v is (at most) slowly increasing, we indeed have that S̃(Rm; v) ⊃ S(Rm).

The associated continuous dual space S̃∗(Rm; v) yields the space of extended tempered distributions. For

elements g ∈ S̃∗(Rm; v) and f ∈ S̃(Rm; v), we define the action of g on f via the identity 〈g(y), f(y)〉 =

〈g̃(y), f̃(y)〉, where g̃ = v−1g ∈ S∗(Rm) and f̃ = vf ∈ S(Rm). When v is (at most) slowly increasing, we

have that S̃∗(Rm; v) ⊂ S∗(Rm).

The above construction carries over to tensor products on extended Schwartz spaces S̃(Rm×Rn; v⊗u)

with positive weighting functions v ∈ C∞(Rm) and u ∈ C∞(Rn). Specifically, the tensor product then

satisfies 〈g(y)⊗ h(z), f(y, z)〉 = 〈g̃(y)⊗ h̃(z), f̃(y, z)〉, where the right-hand-side is given by equation (3.1)

with g̃ = v−1g ∈ S∗(Rm), h̃ = u−1h ∈ S∗(Rn), and f̃ = (v ⊗ u)f ∈ S(Rm × Rn). It follows by this

construction that an analogue of equation (3.1) holds in extended Schwartz spaces.

The definitions extend naturally to subsets Y ⊂ Rm. In that case, the space S̃(Y; v) consists of all

functions f such that there exists some f̃ ∈ S(Rm) coinciding with f on Y. Likewise, the dual space

S̃∗(Y; v) consists of the g ∈ S̃∗(Rm; v) whose support is contained in Y. Consequently, we can define

〈g(y), f(y)〉 = 〈g(y), f̃(y)〉 for g ∈ S̃∗(Y ; v) and f ∈ S̃(Y ; v), where the concrete choice of f̃ ∈ S̃(Rm; v) is

inconsequential.

4.3 Exact moments

Within the setting presented in section 4.1, our first result establishes that monomials of Vt+τ̃ can again

be written in terms of a tempered distribution applied to some associated pricing transform.
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Lemma 4.1. For any multi-index β ∈ NnV , we have that

(Vt+τ̃ )β = 〈wβ(y;K),Πβ(b(y); T̃ , Zt+τ̃ )〉 , (4.2)

where the tempered distribution (y 7→ wβ(y;K)) ∈ S∗(Yβ) is given in equation (D.7). Moreover, the

associated pricing transform (y 7→ Πβ(b(y); T̃ , z)) ∈ S(Yβ) for any z ∈ Z ñ has the form

Πβ(b(y); T̃ , Zt+τ̃ ) = exp(AβΠ(b(y); T̃ ) +BβΠ(b(y); T̃ ) · Zt+τ̃ ) , (4.3)

where AβΠ and BβΠ are given in equation (D.9).

The tempered distribution wβ in lemma 4.1 essentially equals a tensor product of the tempered

distributions wi, with multiplicities being determined by the multi-index β. As the action of each wi can

generally be represented by a one-dimensional integral, the action of wβ can accordingly be expressed in

terms of a |β|-dimensional integral.

Using lemma 4.1, we are now in place to determine joint moments of state variables Xt⊕τ̃ and

derivatives prices Vt+τ̃ . Thereby, we extend the class of analytically tractable moments beyond those

introduced in section 2.3. To arrive at the desired result, we rely on the extended Schwartz theory in the

sense of section 4.2, suggesting the following regularity conditions.

Assumption 4.1. There exists positive qβ ∈ C∞(Z ñ) satisfying the following conditions:

(i) ((y, z) 7→ Πβ(b(y); T̃ , z)) ∈ S̃(Yβ ×Z ñ;1⊗ qβ);

(ii) EM[|exp(ω ·Xt⊕τ̃ ) (Xt⊕τ̃ )α| qβ(Zt+τ̃ )−1] <∞.

The upcoming proposition states an extension of the unconditional pl-linear moments in equation (2.9).

With obvious modifications, an equivalent expression can be derived for conditional pl-linear moments,

which are, however, of minor importance for the purpose of our paper.

Proposition 4.1. Consider an argument ω ∈ CnX ñ as well as multi-indices α ∈ NnX ñ and β ∈ NnV ñ.

Let assumption 4.1 hold. Then we have

Φ̃M,[α,β](ω, 0; τ̃ ,∞) = EM[exp(ω ·Xt⊕τ̃ ) (Xt⊕τ̃ )α (Vt+τ̃ )β ]

= 〈wβ(y;K), exp(AβΠ(b(y); T̃ )) ΦM,[α](ω + [0;BβΠ(b(y); T̃ )]; τ̃ ,∞)〉
(4.4)

with wβ, AβΠ, and BβΠ given in lemma 4.1.

The crucial result leading to these moments is the interchange of the tempered distribution and

the expectation operator in equation (4.4), which can be justified using the extended Schwartz theory

(cf. appendix D.1). For evaluating the integrand in equation (4.4), ΦM,[α] can be determined from

equation (2.9) under the conditions of proposition 2.2. While Φ̃M,[α,β] thereby admits an analytically

tractable expression for arbitrary multi-indices (α, β), in general, its computation is only feasible for low

orders of β, since wβ requires |β|-dimensional numerical integration.

4.4 Approximate moments

To avoid the computational cost of the exact pl-linear moments involving derivatives prices in section 4.3

while exploiting the feasibility of low-order moments, this section proposes an effective polynomial

approximation approach.

18



Take L2(Z,M) to be the set of square-integrable functions on Z against the probability measure M,

i.e., comprising all f satisfying EM[|f(Zt)|2] <∞, where the choice of t is arbitrary due to stationarity.

In order to assure that functions in L2(Z,M) can be approximated by monomials of Zt, we impose the

following standard assumption, under which M is said to have exponential tails.

Assumption 4.2. EM[exp(ε ‖Zt‖)] <∞ for some ε > 0.

As a consequence of assumption 4.2, the set of monomials {zγ : γ ∈ NnZ} forms a basis for L2(Z,M)

(e.g., theorem 3.2.18 in Dunkl and Xu (2014)). Employing the well-known Gram-Schmidt procedure, the

set of monomials can be transformed into an orthonormal basis {φγ(z) : γ ∈ NnZ}. By construction, we

have φγ(z) =
∑
η4γ b

(γ)
φ,η z

η for coefficients b
(γ)
φ,η ∈ R depending on the unconditional monomial moments

of Zt under M up to order 2|γ|, with 4 denoting the lexicographic order. Under the conditions of

proposition 2.3, these moments can be computed in closed form by equation (2.11).

In order to approximate derivatives prices, we need to assure that the price functions are contained in

L2(Z,M). Hence, we further impose the following assumption on Vi in equation (4.1).

Assumption 4.3. (z 7→ Vi(z;Ki, T̃i)) ∈ L2(Z,M) for all 1 ≤ i ≤ nV .

Combining assumptions 4.2 and 4.3, we construct an approximant Vt,(p) for Vt by projecting each of

its elements Vi,t = Vi(Zt;Ki, T̃i) onto the truncated set of basis functions {φγ(z) : γ ∈ NnZ , |γ| ≤ p}. Due

to stationarity, the projection is independent of the particular choice of t. We summarize the construction

of Vt,(p) in the upcoming lemma, whose proof is standard and thus omitted.

Lemma 4.2. Let assumptions 4.2 and 4.3 hold. Then Vt,(p) is given as

Vt,(p) =
∑
|η|≤p

c̃V,η φη(Zt) (4.5)

with c̃V,η = EM[Vt φη(Zt)] ∈ RnV . Moreover, Vt,(p) → Vt elementwise in L2(Z,M) as p→∞.

Using lemma 4.2, we can now construct an approximant Vt+τ̃ ,(p) for Vt+τ̃ , given a non-decreasing time

vector τ̃ ∈ Rñ. By a change of basis, equation (4.5) can be expressed as

Vt,(p) =
∑
|η|≤p

b̃V,η,(p) (Zt)
η (4.6)

for b̃V,η,(p) ∈ RnV , depending on the expansion order p. Constructing Vt+τ̃j ,(p) as in equation (4.6)

separately for every 1 ≤ j ≤ ñ, we define the stacked vector Vt+τ̃ ,(p) = [Vt+τ̃1,(p); . . . ;Vt+τ̃ñ,(p)]. Padding

the coefficients in equation (4.6) with zeros then yields

Vt+τ̃ ,(p) =
∑
|η|≤p

bV,η,(p) (Zt+τ̃ )η (4.7)

for bV,η,(p) ∈ RnV ñ. Monomials of Vt+τ̃ ,(p) in equation (4.7) thus obtain as polynomials in Zt+τ̃ , given by

(Vt+τ̃ ,(p))
β =

∑
|η|≤p|β|

b
(β)
V,η,(p) (Zt+τ̃ )η (4.8)

for b
(β)
V,η,(p) ∈ R determined as polynomials of the coefficients c̃V,η in equation (4.5).

It is now a natural question whether the proposed approximation of monomials of Vt+τ̃ via Vt+τ̃ ,(p)

in equation (4.8) yields a sensible approximation of pl-linear moments involving derivatives prices. In
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general, elementwise convergence in the L2(Z,M) sense does not imply convergence of the associated

pl-linear moments, unless an additional regularity condition is imposed.

Assumption 4.4. (exp(ω ·Xt⊕τ̃ ) (Xt⊕τ̃ )α (Vt+τ̃ ,(p))
β)p is uniformly integrable.16

Under the additional condition in assumption 4.4, the upcoming proposition formalizes the aspired

moment approximation procedure. Approximate pl-linear moments involving the derivatives prices Vt+τ̃

can be obtained by computing exact pl-linear moments involving the approximant Vt+τ̃ ,(p). The resulting

sequence of moment approximants converges to the exact moments derived in proposition 4.1.

Proposition 4.2. Consider an argument ω ∈ CnX ñ as well as multi-indices α ∈ NnX ñ and β ∈ NnV ñ.

Let assumptions 4.2 to 4.5 hold. Then we have that

Φ̃
M,[α,β]
(p) (ω, 0; τ̃ ,∞) = EM[exp(ω ·Xt⊕τ̃ ) (Xt⊕τ̃ )α (Vt+τ̃ ,(p))

β ]

=
∑
|η|≤p|β|

b
(β)
V,η,(p) ΦM,[α+[0;η]](ω; τ̃ ,∞) (4.9)

with b
(β)
V,η,(p) given in equation (D.13) satisfies Φ̃

M,[α,β]
(p) → Φ̃M,[α,β] as p→∞.

Except for the coefficients b
(β)
V,η,(p), the approximate pl-linear moment Φ̃

M,[α,β]
(p) in equation (4.9) does

not require the evaluation of any moments involving derivatives prices. Only the pl-linear moments

ΦM,[α+[0;η]] for |η| ≤ p|β| need to be computed, which can be achieved at low computational cost as in

equation (2.9) under the conditions of proposition 2.2, or even in closed form as in equation (2.11) under

the conditions of proposition 2.3 when ω = 0.

It remains to establish a practicable procedure for computing the coefficients b
(β)
V,η,(p), which are

polynomials of the coefficients c̃V,η in lemma 4.2, in order to evaluate the approximate moments in

proposition 4.2. For this purpose, we rely on the exact moments derived in section 4.3 and, hence, impose

the following regularity conditions in order to access these results.

Assumption 4.5. For every 1 ≤ i ≤ nV there exists positive qi ∈ C∞(Z) satisfying the following

conditions for all γ ∈ NnV with |γ| ≤ p:

(i) ((yi, z) 7→ Π(bi(yi); T̃i, z)) ∈ S̃(Yi ×Z;1⊗ qi);

(ii) EM[|(Zt)γ | qi(Zt)−1] <∞.

The conditions in assumption 4.5 are derived from assumption 4.1 and thereby allow to exploit the

exact moment expressions stated in proposition 4.1. In this respect, it is important to note that only

moments involving first-order polynomials in derivatives prices need to be evaluated.

Lemma 4.3. Fix p ∈ N. Let assumptions 4.2, 4.3 and 4.5 hold. Then c̃V,η in equation (4.5) for every

|η| ≤ p is given by

c̃V,η =

nV∑
i=1

ei
∑
γ4η

b
(η)
φ,γ 〈wi(yi;Ki), exp(AΠ(bi(yi); T̃i)) ΦM,[[0;γ]]([0;BΠ(bi(yi); T̃i)]; 0,∞)〉 , (4.10)

where ei ∈ NnV denotes the i-th standard unit vector.

In order to determine Vt,(p), it is necessary according to equation (4.10) to compute moments of the

form Φ̃M,[[0;γ],ei] as in equation (4.4) for each combination of i and |γ| ≤ p. Hence, in general, Vt,(p) can be

16A sequence (ξp)p is called uniformly integrable whenever supp EM[|ξp|U(|ξp| −K)]→ 0 as K →∞.
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computed by performing a series of one-dimensional numerical integration problems. Lemma 4.3 thereby

yields a computationally feasible procedure to compute the moment approximation in proposition 4.2.

4.5 Examples

To illustrate our theoretical results and make them more easily accessible, we now briefly discuss three

groups of examples with increasing complexity. For each of these groups, we without further notice

suppose that the conditions of proposition 4.1 hold, so that moments involving derivatives prices can be

determined according to equation (4.4).

4.5.1 Single-period, first-order moments

As a first group of examples, we illustrate polynomial moments involving the derivatives price Vi,t+τ̃1 for

τ̃1 ≥ 0 and 1 ≤ i ≤ nV . For this, consider a time vector τ̃ = [τ̃1] ∈ R+ and a first-order price moment

with β = ei ∈ NnV . Further setting α = [α1] ∈ NnX in equation (4.4) yields the polynomial moment

Φ̃M,[α,ei](0, 0; τ̃ ,∞) = EM[(Xt⊕[τ̃1])
α1 Vi,t+τ̃1 ]

= 〈wei(y;K), exp(AeiΠ (b(y); T̃ )) ΦM,[α]([0;BeiΠ (b(y); T̃ )]; τ̃ ,∞)〉 ,
(4.11)

with lemma 4.1 providing the required expressions for wei , AeiΠ , and BeiΠ :

wei(y;K) = wi(y1;Ki)

AeiΠ (b(y); T̃ ) = AΠ(bi(y1); T̃i)

BeiΠ (b(y); T̃ ) = BΠ(bi(y1); T̃i) .

Here, wei corresponds to the tempered distribution wi associated to Vi,t, while AeiΠ and BeiΠ are the

respective coefficients of the pricing transform.

It remains to determine a tractable expression for the standard transform in equation (4.11), using

the general results in section 2.3. Specifically, for argument ω = [ω1] ∈ CnX , the exponential transform

ΦM takes the form

ΦM(ω; τ̃ ,∞) = exp(AΦ(ω1; τ̃1,∞) +BΦ(ω1; τ̃1,∞))

under the conditions of proposition 2.1, yielding a special case of equation (2.7). Essentially by taking

partial derivatives with the Faà di Bruno formula (A.1), we further obtain an expression for the pl-linear

transform ΦM,[α] as

ΦM,[α](ω; τ̃ ,∞) = ΦM(ω; τ̃ ,∞)
∑
Q̃(α)

Mα
k,` (A

(`)
Φ (ω1; τ̃1,∞) +B

(`)
Φ (ω1; τ̃1,∞))k ,

which is justified by the conditions of proposition 2.2 and yields a special case of equation (2.9).

With these settings, we can now investigate the concrete implementation of the polynomial moment

in equation (4.11) for the case of equity and volatility derivatives as in sections 3.3 and 3.4, respectively.

To simplify notation, we introduce the auxiliary transform Υ(b([y1])) = Υi(b(y1)) given by

Υ(b(y)) = exp(AeiΠ (b(y); T̃ )) ΦM,[α]([0;BeiΠ (b(y); T̃ )]; τ,∞) , (4.12)

so that Φ̃M,[α,ei](0, 0; τ̃ ,∞) = 〈wei(y;K),Υ(b(y))〉. The following examples 4.1 and 4.2 exploit the

integral representations derived in lemmas 3.1 and 3.3 to determine the respective single-period, first-order

moments. Each such moment can be determined by performing one-dimensional numerical integration.

Exploiting symmetry properties of the integrands, the computational complexity of each one-dimensional
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integration problem can be reduced by replacing the regularization ∆ with the computationally more

efficient regularization ∆̃.

Example 4.1 (Stock moments). Suppose Vi,t corresponds to an equity option. We can then take

wi = wOistock and Fi = FOistock. With the integral representation in lemma 3.1, we obtain the polynomial

moment in equation (4.11) as

〈wei(y;K),Υ(b(y))〉 = Υi,0 +

∫
R+

∆
(1)
ỹ1

(Fi(ỹ1;Ki) Υi,1(ỹ1))

iỹ1
dỹ1 ,

where

Υi,0 = 1
2c
Oi
(
Υi([1; 0])− exp(Ki) Υi([0; 0])

)
Υi,1(ỹ1) = Υi([1; 0] + iỹ1[1; 0])− exp(Ki) Υi(iỹ1[1; 0])

in terms of the auxiliary transform in equation (4.12). �

Example 4.2 (VIX moments). Suppose Vi,t corresponds to a volatility option. We can then take

wi = wOivix and Fi = FOivix. With the integral representation in lemma 3.3, we obtain the polynomial

moment in equation (4.11) as

〈wei(y),Υ(b(y))〉 = Υi,0 +

∫
R+

∆
(3/2)
ỹ1

(Fi(ỹ1;Ki) Υi,1(ỹ1))

(iỹ1)3/2
dỹ1 ,

where

Υi,0 = 1
2 (1− cOi)K1/2

i Υi([0; 0])

Υi,1(ỹ1) = Υi(iỹ1[0; bvix])

in terms of the auxiliary transform in equation (4.12). �

4.5.2 Single-period, second-order moments

As a second group of examples, we essentially maintain the previous setting, but now consider polynomial

moments involving the product of contemporaneous derivatives prices Vi,t+τ̃1 and Vj,t+τ̃1 for τ̃1 ≥ 0 and

1 ≤ i, j ≤ nV . For this, we still consider the time vector τ̃ = [τ̃1] ∈ R+, but now a second-order price

moment with β = eij = ei + ej ∈ NnV . With α = [α1] ∈ NnX , equation (4.4) then yields the polynomial

moment

Φ̃M,[α,eij ](0, 0; τ̃ ,∞) = EM[(Xt⊕[τ̃1])
α1 Vi,t+τ̃1 Vj,t+τ̃1 ]

= 〈weij (y;K), exp(A
eij
Π (b(y); T̃ )) ΦM,[α]([0;B

eij
Π (b(y); T̃ )]; τ̃ ,∞)〉 ,

(4.13)

where from lemma 4.1

weij (y;K) = wi(y1;Ki)⊗ wj(y2;Kj)

A
eij
Π (b(y); T̃ ) = AΠ(bi(y1); T̃i) +AΠ(bj(y2); T̃j)

B
eij
Π (b(y); T̃ ) = BΠ(bi(y1); T̃i) +BΠ(bj(y2); T̃j) .

Unlike for first-order moments, weij now is a tensor product of the tempered distributions wi and wj

associated to the derivatives prices Vi,t and Vj,t, respectively. Similarly, A
eij
Π and B

eij
Π can be interpreted

as tensor sums of the associated coefficients of the pricing transform.
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To determine a tractable expression for the standard transform in equation (4.13), we again use the

general results in section 2.3. For argument ω = [ω1] ∈ CnX , the exponential transform ΦM remains

ΦM(ω; τ̃ ,∞) = exp(AΦ(ω1; τ̃1,∞) +BΦ(ω1; τ̃1,∞)) ,

valid under the conditions of proposition 2.1 as a special case of equation (2.7). Likewise, the expression

for the associated pl-linear transform ΦM,[α] is still given by

ΦM,[α](ω; τ̃ ,∞) = ΦM(ω; τ̃ ,∞)
∑
Q̃(α)

Mα
k,` (A

(`)
Φ (ω1; τ̃1,∞) +B

(`)
Φ (ω1; τ̃1,∞))k

under the conditions of proposition 2.2, yielding a special case of equation (2.9).

To implement the polynomial moment in equation (4.13) for the case of equity and volatility derivatives

as in sections 3.3 and 3.4, respectively, we again introduce some additional notation. Specifically, we now

define the auxiliary transform Υ(b([y1; y2])) = Υij(b(y1), b(y2)) by

Υ(b(y)) = exp(A
eij
Π (b(y); T̃ )) ΦM,[α]([0;B

eij
Π (b(y); T̃ )]; τ,∞) . (4.14)

Consequently, we may write Φ̃M,[α,eij ](0, 0; τ̃ ,∞) = 〈weij (y;K),Υ(b(y))〉. Exploiting the integral repre-

sentations in lemmas 3.1 and 3.3, the following examples 4.3 to 4.5 determine the respective single-period,

second-order moments. Determining each of these moments requires performing up to two-dimensional

numerical integration. Exploiting symmetries of the integrands, the computational complexity of the

integration problems can be reduced by replacing the regularization ∆ with the computationally more

efficient regularization ∆̃ along one dimension.

Example 4.3 (Stock-stock moments). Suppose both Vi,t and Vj,t correspond to equity options. We

can then take wi = wOistock and wj = w
Oj
stock as well as Fi = FOistock and Fj = F

Oj
stock. With the integral

representation in lemma 3.1, we obtain the polynomial moment in equation (4.13) as

〈weij (y;K),Υ(b(y))〉 = Υij,0 +

∫
R+

∆
(1)
ỹ1

(Fi(ỹ1;Ki) Υij,1(ỹ1))

iỹ1
dỹ1 +

∫
R+

∆
(1)
ỹ2

(Fj(ỹ2;Kj) Υij,2(ỹ2))

iỹ2
dỹ2

+

∫
R+×R+

∆
(1)
ỹ1

∆
(1)
ỹ2

(Fi(ỹ1;Ki)Fj(ỹ2;Kj) Υij,12(ỹ1, ỹ2))

iỹ1 iỹ2
d[ỹ1; ỹ2] ,

where

Υij,0 = 1
4c
OicOj

(
Υij([1; 0], [1; 0]) + exp(Ki +Kj) Υij([0; 0], [0; 0])

− exp(Ki) Υij([0; 0], [1; 0])− exp(Kj) Υij([1; 0], [0; 0])
)

Υij,1(ỹ1) = 1
2c
Oj
(
Υij([1; 0] + iỹ1[1; 0], [1; 0]) + exp(Ki +Kj) Υij(iỹ1[1; 0], [0; 0])

− exp(Ki) Υij(iỹ1[1; 0], [1; 0])− exp(Kj) Υij([1; 0] + iỹ1[1; 0], [0; 0])
)

Υij,2(ỹ2) = 1
2c
Oi
(
Υij([1; 0], [1; 0] + iỹ2[1; 0]) + exp(Ki +Kj) Υij([0; 0], iỹ2[1; 0])

− exp(Ki) Υij([0; 0], [1; 0] + iỹ2[1; 0])− exp(Kj) Υij([1; 0], iỹ2[1; 0])
)

Υij,12(ỹ1, ỹ2) = Υij([1; 0] + iỹ1[1; 0], [1; 0] + iỹ2[1; 0]) + exp(Ki +Kj) Υij(iỹ1[1; 0], iỹ2[1; 0])

− exp(Ki) Υij(iỹ1[1; 0], [1; 0] + iỹ2[1; 0])− exp(Kj) Υij([1; 0] + iỹ1[1; 0], iỹ2[1; 0])

in terms of the auxiliary transform in equation (4.14). �

Example 4.4 (VIX-VIX moments). Suppose both Vi,t and Vj,t correspond to volatility options.
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We can then take wi = wOivix and wj = w
Oj
vix as well as Fi = FOivix and Fj = F

Oj
vix . With the integral

representation in lemma 3.3, we obtain the polynomial moment in equation (4.13) as

〈weij (y;K),Υ(b(y))〉 = Υij,0 +

∫
R+

∆
(3/2)
ỹ1

(Fi(ỹ1;Ki) Υij,1(ỹ1))

(iỹ1)3/2
dỹ1 +

∫
R+

∆
(3/2)
ỹ2

(Fj(ỹ2;Kj) Υij,2(ỹ2))

(iỹ2)3/2
dỹ2

+

∫
R+×R+

∆
(3/2)
ỹ1

∆
(3/2)
ỹ2

(Fi(ỹ1;Ki)Fj(ỹ2;Kj) Υij,12(ỹ1, ỹ2))

(iỹ1)3/2(iỹ2)3/2
d[ỹ1; ỹ2] ,

where

Υij,0 = 1
4 (1− cOi)(1− cOj )K1/2

i K
1/2
j Υij([0; 0], [0; 0])

Υij,1(ỹ1) = 1
2 (1− cOj )K1/2

j Υij(iỹ1[0; bvix], [0; 0])

Υij,2(ỹ2) = 1
2 (1− cOi)K1/2

i Υij([0; 0], iỹ2[0; bvix])

Υij,12(ỹ1, ỹ2) = Υij(iỹ1[0; bvix], iỹ2[0; bvix])

in terms of the auxiliary transform in equation (4.14). �

Example 4.5 (Stock-VIX moments). Suppose Vi,t corresponds to an equity option, while Vj,t

corresponds to a volatility option. We can then take wi = wOistock and wj = w
Oj
vix as well as Fi = FOistock and

Fj = F
Oj
vix . With the integral representations in lemmas 3.1 and 3.3, we obtain the polynomial moment in

equation (4.13) as

〈weij (y;K),Υ(b(y))〉 = Υij,0 +

∫
R+

∆
(1)
ỹ1

(Fi(ỹ1;Ki) Υij,1(ỹ1))

iỹ1
dỹ1 +

∫
R+

∆
(3/2)
ỹ2

(Fj(ỹ2;Kj) Υij,2(ỹ2))

(iỹ2)3/2
dỹ2

+

∫
R+×R+

∆
(1)
ỹ1

∆
(3/2)
ỹ2

(Fi(ỹ1;Ki)Fj(ỹ2;Kj) Υij,12(ỹ1, ỹ2))

iỹ1 (iỹ2)3/2
d[ỹ1; ỹ2] ,

where

Υij,0 = 1
4c
Oi(1− cOj )K1/2

j

(
Υij([1; 0], [0; 0])− exp(Ki) Υij([0; 0], [0; 0])

)
Υij,1(ỹ1) = 1

2 (1− cOj )K1/2
j

(
Υij([1; 0] + iỹ1[1; 0], [0; 0])− exp(Ki) Υij(iỹ1[1; 0], [0; 0])

)
Υij,2(ỹ2) = 1

2c
Oi
(
Υij([1; 0], iỹ2[0; bvix])− exp(Ki) Υij([0; 0], iỹ2[0; bvix])

)
Υij,12(ỹ1, ỹ2) = Υij([1; 0] + iỹ1[1; 0], iỹ2[0; bvix])− exp(Ki) Υij(iỹ1[1; 0], iỹ2[0; bvix])

in terms of the auxiliary transform in equation (4.14). �

4.5.3 Multi-period, second-order moments

As a third and final group of examples, we consider polynomial moments involving the product of

asynchronous derivatives prices Vi,t+τ̃1 and Vj,t+τ̃2 for τ̃2 > τ̃1 ≥ 0 and 1 ≤ i, j ≤ nV . Unlike in the

preceding examples, we now have two distinct time points τ̃1 and τ̃2, collected in a non-decreasing

time vector τ̃ = [τ̃1; τ̃2] ∈ R2
+. Further setting β = eij′ = ei + ej′ ∈ N2m with j′ = nV + j as well as

α = [α1;α2] ∈ N2nX , equation (4.4) yields

Φ̃M,[α,eij′ ](0, 0; τ̃ ,∞) = EM[(Xt⊕[τ̃1])
α1 (Xt+τ̃1⊕[τ̃2−τ̃1])

α2 Vi,t+τ̃1 Vj,t+τ̃2 ]

= 〈weij′ (y;K), exp(A
eij′

Π (b(y); T̃ )) ΦM,[α]([0;B
eij′

Π (b(y); T̃ )]; τ̃ ,∞)〉 ,
(4.15)
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where from lemma 4.1, we get

weij′ (y;K) = wi(y1;Ki)⊗ wj(y2;Kj)

A
eij′

Π (b(y); T̃ ) = AΠ(bi(y1); T̃i) +AΠ(bj(y2); T̃j)

B
eij′

Π (b(y); T̃ ) = [BΠ(bi(y1); T̃i);BΠ(bj(y2); T̃j)] .

Analogous to single-period, second-order moments, weij′ = weij is a tensor product of the tempered

distributions wi and wj , while A
eij′

Π is a tensor sum of the respective coefficients of the pricing transform.

However, B
eij′

Π is not a tensor sum, but rather a block vector in C2nZ .

Determining a tractable expression for the standard transform in equation (4.15) entails some

additional complexity due to the multi-period structure. Nevertheless, the general results in section 2.3

conveniently yield such an expression in terms of the single-period coefficients. Specifically, for argument

ω = [ω1;ω2] ∈ C2nX , the exponential transform ΦM can be given as

ΦM(ω; τ̃ ,∞) = exp(AΦ(ω2; τ̃2 − τ̃1, 0) +AΦ(ω̃1; τ̃1,∞) +BΦ(ω̃1; τ̃1,∞))

with ω̃1 = ω1 + [0;BΦ(ω2; τ̃2 − τ̃1, 0)], justified by the conditions of proposition 2.1 as a special case

of equation (2.7). Essentially by taking partial derivatives with repeated help of the Faà di Bruno

formula (A.1), the associated pl-linear transform ΦM,[α] can be written as the tensor expression

ΦM,[α](ω; τ̃ ,∞) = ΦM(ω; τ̃ ,∞)
∑

Q̃([α1;α2])

M
[α1;α2]
k,[`1;`2]

(
0`1A

(`2)
Φ (ω2; τ̃2 − τ̃1, 0)

+
∑

|γ2|≤|`2|

A
(`1+[0;γ2])
Φ (ω̃1; τ̃1,∞)

∑
Q(`2,γ2)

M `2
k′,`′ (B

(`′)
Φ (ω2; τ̃2 − τ̃1, 0))k

′

+
∑

|γ2|≤|`2|

B
(`1+[0;γ2])
Φ (ω̃1; τ̃1,∞)

∑
Q(`2,γ2)

M `2
k′,`′ (B

(`′)
Φ (ω2; τ̃2 − τ̃1, 0))k

′
)k

,

which holds under the conditions of proposition 2.2 as a special case of equation (2.9).

With these expressions, we may implement the polynomial moment in equation (4.15) for the case of

equity and volatility derivatives as in sections 3.3 and 3.4, respectively. As before, we simplify notation

by introducing the auxiliary transform Υ(b([y1; y2])) = Υij(b(y1), b(y2)) given by

Υ(b(y)) = exp(A
eij′

Π (b(y); T̃ )) ΦM,[α]([0;B
eij′

Π (b(y); T̃ )]; τ,∞) . (4.16)

This allows to write Φ̃M,[α,eij′ ](0, 0; τ̃ ,∞) = 〈weij′ (y;K),Υ(b(y))〉. It should be noted that in the multi-

period setting, only the auxiliary transform differs from the respective single-period auxiliary transform.

Not surprisingly therefore, we may determine multi-period, second-order moments from the formulas in

examples 4.3 to 4.5 when using the auxiliary transform in equation (4.16) instead.

4.6 Including measurement errors

Thus far, this section has considered moments involving derivatives prices under the implicit assumption

that these price are observed exactly. In practical applications, however, one usually observes derivatives

prices only with measurement errors stemming from various sources (e.g., price discreteness and bid-ask

spreads). For this reason, we briefly discuss the generalization of our results in the presence of measurement

errors.

In general, measurement errors may exhibit complex interdependencies and dependencies with respect

to the state variables. To accommodate such features, we consider an augmented state vector Zt = [Z̃t; εt]
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and define Zt+τ̃ = [Z̃t+τ̃ ; εt+τ̃ ] for notational convenience. For generalizing proposition 4.1, suppose that

Ṽt denotes the vector of derivatives prices measured with error εt and construct Ṽt+τ̃ as usual. Analogous

to equation (4.4), define the pl-linear moments

˜̃ΦM,[α,β](ω, 0; τ̃ ,∞) = EM[exp(ω ·Xt⊕τ̃ ) (Xt⊕τ̃ )α (Ṽt+τ̃ )β ] . (4.17)

To give an expression for ˜̃ΦM,[α,β] in equation (4.17), we consider three exemplary cases. First, for

exponential measurement errors with Ṽt = Vt exp(εt), we have

˜̃ΦM,[α,β](ω, 0; τ̃ ,∞) = Φ̃M,[α,β](ω + [0; 0;β], 0; τ̃ ,∞) . (4.18)

Second, for multiplicative measurement errors with Ṽt = Vt εt, we obtain

˜̃ΦM,[α,β](ω, 0; τ̃ ,∞) = Φ̃M,[α+[0;0;β],β](ω, 0; τ̃ ,∞) . (4.19)

Third, for additive measurement errors with Ṽt = Vt + εt, the multi-binomial theorem yields

˜̃ΦM,[α,β](ω, 0; τ̃ ,∞) =
∑
η≤β

(
β

η

)
Φ̃M,[α+[0;0;η],β−η](ω, 0; τ̃ ,∞) . (4.20)

Equations (4.18) to (4.20) give pl-linear moments involving Ṽt in terms of the pl-linear moments

involving Vt determined by proposition 4.1 using an augmented state space definition. Only sufficiently

strong independence assumptions allow to treat measurements error moments separately. Specifically,

making the assumption that Z̃t+τ̃ and εt+τ̃ are independent, we obtain

Φ̃M,[α,β](ω, 0; τ̃ ,∞) = Φ̃M,[[αS ;αZ ;0],β]([ωS ;ωZ ; 0], 0; τ̃ ,∞) Φ̃M,[[0;0;αε],0]([0; 0;ωε], 0; τ̃ ,∞) ,

where the measurement errors affect only the second term.

5 Estimation methodology

In this section, we devise a GMM estimation procedure that incorporates the moments involving derivatives

prices developed in section 4. After laying out the basic setup in section 5.1, we suggest two GMM

estimators: an exact one in section 5.2 and an approximate one in section 5.3, using the exact and

approximate moments derived in sections 4.3 and 4.4, respectively. Subsequently, section 5.4 discusses

the proposed methodology and some extensions.

5.1 Basic setup

For estimating the affine stochastic volatility model (2.1), the data set comprises the stock price St and a

panel of option prices, collected in the vector Vt. In order to obtain such a panel in practice, it is usually

necessary to interpolate observed market prices. We may also easily accommodate additional observables

that are polynomial in the state vector, such as the squared VIX and related static portfolios constructed

from option prices. Maintaining the setup of section 4, each element of Vt is given by proposition 3.1 as in

equation (4.1). Measurement errors can straightforwardly be accounted for along the lines of section 4.6.

The interval between adjacent observation dates equals ∆. Define a parameter space Θ such that a

parameter vector ϑ ∈ Θ contains all relevant model parameters. For any ϑ ∈ Θ, we denote by P(ϑ) and

Q(ϑ) the associated parameterized real-world and risk-neutral probability measures, respectively. Suppose

that all data is generated by the model (2.1) under the parameter vector ϑ0 ∈ Θ.
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5.2 Exact GMM estimation

Exact GMM estimation relies on the exact moments involving asset prices derived in section 4.3.

Specifically, we set a vector of moment conditions ft(ϑ) of the form

ft(ϑ) = P (Xt⊕τ̃ , Vt+τ̃ )− EP(ϑ)[P (Xt⊕τ̃ , Vt+τ̃ )] , (5.1)

where P (x, v) =
∑
α,β cα,β x

α vβ is a vector-valued polynomial and the model-based expected value in

equation (5.1) may be written in terms of the exact extended transforms Φ̃P(ϑ),[α,β] defined in section 4.3,

EP(ϑ)[P (Xt⊕τ̃ , Vt+τ̃ )] =
∑
α,β

cα,β Φ̃P(ϑ),[α,β](0, 0; τ̃ ,∞) . (5.2)

Our main result concerning exact moments involving asset prices in proposition 4.1 for the choice M = P(ϑ)

yields a tractable expression for each exact extended transform, given by equation (4.4). By construction,

the exact moment conditions ft(ϑ) determined by equations (5.1) and (5.2) thus satisfy EP(ϑ0)[ft(ϑ0)] = 0.

Defining the sample average ĝT (ϑ) = 1
T

∑T
t=1 ft∆(ϑ), the GMM estimator associated to the exact

moment conditions in equation (5.2) can be written as

ϑ̂T (W ) = argmin
ϑ∈Θ

ĝT (ϑ)>W ĝT (ϑ) (5.3)

for some weighting matrix W . Within the present setting, the optimal weighting matrix can be computed

from the data alone. Hence, the efficient GMM estimator can be realized in a single step. Specifically, we

have that

Ω = lim
T→∞

T EP(ϑ0)[ĝT (ϑ0) ĝT (ϑ0)>] = Γ0 +

∞∑
`=1

Γ` + Γ>` ,

assuming that Γ` = EP(ϑ0)[ft∆(ϑ0) f(t+`)∆(ϑ0)>] are absolutely summable, with

Γ` = EP(ϑ0)[P (Xt∆⊕τ̃ , Vt∆+τ̃ )P (X(t+`)∆⊕τ̃ , V(t+`)∆+τ̃ )>] .

The efficient GMM estimator results from equation (5.3) when constructing an estimator Ω̂T for Ω from

the data (using, e.g., the Newey and West (1987) procedure) and setting W ∝ Ω̂−1
T .

Under standard regularity conditions, as stated in Dillschneider (2020) within a more general setting,

the exact GMM estimator in equation (5.3) is consistent and asymptotically normal. In practical

applications, however, we may find these regularity conditions being violated as the polynomial moments

in equation (5.2) cannot be determined exactly. Like other pl-linear moments, these generally require

numerical solutions to ODEs as well as the evaluation of multi-dimensional numerical integrals. As

discussed before, the latter moreover renders the moment conditions ft(ϑ) in equation (5.1) computationally

infeasible except for low orders of β.

5.3 Approximate GMM estimation

Approximate GMM estimation uses the approximate moments involving asset prices derived in section 4.4

for some prespecified approximation order p. Analogous to equation (5.1), we specify a vector of moment

conditions ft,(p)(ϑ) of the form

ft,(p)(ϑ) = P (Xt⊕τ̃ , Vt+τ̃ )− EP(ϑ)[P (Xt⊕τ̃ , Vt+τ̃ ,(p))] , (5.4)
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where P (x, v) =
∑
α,β cα,β x

α vβ is a vector-valued polynomial and Vt+τ̃ ,(p) is constructed as in section 4.4.

Hence, the model-based expected value in equation (5.4) may be written in terms of the approximate

extended transforms Φ̃
P(ϑ),[α,β]
(p) defined in section 4.4,

EP(ϑ)[P (Xt⊕τ̃ , Vt+τ̃ ,(p))] =
∑
α,β

cα,β Φ̃
P(ϑ),[α,β]
(p) (0, 0; τ̃ ,∞) . (5.5)

The construction of each approximate extended transform follows the procedure laid out in section 4.4

using expansion under the measure M = P(ϑ). Ultimately, proposition 4.2 yields a tractable expression

for each approximate extended transform, given by equation (4.9). By construction, the approximate

moment conditions ft,(p)(ϑ) determined by equations (5.1) and (5.2) satisfy EP(ϑ0)[ft,(p)(ϑ0)] → 0 as

p→∞ under the regularity conditions in proposition 4.2.

The GMM estimator associated to the approximate moment conditions in equation (5.5) can be

constructed analogously to the exact GMM estimator in equation (5.3). Setting the sample average

ĝT,(p)(ϑ) = 1
T

∑T
t=1 ft∆,(p)(ϑ) and a weighting matrix W , the approximate GMM estimator is given by

ϑ̂T,(p)(W ) = argmin
ϑ∈Θ

ĝT,(p)(ϑ)>W ĝT,(p)(ϑ) . (5.6)

The choice of an optimal weighting matrix can follow the considerations discussed for the exact estimator.

In contrast to the exact case, the asymptotic properties of the approximate GMM estimator in

equation (5.6) essentially depend on the supposed behavior of the approximation order p(T ) as T →∞.

Dillschneider (2020) formalizes regularity conditions representing an ideal situation, in which p(T ) grows

fast enough to preserve the asymptotic properties of the associated exact estimator. Under weaker

assumptions in the framework of Armstrong and Kolesár (2019), the approximate estimator may turn out

to exhibit local bias, while remaining consistent but less efficient. Especially when taking the approximation

order to be fixed at p(T ) = p, the approximate estimator is globally biased and inconsistent, a case

formally treated in Hall and Inoue (2003). Additional higher-order properties of approximate GMM

estimators are discussed in Kristensen and Salanié (2017).

In practical applications, additional approximation errors are incurred since the polynomial moments

in equation (5.5) rely on numerical solutions to ODEs as well as numerical integration. Yet, contrary to

their exact analogues, the approximate polynomial moments only require the evaluation of one-dimensional

integrals. Apart from that, they depend merely on polynomial moments of the state vector, which are

even available in closed form (cf. proposition 2.3). This renders approximate moment conditions and,

hence, the approximate GMM estimator computationally feasible even for larger orders of β.

5.4 Discussion and further extensions

The estimation approach suggested in this section avoids computationally intensive filtering techniques

for latent state variables. Instead, it is based on unconditional moments that integrate out latent state

variables, but nevertheless captures state dynamics through multi-period moments of augmented state

and asset price vectors. Such an approach is common in the literature in related settings (e.g., Duffie and

Singleton (1993)).

The choice of an unconditional GMM estimation setup is motivated by the concrete application

pursued in this paper. From a theoretical perspective, however, our methodology in section 4 to develop

expressions for moments involving transform-based derivatives prices is not limited to an unconditional

perspective. Hence, we may extend the estimation approach to a conditional setting.

For exact GMM estimation, we could instead of the unconditional ones in equation (5.1) consider
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conditional moment conditions of the form

ft(ϑ;Zt) = P (Xt⊕τ̃ , Vt+τ̃ )− EP(ϑ)[P (Xt⊕τ̃ , Vt+τ̃ ) |Ft] . (5.7)

Compared to the unconditional setting, we only switch to a conditional model-based expected value in

equation (5.7), which analogous to equation (5.2) can be written as

EP(ϑ)[P (Xt⊕τ̃ , Vt+τ̃ ) |Ft] =
∑
α,β

cα,β Φ̃P(ϑ),[α,β](0, 0; τ̃ , 0, Zt) . (5.8)

Unlike before, we now require conditional extended transforms Φ̃P(ϑ),[α,β] in equation (5.8). With obvious

modifications in proposition 4.1 for the choice M = P(ϑ), we may obtain a tractable expression for

each such transform by employing conditional standard transforms in equation (4.4). As usual, we use

instruments of the form h(Zt) for some functions h to construct unconditional moment conditions from

equation (5.7), noting that the condition EP(ϑ0)[ft(ϑ0;Zt)h(Zt)] = 0 is automatically assured.

For approximate GMM estimation, we could instead of equation (5.4) take conditional moment

conditions of the form

ft,(p)(ϑ;Zt) = P (Xt⊕τ̃ , Vt+τ̃ )− EP(ϑ)[P (Xt⊕τ̃ , Vt+τ̃ ,(p)) |Ft] . (5.9)

To avoid expansion coefficients that are highly nonlinear in Zt and thus interfere with tractability, we

maintain an unconditional construction of Vt+τ̃ ,(p) as in section 4.4. However, equation (5.9) now depends

on its conditional moments through

EP(ϑ)[P (Xt⊕τ̃ , Vt+τ̃ ,(p)) |Ft] =
∑
α,β

cα,β Φ̃
P(ϑ),[α,β]
(p) (0, 0; τ̃ , 0, Zt) , (5.10)

unlike the unconditional moments in equation (5.5). The conditional extended transforms Φ̃
P(ϑ),[α,β]
(p) in

equation (5.10) obtain from equation (4.9) when employing conditional standard transforms under M =

P(ϑ). Again, we rely on instruments of the form h(Zt) to construct unconditional moment conditions from

equation (5.9). To render this approach meaningful, we should assure that EP(ϑ0)[ft,(p)(ϑ0;Zt)h(Zt)]→ 0

as p→∞. This requires somewhat stronger regularity conditions than those imposed in proposition 4.2,

which essentially only captures the case h = 1.

A conditional GMM procedure of the described form presupposes observability of the state vector

Zt. However, it will be regularly the case that Zt, or at least part of it, is latent. In that case, a

conditional GMM procedure is not directly feasible, but only after forming state estimates Ẑt with exact

or approximate moment conditions formed from ft(ϑ; Ẑt) or ft,(p)(ϑ; Ẑt), respectively, using instruments

h(Ẑt). Yet, employing state estimates instead of actual states introduces (additional) approximation

errors into the estimation procedure that need to be accounted for.

6 Numerical results

In this section, we provide some numerical results to further support our methodology for determining

moments involving derivatives prices (section 4) and the resulting estimation procedure (section 5).

While we provide analytically tarctable expressions for both exact and approximate moments involving

derivatives prices as well as moment-based estimation procedures building thereon, the exact versions

generally pose significantly higher challenges in their implementation. These are due to the requirement

of multi-dimensional numerical integration in conjunction with a highly oscillatory behavior of integrands,
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which necessitates sophisticated integration techniques. We leave a further investigation of general exact

moments for future research and here concentrate on approximate moments involving derivatives prices,

which rely only on one-dimensional numerical integration. To eventually allow for a computationally

attractive implementation of approximate moments, in addition to the established convergence result (cf.

proposition 4.2), we need to verify that the approximation works already well for rather low approximation

orders. Hereby having set the agenda for this section, we proceed as follows. Section 6.1 describes the basic

setup used for our analyses. In section 6.2, we analyze the pricing errors resulting from our polynomial

approximation approach introduced in section 4.4. Equipped with the intuition from this analysis, we

proceed to the investigation of moment errors in section 6.3.

6.1 Basic setup

For our numerical analyses, the focus will be on two important models, each constituting a special case

of the general affine specification in section 2.1. Both models are introduced in section 2.2. The first

model is the Heston model in equation (2.2). In fact, we consider two variants of this model, one without

jumps (SV1) and one with jumps (SV1J). The second model is the stochastic mean reversion model in

equation (2.4) with jumps (SV2J). Table 1 specifies the relevant model parameters used in our analyses,

which are chosen to be roughly in accordance with the empirical estimates obtained in Aı̈t-Sahalia et al.

(2020) and Bardgett et al. (2019).

[Table 1 about here.]

Within all models, we consider both equity derivatives as in section 3.3 and volatility derivatives as in

section 3.4. For each type of derivatives, we take into account a number of different option specifications.

In the case of equity derivatives, we take out-of-the-money put and call options, as is standard in the

literature. We consider four different (constant) maturities at 1, 3, 6, and 12 months. For each maturity,

we determine a set of strikes located at the 0.01, 0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95 percentiles of a Gaussian

distribution with mean zero and standard deviation equal to the risk-neutral standard deviation of

maturity-congruent stock returns, with initial state at the unconditional mean of the latent state vector.

We choose a slightly asymmetric strike set to account for the left-skewed conditional return distribution.

In the case of volatility derivatives, we take only call options. We again consider four different (constant)

maturities at 1, 3, 6, and 12 months. For each maturity, we determine a set of strikes located at the

0, 0.1, 0.2, . . . , 0.8, 0.9, 0.95 percentiles of a Gamma distribution, whose moments are matched to a mean

and standard deviation equal to the respective risk-neutral moments of the squared VIX, with initial

state at the unconditional mean of the latent state vector. Here, the zero percentile effectively includes

the (prepaid) forward contract.

For our analyses, we require both exact and approximate option prices. For exact option prices Vi,t,

we use the transform-based pricing formulas developed in section 3. Specifically, equity options rely on

the formulas in corollary 3.1 and lemma 3.1, while volatility options rely on the formulas in corollary 3.2

and lemma 3.3. For approximate option prices Vi,t,(p) at some approximation order p, we follow the

polynomial approximation procedure described in section 4.4. Specifically we employ the expansion

captured by lemma 4.2 with coefficients determined according to lemma 4.3 under the real-world measure

P.

In addition, we require certain polynomial moments involving option prices. Specifically, we require

exact moments EP[(Vi,t)
N ] as well as approximate moments EP[(Vi,t,(p))

N ] at some approximation

order p. In principle, for both we could follow the procedures laid out in sections 4.3 and 4.4 and

captured by propositions 4.1 and 4.2, respectively. Additionally, we require joint moments of the

form EP[P (Vi,t, Vi,t,(p))] for some polynomial P , which in principle also could be determined from our
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methodology. For the purpose of our numerical analyses here, exact moments will serve as a means

to evaluate the accuracy of approximate moments. To determine exact moments and conduct out-of-

methodology comparisons, we revert to standard methods, whose computational complexity is quite large,

but bearable for this particular exercise as all required moments need to be determined only once. For

the SV1 model, we can rely on direct integration against the exact unconditional density, which is known

to be that of a Gamma distribution. For the SV1J and SV2J models, the unconditional densities are

unknown and need to be approximated. We use two common techniques, Monte Carlo simulation and

density approximation with the Fourier-cosine expansion method of Fang and Oosterlee (2009). For our

application, the latter performs superior to the density approximation via ordinary Fourier inversion along

the lines of Shephard (1991a,b), especially in multiple dimensions. To numerically determine the expected

value by direct integration, we span a (sparse) grid over the state space and evaluate option prices as

well as the (approximate) density at each of the grid points, before summing all values with quadrature

weights obtained from a trapezoidal rule. For Monte Carlo simulation, we use a 25-year burn-in period to

approximately draw 10,000 sample paths from an unconditional state distribution by an Euler-Maruyama

scheme as in Lord et al. (2010) with 10 intra-day steps, before evaluating option prices at each realized

state vector and performing Monte Carlo integration thereon to obtain the expected value.

6.2 Pricing errors

We begin our numerical investigation with an analysis of the pricing errors incurred by the polynomial

approximation procedure described in section 4.4. For this purpose, we define a pricing error as the

mean-squared difference between an exact option price Vi,t and the corresponding approximate option price

Vi,t,(p) at approximation order p, as captured by lemma 4.2. More precisely, we numerically determine

the relative pricing error measure EP[(Vi,t,(p) − Vi,t)2]1/2/EP[Vi,t], which coincides up to a monotonic

transformation with the objective function that the approximation procedure seeks to minimize. In theory,

this construction prescribes a monotonic improvement in the pricing error measure when increasing the

approximation order. As detailed in section 6.1, each expected value is determined by integration against

the exact unconditional density for the SV1 model, whereas we employ Monte Carlo simulation as well as

Fourier-cosine expansion methods for the SV1J and SV2J models. While pricing errors per se are not

our main concern in this paper, we expect the analysis to provide some helpful intuition about general

properties of the approximation procedure itself that may be helpful for our later analysis.

We start with equity derivatives as in section 3.3. Within the SV1 model, figure 1 visually illustrates

the incurred pricing errors for different approximation orders and option specifications.

[Figure 1 about here.]

As expected, the approximation quality generally improves with increasing approximation order. Overall,

the approximation procedure achieves pricing errors that are quite low in relative terms. Median pricing

errors across all option specifications attain an order of magnitude of roughly 10−3 for the highest

approximation order. Beyond aggregate pricing error levels, figure 1 prompts several observations

regarding structural patterns of pricing errors across option specifications. First, we observe that pricing

errors tend to decrease for longer maturities. Moreover, the improvement achievable by increasing

approximation orders seems to be smaller for shorter-dated options. Second, we further observe that

approximation errors tend to increase somewhat for deeper out-of-the-money options, especially for calls.

This effect becomes markedly more pronounced at longer maturities.

We conduct an analogous analysis within the SV1J and SV2J models, for which table 2 reports

aggregate pricing errors formed by determining the median and maximum of raw pricing errors across all

considered option specifications.
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[Table 2 about here.]

For the SV1J model, median pricing errors achieve an order of magnitude of roughly 10−3 under both

Monte Carlo simulation in panel (a) and density approximation in panel (b), which is comparable to

the closed-form results for the SV1 model reported in panel (c). For the SV2J model, pricing errors

turn out to be of larger magnitude under both employed numerical methods in panels (a) and (b), with

median pricing errors achieving roughly an order of magnitude of 10−2. Despite the possible interference

of numerical errors, we generally find that pricing errors improve monotonically when increasing the

approximation order. Beyond that, under either numerical method, the underlying raw pricing errors (not

reported) for the SV1J and SV2J models display structural patterns that are similar to those encountered

in figure 1 for the SV1 model. Hence, the maximum pricing errors reported in table 2 tend to be essentially

driven by deep out-of-the-money (call) options.

We repeat the preceding analysis for the case of volatility derivatives as in section 3.4. Within the

SV1 model, figure 2 plots the pricing errors incurred for different approximation orders and option

specifications.

[Figure 2 about here.]

Again, we generally witness the expected monotonic improvement of pricing errors with increasing

approximation order. Aggregate pricing errors achieve comparable levels as for equity derivatives, with

median pricing errors of about 10−3 at the highest approximation order. However, a larger dispersion

can be observed across different option specifications. In particular, figure 2 suggests a strong maturity

effect on the level of pricing errors as well as on the improvement due to larger approximation orders.

Generally, levels decrease and improvements increase substantially for longer maturities. Likewise, we

again observe a sizable moneyness effect in the sense that pricing errors tend to increase for deeper

out-of-the-money options. This leads to rather monotonic patterns in figure 2, as we consider only calls.

Additional unreported results show an analogous increasing behavior for deeper out-of-the-money puts.

For the SV1J and SV2J models, table 3 reports aggregate pricing errors across the considered option

specifications.

[Table 3 about here.]

Overall, we find a similar picture as for equity derivatives. For the SV1J model, Monte Carlo simulation in

panel (a) and density approximation in panel (b) achieve an order of magnitude of about 10−3, comparable

to the closed-form results obtained for the SV1 model reported in panel (c). For the SV2J model, however,

pricing errors are higher at an order of magnitude of roughly 5×10−2. As evidenced by the raw pricing

error measures (not reported), the structural patters observed in figure 2 for the SV1 model remain

largely intact also for the SV1J and SV2J models under either of the employed numerical methods. In

consequence, deep out-of-the-money options typically determine the maximum pricing errors reported in

table 3.

Overall, our approximation approach achieves acceptable pricing errors for both equity and volatility

derivatives, even for the relatively low approximation orders that we consider in our analysis. What of

course needs to be taken into account in their assessment is that our employed pricing error measure is

itself subjected to numerical errors, as expected values need to be determined by numerical methods.

Nevertheless, some structural patterns of pricing errors across different option specifications stand out.

In particular, we find that pricing errors are generally decreasing for longer maturities. With the

spacing of strikes, derived from approximate conditional distributions, we try to ensure that options are in

fact somewhat comparable across maturities. After controlling for differences in conditional distributions,

the observed maturity effects on pricing errors appear to be driven by the shapes of the option price

32



functions for different maturities. This is particularly apparent for volatility derivatives. At a hypothetical

zero maturity, each option price as a function of latent states has a hockey stick shape, whose accurate

approximation will require polynomials of relatively high order. As the maturity increases, the hockey

stick shape will be smoothed out more and more, so that accurate approximation becomes feasible

even with lower-order polynomials. In contrast, for equity options at the hypothetical zero maturity,

each out-of-the-money option price as a function of latent states would be constant (equal to zero) and,

therefore, easy to approximate by polynomials. For shorter maturities, out-of-the-money options bear

value mostly for extremely large values of the latent state vector in the tails of the state distribution,

while having close to zero value otherwise. This shape will again be smoothed out for larger maturities

and become easier to approximate by low-order polynomials. What additionally explains part of the

maturity effect of pricing errors for equity and volatility derivatives is the maturity dependence of the

denominator in the relative pricing error measure (i.e., expected option prices), which generally decreases

for shorter maturities and scales up the pricing error measure more aggressively.

In addition, we observe a moneyness effect in the sense that deeper out-of-the-money (call) options

incur larger pricing errors. Their price function again is effectively supported in the tails of the state

distribution, while being close to zero for typical values of the latent state vector. Moreover, what

also contributes to the observed asymmetry is an asymmetric price effect due to the model-implied

option smirk, whereby the denominator for call options much more strongly scales up the pricing error

measure compared to the respective put options. In conjunction with our scaling of the strike range, this

asymmetry becomes even more pronounced for the longer maturities that we consider.

Finally, the finding that pricing error measures generally increase for the two-dimensional SV2J model

compared to the one-dimensional SV1 and SV1J models can be explained, at least to some degree, by

the numerical errors incurred in the numerical benchmark methods. When using a direct integration

approach, such errors may be driven by the use of sparse grids due to the infeasibility of dense full grids

achieving a comparable resolution as attained in the one-dimensional cases. Similar effects are at work

for Monte Carlo simulation, in the sense that a given sample size will accomplish a lower resolution of

the state space in higher dimensions (whereas the convergence rate is known to be independent of the

dimensionality).

6.3 Moment errors

While providing intuition about our approximation procedure, pricing errors themselves are not the

primary concern in this paper. More importantly, we proceed to study moment errors that arise when

replacing the exact moments in section 4.3 by the approximate moments in section 4.4. Specifically, we

analyze relative moment errors of the form |EP[(Vi,t,(p))
N ] − EP[(Vi,t)

N ]|/EP[(Vi,t)
N ] for some integer

moment order N , where Vi,t is an exact option price and Vi,t,(p) is the corresponding approximate option

price at some approximation order p. Unlike for pricing errors in section 6.2, this moment error measure

does not directly imply monotonicity in the approximation order. It should be noted, however, that

approximate first-order moments are in fact exact at any approximation order, for which reason we

restrict our attention to moments of orders two to four. To determine EP[(Vi,t,(p))
N ], we employ our

approximation methodology developed in section 4.4, specifically the form established in proposition 4.2.

For EP[(Vi,t)
N ], we compute expected values as detailed in section 6.1, using integration against the exact

unconditional density for the SV1 model, while relying on Monte Carlo simulation and Fourier-cosine

expansion for the SV1J and SV2J models. This effectively yields a comparison of our methodology for

constructing approximate moments involving option prices against some common (but computationally

expensive) approximation procedures.

We again start the analysis with equity derivatives as in section 3.3. For the SV1 model, figure 3 plots
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moment errors for different moment orders, approximation orders, and option specifications.

[Figure 3 about here.]

Overall, moment errors settle on small levels for all option specifications considered, even for the relatively

low approximation orders. Aggregate moment errors achieve a median order of magnitude of almost

10−6 for N = 2, 10−5 for N = 3, and around 10−4 for N = 4 at the highest approximation order. This

reflects the general pattern that moment errors tend to increase with higher moment orders. Although

monotonicity is not automatically assured, we generally observe that the approximation quality improves

with increasing approximation order. We witness some further structural patterns of moment errors across

different option specifications, consistent with those observed for pricing errors. First, moment errors

tend to be larger in magnitude for longer maturities, at which also the effect of increasing approximation

orders is slightly more pronounced. Second, we find that moment errors generally increase for deeper

out-of-the-money options, which is particularly the case for calls at longer maturities.

For the SV1J and SV2J models, table 4 summarizes aggregate moment errors across the considered

options specifications.

[Table 4 about here.]

For the SV1J model, moment errors computed from the density approximation method in panel (b)

achieves levels comparable to those for the SV1 model reported in panel (c). Interestingly, moment errors

obtained by Monte Carlo simulation in panel (a) are eventually unable to reach similar accuracy levels at

the highest approximation order. For the SV2J model, we observe a similar discrepancy of Monte Carlo

simulation in panel (a) compared to density approximation in panel (b). Relative to the SV1J model,

each of the numerical methods yields moment errors that are of a larger order of magnitude, consistent

with what has been diagnosed for pricing errors. As for the SV1 model in figure 3, the raw moment

error measures (not reported) within the SV1J and SV2J models tend to increase with higher moment

orders and display analogous structural patterns under each numerical method. In particular, this implies

that the maximum moment errors reported in table 4 are mainly driven by deep out-of-the-money (call)

options.

We continue the analysis with volatility derivatives as in section 3.4. For the SV1 model, figure 4

shows moment errors for different moment orders, approximation orders, and option specifications.

[Figure 4 about here.]

Aggregate moment errors for volatility derivatives are slightly higher than for equity derivatives, with a

median order of magnitude of around 10−5 for N = 2, 5×10−5 for N = 3, and 10−4 for N = 4 at the

highest approximation order. Again, we find that moment errors tend to increase for higher moment

orders. Generally, moment errors also tend to decrease more or less monotonically with increasing

approximation order. Moreover, we observe some structural patters of moment errors across different

option specifications, consistent with those encountered for pricing errors. In this respect, moment errors

tend to be substantially lower for longer maturities, where also the effect of increasing approximation

orders is more pronounced. With respect to the strike dimension, we find that moment errors are generally

higher for deeper out-of-the-money options, which leads to a rather monotonic picture in figure 4 as only

calls are considered.

For the SV1J and SV2J models, table 5 reports aggregate moment errors across the considered option

specifications.

[Table 5 about here.]
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Moment errors for volatility derivatives tend to be slightly higher than for equity derivatives. For the

SV1J model, the density approximation method in panel (b) yields similar magnitudes compared to the

closed-form results for the SV1 model reported in panel (c). Similar to the case of equity derivatives,

Monte Carlo simulation in panel (a) is eventually unable to achieve the same accuracy levels as the direct

integration methods. For the SV2J model, we observe a similar discrepancy of Monte Carlo simulation

in panel (a) and density approximation in panel (b), while each generally yields larger moment errors

than the respective method within the SV1J model. The raw moment error measures (not reported)

within the SV1J and SV2J models imply that their general structural patterns continue to holds as for

the SV1 model in figure 4 under each of the employed numerical methods. This especially implies that

the maximum moment errors reported in table 5 are essentially determined by deep out-of-the-money

options.

Overall, despite considering only relatively low approximation orders in the analysis, the moment

error measures attain rather low magnitudes, even lower than for pricing errors. For some exceptional

cases, especially short-dated volatility derivatives, larger approximations orders may be necessary in

order to achieve a sufficient accuracy. Nevertheless, we observe similar structural patterns for moment

errors as previously for pricing errors. In particular, moment errors exhibit a maturity effect in the sense

that they decrease for longer maturities as well as a moneyness effect by which they increase for deeper

out-of-the-money (call) options. The rationalizations discussed for the analogous structural patterns of

pricing errors largely carry over to the case of moment errors. By considering higher-order monomials of

option prices, some effects will even be aggravated, which may thus explain that moment errors tend to

increase with moment orders.

Specific methodological challenges are posed by an even stronger relevance of the tails of the state

distribution. In particular, this will be the case for deeper out-of-the-money options under higher moment

orders. Numerical methodologies hereby need to accurately capture the tails of the distribution, which

is a challenging task unless a closed-form distribution is known. For Monte Carlo simulation and the

Fourier-cosine expansion, this may result in an even further increased computational burden to assure an

appropriate accuracy, especially in multiple dimensions. Within our approximation procedure, deeper

out-of-the-money options tend to go along with higher-frequency oscillations of integrands, which can

effectively be dealt with using a sufficiently dense grid for one-dimensional numerical integration, thereby

incurring some additional computational cost. An alternative approach could resort to expressions from

complex Fourier theory and choose an appropriate regularization parameter without necessarily increasing

the computational cost.

What is interesting beyond the structural patterns of moment errors is the apparent inability of Monte

Carlo simulation to attain a similar approximation quality compared to the other methods considered, a

discrepancy that we did not observe in our pricing error analysis. After some additional investigation,

we attribute this mainly to some biases of the employed Euler–Maruyama scheme, which seem quite

persistent even when increasing the number of sample paths or the number of intra-day steps.17 Such

biases eventually pollute the analysis of moment errors once they dominate the error measure.

7 Conclusion

In this paper, we develop a novel and unified methodology to incorporate observed derivatives prices

into a GMM estimation procedure. To achieve this, we obtain a general pricing formula, covering a

broad class of derivatives, using the generalized transform analysis introduced in Chen and Joslin (2012)

17A relatively low accuracy of Monte Carlo simulation with the Euler–Maruyama scheme is in line with results in Broadie
and Kaya (2006) in the context of option pricing. In addition, Kloeden and Neuenkirch (2013) provide a theoretical overview
of potential convergence issues of Euler–Maruyama schemes.
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and further developed in Dillschneider (2020). Building on this general pricing formula, we then obtain

exact and approximate expressions for moments involving polynomials of derivatives prices. While exact

moments are analytically tractable, due to the requirement of multi-dimensional numerical integration,

they fail to be computationally feasible except for low orders. In contrast, approximate moments require

only one-dimensional numerical integration, making their implementation both analytically tractable

and computationally attractive. We theoretically verify convergence of the approximate moments to

their exact counterparts under standard regularity conditions. Numerical results within state-of-the-art

stochastic volatility models further support our proposed methodology.

While we present our results within an affine jump diffusion framework for stochastic volatility models,

the scope of our methodology extends far beyond this specific case. Affine jump diffusions allow to

devise convenient procedures for determining various standard transforms of the state vector, which we

provide by extending the procedure in Duffie et al. (2000). As our main results apart from that rely on

generalized transform analysis, our methodology is applicable also to other model classes covered by this

versatile theory (see Chen and Joslin (2012) and Dillschneider (2020) for various examples) and can even

be extended further. We also discuss possible alternative formulations to arrive at similar results, building

on so-called complex Fourier theory (see also Dillschneider (2020) for further details). Likewise, our

approach applies beyond stochastic volatility models for equity indices. Potential further topics amenable

to our methodology include interest rates, credit risk, dividends, and exchange rates. Certain pragmatic

approximations may even make our approach applicable to American options.

Our methodology proposed in this paper is subject to several limitations and admits further extensions,

which are left for future research. While exact expressions for moments involving derivatives prices

are derived, their implementation — except for low orders — is beyond the scope of this paper. The

challenge here is the curse of dimensionality in conjunction with highly oscillatory integrands, which

makes sophisticated integration approaches necessary. For GMM estimation, option data is assumed to

be available in regular panel form. However, observed data is typically not in this form, which requires an

additional interpolation step prior to estimation that introduces measurement errors. Finally, within the

present setup, it could be interesting to additionally incorporate high-frequency data on stock returns,

analogous to Bollerslev and Zhou (2002) and Garcia et al. (2011).
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Appendix

A Supplement to standard transform analysis

This appendix contains supplementary details of standard transform analysis. In section A.1, we state an

extension of the classical Faà di Bruno formula, which yields an expression for derivatives of a composite

function. The subsequent sections discuss details of the standard transform analysis for affine jump

diffusions, particularly derivations of exponential moments (section A.2), pl-linear moments (section A.3),

and polynomial moments (section A.4).

A.1 Faà di Bruno formula

Constantine and Savits (1996) generalize the classical Faà di Bruno formula to allow for partial derivatives

of a composite function. For future reference, we state their main result in the following proposition for

the case of complex differentiable functions.

Proposition A.1. Let f ◦ g : Cn → Cp with x 7→ f(g(x)), where f : Cm → Cp with y 7→ f(y) and

g : Cn → Cm with x 7→ g(x). For α ∈ Nn, we have that

∂αx f(g(x)) =
∑
|β|≤|α|

∂βy f(g(x))
∑
Q(α,β)

Mα
k,` (∂`xg(x))k , (A.1)

where for multi-indices α ∈ Nn and β ∈ Nm, the set Q(α, β), consisting of ordered multi-multi-indices

k = [k1, . . . , ks] ∈ Nm×s and ` = [`1, . . . , `s] ∈ Nn×s for s ≤ |β|, is defined by

Q(α, β) =

|β|⋃
s=1

{
(k, `) ∈ Nm×s × Nn×s : |ki| > 0, `1 � · · · � `s � 0,

s∑
i=1

ki = β,

s∑
i=1

|ki|`i = α

}
, (A.2)

where � denotes the (strict) lexicographic order. For elements of Q(α, β), we further define the multi-

multinomial coefficient

Mα
k,` =

(α!)∏r
i=1(ki!)(`i!)|ki|

(A.3)

and the tensor expression

(∂`xg(x))k =

r∏
i=1

(∂`ix g(x))ki . (A.4)

Proof. See Constantine and Savits (1996).

A.2 Exponential moments

In this section, we derive the exponential moments in proposition 2.1. We proceed in two steps. First, we

state single-period exponential moments based on the standard transform analysis of Duffie et al. (2000).

Second, we use these results to iteratively determine multi-period exponential moments.

To formulate the required regularity conditions, we consider the characteristic χ of the state process,

formally defined by χ = (Aµ,X , Bµ,X , AΩ,X , BΩ,X , Aλ, Bλ, ν), containing all affine coefficients and the

jump size distribution driving the affine state dynamics in equation (2.1). To simplify the notation, we

suppress the dependence of the elements of χ on M.
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A.2.1 Single-period exponential moments

We closely follow the exposition in Dillschneider (2020). Fixing ω = [ωS ;ωZ ] ∈ CnX and t, T ∈ R+, we

define the complex-valued process (Ψτ )0≤τ≤T by

Ψτ = exp(AΨ(ω;T − τ) + [ωS ;BΨ(ω;T − τ)] ·Xt⊕[τ ]) . (A.5)

Here, the complex-valued coefficient functions AΨ and BΨ solve the system of ODEs (A.8) of generalized

Riccati type. Applying Ito’s lemma to equation (A.5), Ψτ satisfies

dΨτ = µΨ,τ− dτ + σΨ,τ− dWt+τ + JΨ,τ dNt+τ , (A.6)

where µΨ,τ and σΨ,τ can be given as functions of Xt⊕[τ ], while JΨ,τ depends exponentially on Xt⊕[τ ]−

and JX,t+τ .

If the characteristic χ is well-behaved in the sense of assumption A.1, (Ψτ )0≤τ≤T is a well-defined

martingale. The martingale property yields a well-known result due to Duffie et al. (2000), by which

conditional exponential moments of the joint state vector are exponentially affine. The particular form

presented in proposition A.2 holds for the state dynamics in equation (2.1).

If the characteristic χ is moreover well-behaved in the sense of assumption A.2, unconditional

exponential moments can be obtained as a limit of the conditional exponential moments in proposition A.2

as in Dillschneider (2020). In essence, proposition A.3 yields the ergodicity result that ΨM(ω;∞) =

limτ→∞ΨM(ω; τ, z) irrespective of z.

Assumption A.1. The characteristic χ is well-behaved at (ω, T ) ∈ CnX × R+ for ω = [ωS ;ωZ ] by

satisfying the following conditions:

(i) Φν(ω̃) exists for all ω̃ in an open set O containing
⋃

0≤τ≤T {[ωS ;BΨ(ω; τ)]};

(ii) the system of ODEs (A.8) is solved uniquely on [0, T ];

(iii) for every t ∈ R+, the process (Ψτ )0≤τ≤T with dynamics in equation (A.6) satisfies:

• EM[|Ψ0|] <∞,

• EM[(
∫ T

0
ΩΨ,τ− dτ)1/2] <∞ with ΩΨ,τ = σΨ,τ σ

>
Ψ,τ ,

• EM[
∫ T

0
|J̃Ψ,τ ΛΨ,τ |dτ ] <∞ with J̃Ψ,τ =

∫
JΨ,τ dν and ΛΨ,τ = λ(Zt+τ−).

Proposition A.2. Let χ be well-behaved at (ω, T ) ∈ CnX × R+ in the sense of assumption A.1 for

ω = [ωS ;ωZ ]. Then for all t ∈ R+ and 0 ≤ τ ≤ T , we have

ΨM(ω; τ, Zt) = EM[exp(ω ·Xt⊕[τ ]) |Ft]

= exp(AΨ(ω; τ) +BΨ(ω; τ) · Zt)
(A.7)

with coefficients AΨ(ω; τ) ∈ C and BΨ(ω; τ) ∈ CnZ determined by the system of ODEs18

∂τAΨ = A>µ,X [ωS ;BΨ] + 1
2A
>
Ω,X([ωS ;BΨ]⊗ [ωS ;BΨ]) +A>λ(Φν([ωS ;BΨ])− ι) (A.8a)

∂τBΨ = B>µ,X [ωS ;BΨ] + 1
2B
>
Ω,X([ωS ;BΨ]⊗ [ωS ;BΨ]) +B>λ(Φν([ωS ;BΨ])− ι) (A.8b)

subject to the initial conditions AΨ(ω; 0) = 0 and BΨ(ω; 0) = ωZ .

Proof. See Dillschneider (2020).

18Here, ⊗ denotes the ordinary Kronecker product.
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Assumption A.2. The characteristic χ is well-behaved at ω ∈ CnX for ω = [0;ωZ ] by satisfying the

following conditions:

(i) χ is well-behaved at ([0;ωZ ], T ) in the sense of assumption A.1 for all T ≥ 0;

(ii) ΨM([0; ω̃Z ];∞) exists at ω̃Z = BΨ([0;ωZ ]; τ) for all τ ≥ 0;

(iii) ω̃Z 7→ ΨM([0; ω̃Z ];∞) is continuous at ω̃Z = 0;

(iv) [0;ωZ ] ∈ RΨ, where RΨ denotes the stability region of the system of ODEs (A.8) containing all

ω̃ = [0; ω̃Z ] ∈ CnX such that:

• AΨ(ω̃;∞) = limτ→∞AΨ(ω̃; τ) exists and is finite,

• BΨ(ω̃;∞) = limτ→∞BΨ(ω̃; τ) equals zero.

Proposition A.3. Let χ be well-behaved at ω ∈ CnX in the sense of assumption A.2 for ω = [0;ωZ ].

Then for all t ∈ R+, we have

ΨM(ω;∞) = EM[exp(ω ·Xt)]

= exp(AΨ(ω;∞))
(A.9)

with AΨ(ω;∞) = limτ→∞AΨ(ω; τ) as in proposition A.2.

Proof. See Dillschneider (2020).

A.2.2 Multi-period exponential moments

With additional regularity conditions, the single-period moments in propositions A.2 and A.3 allow to

iteratively determine multi-period exponential moments. Essentially, the conditions in assumptions A.3

and A.4 assure that the law of iterated expectations can be applied, which yields the conditional and

unconditional exponential moment expression in propositions A.4 and A.5, respectively. Both are related

via the limiting procedure ΦM(ω; τ̃ ,∞) = limτ→∞ΦM(ω; τ̃ , τ, z) irrespective of z.

Assumption A.3. The characteristic χ is well-behaved at (ω, τ̃ , τ) ∈ CnX ñ × Rñ+ × R+ for ω = [ωS ;ωZ ]

by satisfying the following conditions:

(i) χ is well-behaved at (ωi + [0;BΦ,(i)(ω; τ̃)],∆i) in the sense of assumption A.1 for all 1 ≤ i ≤ ñ;

(ii) χ is well-behaved at ([0;BΦ,(0)(ω; τ̃)], τ) in the sense of assumption A.1.

Proposition A.4. Let χ be well-behaved at (ω, τ̃ , τ) ∈ CnX ñ × Rñ+ × R+ in the sense of assumption A.3

for ω = [ωS ;ωZ ]. Then for all t ∈ R+, we have

ΦM(ω; τ̃ , τ, Zt) = EM[exp(ω ·Xt+τ⊕τ̃ ) |Ft]

= exp(AΦ(ω; τ̃ , τ) +BΦ(ω; τ̃ , τ) · Zt)
(A.10)

with coefficients AΦ(ω; τ̃ , τ) ∈ C and BΦ(ω; τ̃ , τ) ∈ CnZ given by

AΦ(ω; τ̃ , τ) = AΦ,(0)(ω; τ̃) +AΨ([0;BΦ,(0)(ω; τ̃)]; τ) (A.11a)

BΦ(ω; τ̃ , τ) = BΨ([0;BΦ,(0)(ω; τ̃)]; τ) , (A.11b)
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depending on AΨ and AΨ as in proposition A.2. Defining ∆i = τ̃i − τ̃i−1 and ωi = [ωi,S ;ωi,Z ], the

auxiliary coefficients AΦ,(i)(ω; τ̃) ∈ C and BΦ,(i)(ω; τ̃) ∈ CnZ are determined by the backward recursion

AΦ,(i−1)(ω; τ̃) = AΦ,(i)(ω; τ̃) +AΨ(ωi + [0;BΦ,(i)(ω; τ̃)]; ∆i) (A.12a)

BΦ,(i−1)(ω; τ̃) = BΨ(ωi + [0;BΦ,(i)(ω; τ̃)]; ∆i) (A.12b)

for i = ñ, . . . , 1 subject to the initial conditions AΦ,(ñ)(ω; τ̃) = 0 and BΦ,(ñ)(ω; τ̃) = 0, depending on AΨ

and BΨ as in proposition A.2.

Proof. Under the imposed assumptions, we may repeatedly invoke the law of iterated expectations in

conjunction with proposition A.2 to obtain the result.

Assumption A.4. The characteristic χ is well-behaved at (ω, τ̃) ∈ CnX ñ × Rñ+ for ω = [ωS ;ωZ ] by

satisfying the following conditions:

(i) χ is well-behaved at (ωi + [0;BΦ,(i)(ω; τ̃)],∆i) in the sense of assumption A.1 for all 1 ≤ i ≤ ñ;

(ii) χ is well-behaved at [0;BΦ,(0)(ω; τ̃)] in the sense of assumption A.2.

Proposition A.5. Let χ be well-behaved at (ω, τ̃) ∈ CnX ñ × Rñ+ in the sense of assumption A.4 for

ω = [ωS ;ωZ ]. Then for all t ∈ R+, we have

ΦM(ω; τ̃ ,∞) = EM[exp(ω ·Xt⊕τ̃ )]

= exp(AΦ(ω; τ̃ ,∞))
(A.13)

with coefficients AΦ(ω; τ̃ ,∞) ∈ C and BΦ(ω; τ̃ ,∞) ∈ CnZ given by

AΦ(ω; τ̃ ,∞) = AΦ,(0)(ω; τ̃) +AΨ([0;BΦ,(0)(ω; τ̃)];∞) (A.14a)

BΦ(ω; τ̃ ,∞) = BΨ([0;BΦ,(0)(ω; τ̃)];∞) = 0 , (A.14b)

depending on AΨ and AΨ as in proposition A.3. Defining ∆i = τ̃i− τ̃i−1 and ωi = [ωi,S ;ωi,Z ], the auxiliary

coefficients AΦ,(i)(ω; τ̃) ∈ C and BΦ,(i)(ω; τ̃) ∈ CnZ are determined by the backward recursion (A.12),

depending on AΨ and BΨ as in proposition A.2.

Proof. Under the imposed assumptions, proposition A.3 implies that ΦM(ω; τ̃ ,∞) can be determined as

the limit when τ →∞ in equation (A.10), leading to equation (A.13). Letting τ →∞ in equation (A.11)

thereby yields the associated coefficients in equation (A.14), where AΦ,(i) and BΦ,(i) are given by the

recursion in equation (A.12).

A.3 Pl-linear moments

In this section, we derive the pl-linear moments in proposition 2.2. Again, we proceed in two steps.

First, we state single-period pl-linear moments based on the transform analysis discussed in Dillschneider

(2020), extending that of Duffie et al. (2000) used for exponential moments. Second, we use these

results to iteratively determine multi-period pl-linear moments. As before, to formulate the required

regularity conditions, we define the characteristic χ = (Aµ,X , Bµ,X , AΩ,X , BΩ,X , Aλ, Bλ, ν), suppressing

the dependence of the elements of χ on M.
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A.3.1 Single-period pl-linear moments

We closely follow the exposition in Dillschneider (2020). Fixing ω = [ωS ;ωZ ] ∈ CnX , α = [αS ;αZ ] ∈ NnX ,

and t, T ∈ R+, we define the complex-valued process (Ψ
(α)
τ )0≤τ≤T by

Ψ (α)
τ = Ψτ

∑
Q̃(α)

Mα
k,` (A

(`)
Ψ (ω;T − τ) + [ω

(`)
S ;B

(`)
Ψ (ω;T − τ)] ·Xt⊕[τ ])

k , (A.15)

in terms of the complex-valued derivatives A
(β)
Ψ = ∂βωAΨ and B

(β)
Ψ = ∂βωBΨ as well as ω

(β)
S = ∂βωωS and

ω
(β)
Z = ∂βωωZ for β ∈ NnX . Under the regularity conditions formalized below, the coefficient functions

A
(β)
Ψ and B

(β)
Ψ for β ≤ α solve the joint system of ODEs (A.18) of generalized Riccati type. Applying

Ito’s lemma to equation (A.15), Ψ
(α)
t satisfies

dΨ (α)
τ = µ

(α)
Ψ,τ− dτ + σ

(α)
Ψ,τ− dWt+τ + J

(α)
Ψ,τ dNt+τ , (A.16)

where µ
(α)
Ψ,τ and σ

(α)
Ψ,τ can be given as functions of Xt⊕[τ ], while J

(α)
Ψ,τ depends pl-linearly (up to order |α|)

on Xt⊕[τ ]− and JX,t+τ .

If the characteristic χ is well-behaved in the sense of assumption A.5, (Ψ
(α)
τ )0≤τ≤T is a well-defined

martingale. These conditions generalize those in assumption A.1 imposed for exponential moments. As a

consequence, the martingale property yields pl-linear moments of the joint state vector as in Dillschneider

(2020). For the specific dynamics in equation (2.1), these are obtained by formally differentiating

equation (A.7), i.e., ΨM,[α](ω; τ, z) = ΨM,(α)(ω; τ, z) = ∂αωΨM(ω; τ, z).

If the characteristic χ is moreover well-behaved in the sense of assumption A.6, unconditional pl-

linear moments can be obtained as a limit of the conditional pl-linear moments in proposition A.6 as

in Dillschneider (2020). These conditions generalize those in assumption A.2 for exponential moments.

Specifically, it holds that ΨM,[α](ω;∞) = limτ→∞ΨM,[α](ω; τ, z) irrespective of z. Likewise, we have from

proposition A.3 that ΨM,[α](ω;∞) = ΨM,(α)(ω;∞) = ∂αωΨM(ω;∞).

Assumption A.5. The characteristic χ is well-behaved at (ω, α, T ) ∈ CnX ×NnX ×R+ for ω = [ωS ;ωZ ]

and α = [αS ;αZ ] by satisfying the following conditions:

(i) Φ
[β]
ν (ω̃) = Φ

(β)
ν (ω̃) exists in an open set O containing

⋃
0≤τ≤T {[ωS ;BΨ(ω; τ)]} for all |β| ≤ |α|;

(ii) the system of ODEs (A.18) is solved uniquely on [0, T ] for all β ≤ α;

(iii) for every t ∈ R+, the process (Ψ
(α)
τ )0≤τ≤T with dynamics in equation (A.16) satisfies:

• EM[|Ψ (α)
0 |] <∞,

• EM[(
∫ T

0
Ω

(α)
Ψ,τ− dτ)1/2] <∞ with Ω

(α)
Ψ,τ = σ

(α)
Ψ,τ σ

(α)>
Ψ,τ ,

• EM[
∫ T

0
|J̃ (α)
Ψ,τ ΛΨ,τ |dτ ] <∞ with J̃

(α)
Ψ,τ =

∫
J

(α)
Ψ,τ dν and ΛΨ,τ = λ(Zt+τ−).

Proposition A.6. Let χ be well-behaved at (ω, α, T ) ∈ CnX ×NnX ×R+ in the sense of assumption A.5

for ω = [ωS ;ωZ ] and α = [αS ;αZ ]. Then for all t ∈ R+, and 0 ≤ τ ≤ T , we have

ΨM,[α](ω; τ, Zt) = EM[exp(ω ·Xt⊕[τ ]) (Xt⊕[τ ])
α |Ft]

= ΨM(ω; τ, Zt)
∑
Q̃(α)

Mα
k,` (A

(`)
Ψ (ω; τ) +B

(`)
Ψ (ω; τ) · Zt)k (A.17)

with coefficients A
(β)
Ψ (ω; τ) = ∂βωAΨ(ω; τ) ∈ C and B

(β)
Ψ (ω; τ) = ∂βωBΨ(ω; τ) ∈ CnZ for β ≤ α jointly
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determined by the system of ODEs

∂τA
(β)
Ψ = A>µ,X [ω

(β)
S ;B

(β)
Ψ ] + 1

2A
>
Ω,X

∑
η≤β

(
β

η

)
([ω

(η)
S ;B

(η)
Ψ ]⊗ [ω

(β−η)
S ;B

(β−η)
Ψ ])

+A>λ
∑
|η|≤|β|

Φ[η]
ν ([ωS ;BΨ])

∑
Q(β,η)

Mβ
k,`([ω

(`)
S ;B

(`)
Ψ ])k − δ0(β)A>λι (A.18a)

∂τB
(β)
Ψ = B>µ,X [ω

(β)
S ;B

(β)
Ψ ] + 1

2B
>
Ω,X

∑
η≤β

(
β

η

)
([ω

(η)
S ;B

(η)
Ψ ]⊗ [ω

(β−η)
S ;B

(β−η)
Ψ ])

+B>λ
∑
|η|≤|β|

Φ[η]
ν ([ωS ;BΨ])

∑
Q(β,η)

Mβ
k,`([ω

(`)
S ;B

(`)
Ψ ])k − δ0(β)B>λι (A.18b)

subject to the initial conditions A
(β)
Ψ (ω; 0) = 0 and B

(β)
Ψ (ω; 0) = ω

(β)
Z . Here, we set the Dirac indicator

δ0(β) = 1 if β = 0 and δ0(β) = 0 otherwise. Moreover, Φ
[β]
ν = Φ

(β)
ν = ∂βωΦν determine the pl-linear

moments of jump sizes.

Proof. See Dillschneider (2020).

Assumption A.6. The characteristic χ is well-behaved at (ω, α) ∈ CnX × NnX for ω = [0;ωZ ] and

α = [0;αZ ] by satisfying the following conditions:

(i) χ is well-behaved at ([0;ωZ ], [0;αZ ], T ) in the sense of assumption A.5 for all T ≥ 0;

(ii) ΨM,[β]([0; ω̃Z ];∞) exists at ω̃Z = BΨ([0;ωZ ]; τ) for all τ ≥ 0 and all β = [0;βZ ] with |β| ≤ |α|;

(iii) ω̃Z 7→ ΨM,[β]([0; ω̃Z ];∞) is continuous at ω̃Z = 0 for all β = [0;βZ ] with |β| ≤ |α|;

(iv) [0;ωZ ] ∈ R(α)
Ψ , where R(α)

Ψ denotes the stability region of the system of ODEs (A.18) containing all

ω̃ = [0; ω̃Z ] ∈ CnX such that for all β ≤ α:

• A
(β)
Ψ (ω̃;∞) = limτ→∞A

(β)
Ψ (ω̃; τ) exists and is finite,

• B
(β)
Ψ (ω̃;∞) = limτ→∞B

(β)
Ψ (ω̃; τ) equals zero.

Proposition A.7. Let χ be well-behaved at (ω, α) ∈ CnX × NnX in the sense of assumption A.6 for

ω = [0;ωZ ] and α = [0;αZ ]. Then for all t ∈ R+, we have

ΨM,[α](ω;∞) = EM[exp(ω ·Xt) (Xt)
α]

= exp(AΨ(ω;∞))
∑
Q̃(α)

Mα
k,` (A

(`)
Ψ (ω;∞))k (A.19)

with A
(β)
Ψ (ω;∞) = limτ→∞A

(β)
Ψ (ω; τ) for β ≤ α as in proposition A.6.

Proof. See Dillschneider (2020).

A.3.2 Multi-period pl-linear moments

As for exponential moments, additional regularity conditions allow to use the single-period moments in

propositions A.6 and A.7 to iteratively determine multi-period pl-linear moments. The conditions in

assumptions A.7 and A.8 assure the applicability of the law of iterated expectations in this case. Analogous

to propositions A.4 and A.5, we can state conditional and unconditional pl-linear moment expressions

in propositions A.8 and A.9, respectively. The results justify that ΦM,[α](ω; τ̃ ,∼) = ΦM,(α)(ω; τ̃ ,∼) =

∂αωΦM(ω; τ̃ ,∼) as well as ΦM,[α](ω; τ̃ ,∞) = limτ→∞ ΦM,[α](ω; τ̃ , τ, z) irrespective of z.
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Assumption A.7. The characteristic χ is well-behaved at (ω, α, τ̃ , τ) ∈ CnX ñ × NnX ñ × Rñ+ × R+ for

ω = [ωS ;ωZ ] and α = [αS ;αZ ] by satisfying the following conditions:

(i) χ is well-behaved at (ωi + [0;BΦ,(i)(ω; τ̃)], βi,∆i) in the sense of assumption A.5 for all βi =

[αi,S ;βi,Z ] with |βi,Z | ≤
∑ñ
j=i|αj | and all 1 ≤ i ≤ ñ;

(ii) χ is well-behaved at ([0;BΦ,(0)(ω; τ̃)], β0, τ) in the sense of assumption A.5 for all β0 = [0;β0,Z ]

with |β0,Z | ≤
∑ñ
j=1|αj |.

Proposition A.8. Let χ be well-behaved at (ω, α, τ̃ , τ) ∈ CnX ñ × NnX ñ × Rñ+ × R+ in the sense of

assumption A.7 for ω = [ωS ;ωZ ] and α = [αS ;αZ ]. Then for all t ∈ R+, we have

ΦM,[α](ω; τ̃ , τ, Zt) = EM[exp(ω ·Xt+τ⊕τ̃ ) (Xt+τ⊕τ̃ )α |Ft]

= ΦM(ω; τ̃ , τ, Zt)
∑
Q̃(α)

Mα
k,` (A

(`)
Φ (ω; τ̃ , τ) +B

(`)
Φ (ω; τ̃ , τ) · Zt)k (A.20)

with coefficients A
(β)
Φ (ω; τ̃ , τ) = ∂βωAΦ(ω; τ̃ , τ) ∈ C and B

(β)
Φ (ω; τ̃ , τ) = ∂βωBΦ(ω; τ̃ , τ) ∈ CnZ for β ≤ α

given by

A
(β)
Φ (ω; τ̃ , τ) = A

(β)
Φ,(0)(ω; τ̃) +

∑
|η|≤|β|

A
([0;η])
Ψ ([0;BΦ,(0)(ω; τ̃)]; τ)

∑
Q(β,η)

Mβ
k,` (B

(`)
Φ,(0)(ω; τ̃))k (A.21a)

B
(β)
Φ (ω; τ̃ , τ) =

∑
|η|≤|β|

B
([0;η])
Ψ ([0;BΦ,(0)(ω; τ̃)]; τ)

∑
Q(β,η)

Mβ
k,` (B

(`)
Φ,(0)(ω; τ̃))k , (A.21b)

depending on A
(β)
Ψ and B

(β)
Ψ as in proposition A.6. Defining ∆i = τ̃i − τ̃i−1 and ω

(β)
i = ∂βωωi for ωi =

[ωi,S ;ωi,Z ], the auxiliary coefficients A
(β)
Φ,(i)(ω; τ̃) = ∂βωAΦ,(i)(ω; τ̃) ∈ C and B

(β)
Φ,(i)(ω; τ̃) = ∂βωBΦ,(i)(ω; τ̃) ∈

CnZ for β ≤ α are determined by the backward recursion

A
(β)
Φ,(i−1)(ω; τ̃) = A

(β)
Φ,(i)(ω; τ̃)

+
∑
|η|≤|β|

A
(η)
Ψ (ωi + [0;BΦ,(i)(ω; τ̃)]; ∆i)

∑
Q(β,η)

Mβ
k,` (ω

(`)
i + [0;B

(`)
Φ,(i)(ω; τ̃)])k (A.22a)

B
(β)
Φ,(i−1)(ω; τ̃) =

∑
|η|≤|β|

B
(η)
Ψ (ωi + [0;BΦ,(i)(ω; τ̃)]; ∆i)

∑
Q(β,η)

Mβ
k,` (ω

(`)
i + [0;B

(`)
Φ,(i)(ω; τ̃)])k (A.22b)

for i = ñ, . . . , 1 subject to the initial conditions A
(β)
Φ,(ñ)(ω; τ̃) = 0 and B

(β)
Φ,(ñ)(ω; τ̃) = 0, depending on A

(β)
Ψ

and B
(β)
Ψ as in proposition A.6.

Proof. Under the imposed assumptions, repeatedly invoking the law of iterated expectations and proposi-

tion A.6 yields ΦM,[β](ω; τ̃ , τ, z) = ΦM,(β)(ω; τ̃ , τ, z). Proposition A.4 and the Faà di Bruno formula (A.1)

thus yield the required results. Specifically, equations (A.20) to (A.22) obtain from equations (A.10)

to (A.12), respectively, by differentiation.

Assumption A.8. The characteristic χ is well-behaved at (ω, α, τ̃) ∈ CnX ñ×NnX ñ×Rñ+ for ω = [ωS ;ωZ ]

and α = [αS ;αZ ] by satisfying the following conditions:

(i) χ is well-behaved at (ωi + [0;BΦ,(i)(ω; τ̃)], βi,∆i) in the sense of assumption A.5 for all βi =

[αi,S ;βi,Z ] with |βi,Z | ≤
∑ñ
j=i|αj | and all 1 ≤ i ≤ ñ;

(ii) χ is well-behaved at ([0;BΦ,(0)(ω; τ̃)], β0) in the sense of assumption A.6 for all β0 = [0;β0,Z ] with

|β0,Z | ≤
∑ñ
j=1|αj |.
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Proposition A.9. Let χ be well-behaved at (ω, α, τ̃) ∈ CnX ñ×NnX ñ×Rñ+ in the sense of assumption A.8

for ω = [ωS ;ωZ ] and α = [αS ;αZ ]. Then for all t ∈ R+, we have

ΦM,[α](ω; τ̃ ,∞) = EM[exp(ω ·Xt⊕τ̃ ) (Xt⊕τ̃ )α]

= ΦM(ω; τ̃ ,∞)
∑
Q̃(α)

Mα
k,` (A

(`)
Φ (ω; τ̃ ,∞))k (A.23)

with coefficients A
(β)
Φ (ω; τ̃ ,∞) = ∂βωAΦ(ω; τ̃ ,∞) ∈ C and B

(β)
Φ (ω; τ̃ ,∞) = ∂βωBΦ(ω; τ̃ ,∞) ∈ CnZ for

β ≤ α given by

A
(β)
Φ (ω; τ̃ ,∞) = A

(β)
Φ,(0)(ω; τ̃) +

∑
|η|≤|β|

A
([0;η])
Ψ ([0;BΦ,(0)(ω; τ̃)];∞)

∑
Q(β,η)

Mβ
k,` (B

(`)
Φ,(0)(ω; τ̃))k (A.24a)

B
(β)
Φ (ω; τ̃ ,∞) =

∑
|η|≤|β|

B
([0;η])
Ψ ([0;BΦ,(0)(ω; τ̃)];∞)

∑
Q(β,η)

Mβ
k,` (B

(`)
Φ,(0)(ω; τ̃))k = 0 , (A.24b)

depending on A
(β)
Ψ and B

(β)
Ψ as in proposition A.7. Defining ∆i = τ̃i − τ̃i−1 and ω

(β)
i = ∂βωωi for ωi =

[ωi,S ;ωi,Z ], the auxiliary coefficients A
(β)
Φ,(i)(ω; τ̃) = ∂βωAΦ,(i)(ω; τ̃) ∈ C and B

(β)
Φ,(i)(ω; τ̃) = ∂βωBΦ,(i)(ω; τ̃) ∈

CnZ for β ≤ α are determined by the backward recursion (A.22), depending on A
(β)
Ψ and B

(β)
Ψ as in

proposition A.6.

Proof. Under the imposed assumptions, proposition A.7 implies that ΦM,[α](ω; τ̃ ,∞) can be determined as

the limit when τ →∞ in equation (A.20), leading to equation (A.23). Letting τ →∞ in equation (A.21)

thereby yields the associated coefficients in equation (A.24), where A
(β)
Φ,(i) and B

(β)
Φ,(i) are given by the

recursion in equation (A.22).

A.4 Polynomial moments

In this section, we derive the polynomial moments in proposition 2.3. As such, polynomial moments may

be computed as a special case of the pl-linear moments in section A.3, generally relying on numerical

solutions to the ODEs (A.18). This section discusses an alternative approach to arrive at closed-form

expressions for polynomial moments, for which we proceed in two steps. First, we state single-period

polynomial moments based on the result of Dillschneider (2020). Second, we use these results to iteratively

determine multi-period polynomial moments. As before, we formulate the required regularity conditions

in terms of the characteristic χ = (Aµ,X , Bµ,X , AΩ,X , BΩ,X , Aλ, Bλ, ν), suppressing the dependence on

M.

A.4.1 Single-period polynomial moments

We closely follow the exposition in Dillschneider (2020). Considering α ∈ NnX with |α| ≤ p, Ito’s lemma

yields that each monomial (Xt)
α satisfies

d(Xt)
α = µ

(α)
X,t− dt+ σ

(α)
X,t− dWt + J

(α)
X,t dNt .

Here, µ
(α)
X,t and σ

(α)
X,t can be given as functions of Xt, whereas J

(α)
X,t depends polynomially (up to order |α|)

on Xt− and JX,t. Collecting terms, we can write

µ
(α)
X,t− + J̃

(α)
X,t λ(Zt−) =

∑
|β|≤|α|

b
(α)
X,β (Xt−)β

for coefficients b
(α)
X,β ∈ R, where J̃

(α)
X,t =

∫
J

(α)
X,t dν.
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Fixing t, T ∈ R+, now define complex-valued processes (Ψ
(α)
τ )0≤τ≤T by

Ψ (α)
τ =

∑
|β|≤|α|

b
(α)
Ψ,β(T − τ) (Xt⊕[τ ])

β , (A.25)

where the coefficient functions b
(α)
Ψ,β(τ) ∈ R in terms of b

(η)
X,β for each |α| ≤ p and |β| ≤ |η| ≤ |α| are

determined by the ODEs (A.28). Applying Ito’s lemma to equation (A.25), Ψ
(α)
τ satisfies

dΨ (α)
τ = µ

(α)
Ψ,τ− dτ + σ

(α)
Ψ,τ− dWt+τ + J

(α)
Ψ,τ dNt+τ , (A.26)

where µ
(α)
Ψ,τ and σ

(α)
Ψ,τ can be given as functions of Xt⊕[τ ], while J

(α)
Ψ,τ depends polynomially (up to order

|α|) on Xt⊕[τ ]− and JX,t+τ .

If the characteristic χ is well-behaved in the sense of assumption A.9, (Ψ
(α)
τ )0≤τ≤T is a well-defined

martingale for each |α| ≤ p and all t ∈ R+. The martingale property then yields polynomial moments

of the joint state vector as in Dillschneider (2020), providing an analogue to proposition A.6. Unlike

before, the conditional polynomial moments in assumption A.9 can be given in closed form, as the matrix

exponential and its integral in equation (A.29) allow for closed-form expressions.

If the characteristic χ is moreover well-behaved in the sense of assumption A.10, we further obtain an

analogue to proposition A.7 as in Dillschneider (2020). Consistent with the pl-linear case, unconditional

polynomial moments can be derived from conditional polynomial moments by a limiting procedure such

that ΨM,[α](0;∞) = limτ→∞ΨM,[α](0; τ, z) irrespective of z. Unlike before, the unconditional polynomial

moments in assumption A.10 can be given in closed form using equation (A.31).

Assumption A.9. The characteristic χ is well-behaved at (p, T ) ∈ N× R+ by satisfying the following

conditions for all α ∈ Nn with α = [αS ;αZ ] such that |α| ≤ p:

(i) Φ
[α]
ν (ω̃) = Φ

(α)
ν (ω̃) exist in an open set O containing the origin;

(ii) the system of ODEs (A.28) is solved uniquely on [0, T ];

(iii) for every t ∈ R+, the process (Ψ
(α)
τ )0≤τ≤T with dynamics in equation (A.26) satisfies:

• EM[|Ψ (α)
0 |] <∞,

• EM[(
∫ T

0
Ω

(α)
Ψ,τ− dτ)1/2] <∞ with Ω

(α)
Ψ,τ = σ

(α)
Ψ,τ σ

(α)>
Ψ,τ ,

• EM[
∫ T

0
|J̃ (α)
Ψ,τ ΛΨ,τ |dτ ] <∞ with J̃

(α)
Ψ,τ =

∫
J

(α)
Ψ,τ dν and ΛΨ,τ = λ(Zt+τ−).

Proposition A.10. Let χ be well-behaved at (p, T ) ∈ N×R+ in the sense of assumption A.9 for α ∈ Nn

with α = [αS ;αZ ] and |α| ≤ p. Then for all t ∈ R+ and 0 ≤ τ ≤ T , we have

ΨM,[α](0; τ, Zt) = EM[(Xt⊕[τ ])
α |Ft]

=
∑
|β|≤|α|

b
(α)
Ψ,[0;β](τ) (Zt)

β (A.27)

with coefficients b
(α)
Ψ,β(τ) ∈ R for |β| ≤ |α| ≤ p jointly determined by the system of ODEs

∂τ b
(α)
Ψ,β(τ) =

∑
|β|≤|η|≤|α|

b
(α)
Ψ,η(τ) b

(η)
X,β (A.28)

subject to the initial condition b
(α)
Ψ,β(0) = δ0(α− β).
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Collecting all coefficients in vectors and matrices such that [ÃX(τ)]α = b
(α)
Ψ,0(τ) and [B̃X(τ)]α,β =

b
(α)
Ψ,β(τ) as well as [C̃X ]α = b

(α)
X,0 and [D̃X ]α,β = b

(α)
X,β, we have the closed-form solutions

ÃX(τ) =

∫ τ

0

exp((τ − t)D̃X) C̃X dt (A.29a)

B̃X(τ) = exp(τD̃X) . (A.29b)

Proof. See Dillschneider (2020).

Assumption A.10. The characteristic χ is well-behaved at p ∈ N by satisfying the following conditions

for all α ∈ Nn with α = [0;αZ ] such that |α| ≤ p:

(i) χ is well-behaved at T in the sense of assumption A.9 for all T ≥ 0;

(ii) ΨM,[α](0;∞) exists;

(iii) the system of ODEs (A.28) is stable such that:

• b
(α)
Ψ,β(∞) = limτ→∞ b

(α)
Ψ,β(τ) exists and is finite for β = [0;βZ ] = 0,

• b
(α)
Ψ,β(∞) = limτ→∞ b

(α)
Ψ,β(τ) equals zero for β = [0;βZ ] 6= 0.

Proposition A.11. Let χ be well-behaved at (ω, p) ∈ CnX × N in the sense of assumption A.10 for

α ∈ Nn with α = [0;αZ ] and |α| ≤ p. Then for all t ∈ R+, we have

ΨM,[α](0;∞) = EM[(Xt)
α]

= b
(α)
Ψ,0(∞)

(A.30)

with b
(α)
Ψ,0(∞) = limτ→∞ b

(α)
Ψ,0(τ) as in proposition A.10.

Collecting all coefficients in vectors and matrices such that [ÃX(∞)]α = b
(α)
Ψ,0(∞) and [B̃X(∞)]α,β =

b
(α)
Ψ,β(∞) as well as [C̃Z ]α = b

([0;α])
X,0 and [D̃Z ]α,β = b

([0;α])
X,[0;β], we have the closed-form solutions

ÃZ(∞) = − D̃−1
Z C̃Z

B̃Z(∞) = 0 .
(A.31)

Proof. See Dillschneider (2020).

A.4.2 Multi-period polynomial moments

Under appropriate regularity conditions, the single-period moments in propositions A.10 and A.11 allow

to iteratively determine multi-period polynomial moments. The conditions in assumptions A.11 and A.12

assure that the law of iterated expectations can be applied in this case. Analogous to propositions A.8

and A.9, this yields the conditional and unconditional polynomial moment expressions in propositions A.12

and A.13, respectively. The results preserve the relations ΦM,[α](0; τ̃ ,∼) = ΦM,(α)(0; τ̃ ,∼) = ∂αωΦM(0; τ̃ ,∼)

and ΦM,[α](0; τ̃ ,∞) = limτ→∞ΦM,[α](0; τ̃ , τ, z) irrespective of z.

Assumption A.11. The characteristic χ is well-behaved at (α, τ̃ , τ) ∈ NnX ñ×Rñ+×R+ for α = [αS ;αZ ]

by satisfying the following conditions:

(i) χ is well-behaved at (
∑ñ
j=i|αj |,∆i) in the sense of assumption A.9 for all 1 ≤ i ≤ ñ;

(ii) χ is well-behaved at (
∑ñ
j=1|αj |, τ) in the sense of assumption A.9.
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Proposition A.12. Let χ be well-behaved at (α, τ̃ , τ) ∈ NnX ñ×Rñ+×R+ in the sense of assumption A.11

for α = [αS ;αZ ]. Then for all t ∈ R+, we have

ΦM,[α](0; τ̃ , τ, Zt) = EM[(Xt+τ⊕τ̃ )α |Ft]

=
∑
|β|≤|α|

b
(α)
Φ,β(τ̃ , τ) (Zt)

β (A.32)

with coefficients b
(α)
Φ,β(τ̃ , τ) ∈ R given by

b
(α)
Φ,β(τ̃ , τ) =

∑
η

b
(α)
Φ,η,(0)(τ̃) b

([0;η])
Ψ,[0;β](τ) . (A.33)

Defining ∆i = τ̃i− τ̃i−1, the auxiliary coefficients b
(α)
Φ,η,(i)(τ̃) ∈ R are determined by the backward recursion

b
(α)
Φ,β,(i−1)(τ̃) =

∑
η

b
(α)
Φ,η,(i)(τ̃) b

(αi+[0;η])
Ψ,[0;β] (∆i) (A.34)

for i = ñ, . . . , 1 subject to the initial condition b
(α)
Φ,β,(ñ)(τ̃) = 0. In equation (A.34), the coefficients

b
(η+αi)
Ψ,β (∆i) are taken from AX(∆i) and BX(∆i) in equation (A.29).

Proof. Under the imposed assumptions, we repeatedly invoke the law of iterated expectations and

proposition A.10. Collecting terms in equation (A.27) thus yields the expressions in equations (A.32)

to (A.34).

Assumption A.12. The characteristic χ is well-behaved at (α, τ̃) ∈ NnX ñ × Rñ+ for α = [αS ;αZ ] by

satisfying the following conditions:

(i) χ is well-behaved at (
∑ñ
j=i|αj |,∆i) in the sense of assumption A.9 for all 1 ≤ i ≤ ñ;

(ii) χ is well-behaved at
∑ñ
j=1|αj | in the sense of assumption A.10.

Proposition A.13. Let χ be well-behaved at (α, τ̃) ∈ NnX ñ × Rñ+ in the sense of assumption A.12 for

α = [αS ;αZ ]. Then for all t ∈ R+, we have

ΦM,[α](0; τ̃ ,∞) = EM[(Xt+τ⊕τ̃ )α]

=
∑
|β|≤|α|

b
(α)
Φ,β(τ̃ ,∞) (Zt)

β (A.35)

with coefficients b
(α)
Φ,β(τ̃ ,∞) ∈ R given by

b
(α)
Φ,β(τ̃ ,∞) =

∑
η

b
(α)
Φ,η,(0)(τ̃) b

([0;η])
Ψ,[0;β](∞) , (A.36)

depending on b
(η)
Ψ,β as in proposition A.11. Defining ∆i = τ̃i− τ̃i−1, the auxiliary coefficients b

(α)
Φ,η,(i)(τ̃) ∈ R

are determined by the backward recursion (A.34), depending on b
(η)
Ψ,β as in proposition A.10.

Proof. Under the imposed assumptions, proposition A.11 implies that ΦM,[α](0; τ̃ ,∞) can be determined

as the limit when τ →∞ in equation (A.32), leading to equation (A.35). Letting τ →∞ in equation (A.33)

thereby yields the associated coefficients in equation (A.36), where b
(α)
Φ,η,(i)(τ̃) are given by the recursion

in equation (A.34).
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B Supplement to transform-based derivatives pricing

This appendix contains the proofs for the results in section 3.

B.1 Auxiliary results

To derive the transform-based pricing formulas for the equity and volatility derivatives in sections 3.3

and 3.4, respectively, we establish a general result. Specifically, lemma B.1 considers a general payoff

function g(y; a, b) = ya U(y − b), where U is the (Heaviside) unit step function, and determines its

distributional Fourier transform ĝ(y; a, b). Expressions are stated in terms of a tempered distribution

(iy)−(1+a), which will be characterized by its integral representation in lemma B.2 below. Certain special

cases of these general results in lemmas B.1 and B.2 will be relevant for equity options (a = 0) and

volatility options (a = 0 and a = 1/2).

Lemma B.1. Let g(y; a, b) = ya U(y − b) with a ≥ 0 and b ∈ R such that b ≥ 0 if a 6∈ N. Then the

associated distributional Fourier transform ĝ(y; a, b) is given by

ĝ(y; a, b) =
Γ(1 + a, iby)

Γ(1 + a)
ĝ(y; a, 0)

=
aΓ(a, iby)

Γ(1 + a)
ĝ(y; a, 0) + ba ĝ(y; 0, b)

(B.1)

with ĝ(y; 0, b) = Γ(1, iby) ĝ(y; 0, 0) and

ĝ(y; a, 0) = Γ(1 + a) (0 + iy)−(1+a) =

Γ(1 + a) (iy)−(1+a) , a 6∈ N

iaπ δ(a)(y) + a! (iy)−(1+a) , a ∈ N .
(B.2)

Here, Γ(a, z) =
∫∞
z
ξa−1 exp(−ξ) dξ denotes the upper incomplete Gamma function and (0 + iy)−(1+a) as

well as (iy)−(1+a) denote tempered distributions that are further characterized in lemma B.2 below.

Proof. Following Gel’fand and Shilov (1964), define gε(y) = exp(−εy) g(y) for ε > 0. By direct integration

in either of the cases considered in the lemma, it holds by the properties of the incomplete Gamma

function that

ĝε(y; a, b) =

∫ ∞
b

ỹa exp(−iỹy − εỹ) dỹ

=

∫ ∞
bε+iby

ỹa exp(−ỹ) dỹ (ε+ iy)−(1+a)

= Γ(1 + a, bε+ iby) (ε+ iy)−(1+a)

= aΓ(a, bε+ iby) (ε+ iy)−(1+a) + ba Γ(1, bε+ iby) (ε+ iy)−1 .

(B.3)

Taking the limit in equation (B.3) such that ĝ(y; a, b) = limε↓0 ĝε(y; a, b) in the sense of distributions, we

have

ĝ(y; a, b) = Γ(1 + a, iby) (0 + iy)−(1+a)

= aΓ(a, iby) (0 + iy)−(1+a) + ba Γ(1, iby) (0 + iy)−1
(B.4)

in terms of the tempered distribution (0 + iy)−(1+a) = limε↓0(ε+ iy)−(1+a), as established in lemma B.2.

Distinguishing the two cases in equation (B.5) for a 6∈ N and a ∈ N yields equations (B.1) and (B.2) and

completes the proof.
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Lemma B.2. For a ≥ 1, the tempered distribution (0+iy)−a = limε↓0(ε+iy)−a ∈ S∗(R) is the limit as ε ↓ 0

of the regular tempered distribution (ε+ iy)−a ∈ S∗(R), acting as 〈(ε+ iy)−a, f(y)〉 =
∫
R(ε+ iy)−af(y) dy.

Specifically, it holds that

(0 + iy)−a =


(iy)−a , a 6∈ N

ia−1π

(a− 1)!
δ(a−1)(y) + (iy)−a , a ∈ N

(B.5)

with integral representation

lim
ε↓0

∫ +∞

−∞

f(y)

(ε+ iy)a
dy =


∫ ∞

0

∆
(a)
y f(y)

(iy)a
dy , a 6∈ N

(−i)a−1π

(a− 1)!
f (a−1)(0) +

∫ ∞
0

∆
(a)
y f(y)

(iy)a
dy , a ∈ N .

(B.6)

Here, the tempered distribution (iy)−a ∈ S∗(R) can be represented in integral form as

〈(iy)−a, f(y)〉 =

∫ ∞
0

∆
(a)
y f(y)

(iy)a
dy (B.7)

with regularization (Taylor residual)

∆(a)
y f(y) = f(y) + (−1)af(−y)−

bac−1∑
k=0

1 + (−1)a+k

k!
f (k)(0) yk . (B.8)

Proof. We start by defining the Taylor residual

f̃a(y) = f(y − iε)−
ba−c−1∑
k=0

1

k!
f (k)(0) yk , (B.9)

where ba−c = limε′↓0ba− ε′c denotes the strict floor (i.e., the largest integer smaller than a). Moreover,

note that
∫ +∞
−∞ (ε+ iy)−a dy = 0 for ε > 0 and a > 1. Hence, using the binomial formula, it also holds

that
∫ +∞
−∞ (ε+ iy)−ayk dy = 0 for ε > 0 and a > k + 1. Adding and subtracting the Taylor polynomial in

equation (B.9) thus yields the identity∫ +∞

−∞

f(y)

(ε+ iy)a
dy =

∫ +∞

−∞

f̃a(y)

(ε+ iy)a
dy . (B.10)

Taking into account that f = f̃a for a = 1, equation (B.10) is valid for all ε > 0 and a ≥ 1. Splitting the

integration domain on the right-hand-side of equation (B.10), we may write∫ +∞

−∞

f(y)

(ε+ iy)a
dy =

∫ +ρ

−ρ

f̃a(y)

(ε+ iy)a
dy +

∫ −ρ
−∞

f̃a(y)

(ε+ iy)a
dy +

∫ +∞

+ρ

f̃a(y)

(ε+ iy)a
dy

=

∫ +ρ

−ρ

f̃a(y)

(ε+ iy)a
dy +

∫ +∞

+ρ

f̃a(y) + (−1)af̃a(−y)

(ε+ iy)a
dy

(B.11)

for any ρ > 0, where the last equality follows by a change of variable and combining two integrals. Since

terms of order a− 1 cancel when a ∈ N, we have ∆
(a)
y f(y) = f̃a(y) + (−1)af̃a(−y) for all a ≥ 1.

For the remainder of the proof, we distinguish the cases a 6∈ N and a ∈ N. In each of the cases, our

main effort will be dedicated to determining the limit of the first integral in the terminal expression of

equation (B.11), whereas the limit of the second integral may be determined rather straightforwardly.
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Beginning with the easier case a 6∈ N, define Qa(ρ, ε) by

Qa(ρ, ε) =

∫ +ρ

−ρ

f̃a(y)

(ε+ iy)a
dy =

∫ +ρ

−ρ

f (bac)(ξ(y)) ybac

(ε+ iy)a
dy , (B.12)

where the second equality holds for some mean value ξ(y) between 0 and y by Taylor’s theorem. Therefore,

we obtain the bounds

|Qa(ρ, ε)| ≤
∫ +ρ

−ρ

∣∣∣∣f (bac)(ξ(y)) ybac

(ε+ iy)a

∣∣∣∣dy ≤ 2ρ1−(a−bac)

1− (a− bac)
sup
|y|≤ρ
|f (bac)(y)|

since derivatives of f are bounded as a Schwartz function. It immediately follows for Qa in equation (B.12)

that Qa(ρ, ε)→ 0 as ρ, ε ↓ 0. Taking the limit in equation (B.11) thus yields

lim
ρ,ε↓0

∫ +∞

−∞

f(y)

(ε+ iy)a
dy =

∫ +∞

0

f̃a(y) + (−1)af̃a(−y)

(iy)a
dy , (B.13)

where the right-hand-side integral converges as the Taylor residual around zero is of order bac. In

fact, we may even write the right-hand-side of equation (B.13) as a sum of two individually convergent

integrals. With the definitions in equations (B.7) and (B.8), equation (B.13) yields the non-integer case

in equations (B.5) and (B.6).

Turning to the case a ∈ N, define the integral

Ja(ρ, ε) =

∫ +ρ

−ρ

ya−1

(ε+ iy)a
dy = −2ia+1=B(iρ/ε, a, 1− a) (B.14)

in terms of the incomplete Beta function B. It holds that Ja(ρ, ε)→ (−i)a−1π as ρ, ε→ 0 with ρ/ε→∞.

For integer a, we now define Qa(ρ, ε) by

Qa(ρ, ε) =

∫ +ρ

−ρ

f̃a(y)

(ε+ iy)a
dy − (−i)a−1π

(a− 1)!
f (a−1)(0)

=

∫ +ρ

−ρ

f̃a(y)− 1
(a−1)! f

(a−1)(0) ya−1

(ε+ iy)a
dy +

Ja(ρ, ε)− (−i)a−1π

(a− 1)!
f (a−1)(0)

=

∫ +ρ

−ρ

f (a)(ξ(y)) ya

(ε+ iy)a
dy +

Ja(ρ, ε)− (−i)a−1π

(a− 1)!
f (a−1)(0) ,

(B.15)

where the second equality uses the definition of Ja in equation (B.14) and the third equality invokes

Taylor’s theorem for some mean value ξ(y) between 0 and y. We thus obtain the bounds

|Qa(ρ, ε)| ≤
∫ +ρ

−ρ

∣∣∣∣f (a)(ξ(y)) ya

(ε+ iy)a

∣∣∣∣dy +
|Ja(ρ, ε)− (−i)a−1π|

(a− 1)!
|f (a−1)(0)|

≤ 2ρ sup
|y|≤ρ
|f (a)(y)|+ |Ja(ρ, ε)− (−i)a−1π|

(a− 1)!
|f (a−1)(0)|

due to the boundedness of derivatives of f as a Schwartz function. Accounting for the limiting behavior

of Ja, Qa in equation (B.15) satisfies Qa(ρ, ε)→ 0 as ρ, ε ↓ 0 with ρ/ε→∞. Taking appropriate limits in

equation (B.11) thus yields

lim
ρ,ε↓0

∫ +∞

−∞

f(y)

(ε+ iy)a
dy =

ia−1π

(a− 1)!
〈δ(a−1)(y), f(y)〉+

∫ +∞

0

f̃a(y) + (−1)af̃a(−y)

(iy)a
dy . (B.16)

Here, it should be noted that after combining the integrals, the Taylor terms of order a − 1 cancel,
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so that the residual around zero is in fact of order a. Hence, the integral on the right-hand-side of

equation (B.16) converges in the sense of Cauchy principal value integral. Using the definition of the

Dirac delta distribution and distributional derivatives together with the definitions in equations (B.7)

and (B.8), equation (B.16) justifies the integer case in equations (B.5) and (B.6).

B.2 General derivatives

From the generalized transform analysis of Chen and Joslin (2012), we have the following result.

Proposition B.1. Let g ∈ S∗(R) and (y 7→ Π(ω + iyω̂; T̃ , z)) ∈ S(R) for all z ∈ Z. Then

Πg(ω, ω̂; T̃ , Zt) = EQ[Dt(T̃m̃) exp(ω ·Xt⊕T̃ ) g(ω̂ ·Xt⊕T̃ ) |Ft]

=
1

2π
〈ĝ(y),Π(ω + iyω̂; T̃ , Zt)〉

in terms of the distributional Fourier transform ĝ ∈ S∗(R).

Proof. See Chen and Joslin (2012) or Dillschneider (2020).

Proof of proposition 3.1. Use the definition of the pricing transform Π in equation (3.3). By the

imposed assumptions, proposition B.1 yields

V(Zt;K, T̃ ) =
1

2π

nh∑
i=1

〈ĝi(ỹ;K),Π(b([ω̄i; ỹ]); T̃ , Zt)〉 . (B.17)

Since Y ⊂ RnX+1, there exists some Π̃ with (y 7→ Π̃(b(y); T̃ , z)) ∈ S(RnX+1) that coincides with Π on Y .

As the support of each gi is contained in Y, we can rewrite equation (B.17) as

V(Zt;K, T̃ ) =
1

2π

nh∑
i=1

〈ĝi(ỹ;K), Π̃(b([ω̄i; ỹ]); T̃ , Zt)〉

=
1

2π

nh∑
i=1

〈δ(ω̃ − ω̄i)⊗ ĝi(ỹ;K), Π̃(b([ω̃; ỹ]); T̃ , Zt)〉

= 〈w(y;K), Π̃(b(y); T̃ , Zt)〉 .

(B.18)

By construction, the support of (y 7→ w(y;K)) ∈ S∗(RnX+1) is contained in Y, so that equation (B.18)

thus yields equation (3.4).

B.3 Equity derivatives

Proof of corollary 3.1. For the call payoff in equation (3.6a), define (ỹ 7→ gCstock(ỹ;K)) ∈ S∗(R) by

gCstock(ỹ;K) = g(ỹ; 0,K) for g as in lemma B.1. Combining equations (B.1) and (B.2), the associated

distributional Fourier transform (ỹ 7→ ĝCstock(ỹ;K)) ∈ S∗(R) is given by

ĝCstock(ỹ;K) = ĝ(ỹ; 0,K)

= π δ(ỹ) + exp(−iKỹ) (iỹ)−1 ,

in terms of Dirac delta distribution δ(ỹ) and the tempered distribution (iỹ)−1 for Γ(1, iKy) = exp(−iKy).

Using ω̄1 = [1; 0], ω̄2 = [0; 0], ω̂ = [1; 0], g1(ỹ;K) = gCstock(ỹ;K), and g2(ỹ;K) = − exp(K) gCstock(ỹ;K),

exploiting the linearity of the Fourier transform, then yields equations (3.7) and (3.8a) as a special case

of proposition 3.1.
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Proceeding analogously for the put payoff in equation (3.6b), define (ỹ 7→ gPstock(ỹ;K)) ∈ S∗(R) by

gPstock(ỹ;K) = −g(−ỹ; 0,−K) for g as in lemma B.1. Due to the scaling property19 of the Fourier transform,

equations (B.1) and (B.2) yield the associated distributional Fourier transform (ỹ 7→ ĝPstock(ỹ;K)) ∈ S∗(R)

as

ĝPstock(ỹ;K) = − ĝ(−ỹ; 0,−K)

= − π δ(ỹ) + exp(−iKỹ) (iỹ)−1 ,

again in terms of the tempered distributions δ(ỹ) and (iỹ)−1. Using ω̄1 = [1; 0], ω̄2 = [0; 0], ω̂ = [1; 0],

g1(ỹ;K) = gPstock(ỹ;K), and g2(ỹ;K) = − exp(K) gPstock(ỹ;K), again exploiting the linearity of the Fourier

transform, then yields equations (3.7) and (3.8b) as a special case of proposition 3.1.

Proof of lemma 3.1. As in lemma B.2, we define the tempered distribution (iỹ)−1 ∈ S∗(R) for every

Schwartz function f ∈ S(R) by the convergent integral

〈(iỹ)−1, f(ỹ)〉 =

∫
R+

∆
(1)
ỹ f(ỹ)

iỹ
dỹ , (B.19)

using the regularization ∆
(1)
ỹ f(ỹ) = f(ỹ)−f(−ỹ). To avoid redundancies, write (y 7→ wOstock(y;K)) ∈ S∗(Y)

in equation (3.8) compactly as

wOstock([ω̃; ỹ];K) = (δ(ω̃ − [1; 0])− exp(K) δ(ω̃))⊗ g̃Ostock(ỹ;K) . (B.20)

Define the tempered distribution (ỹ 7→ g̃Ostock(ỹ;K)) ∈ S∗(R) in equation (B.20) by

g̃Ostock(ỹ;K) =
cO

2
δ(ỹ) + Fstock(ỹ;K) (iỹ)−1 ,

with equation (B.19) implying the integral representation

〈g̃Ostock(ỹ;K),Υ(bstock([ω̃; ỹ]))〉 =
cO

2
Υ(ω̃) +

∫
R+

∆
(1)
ỹ (Fstock(ỹ;K) Υ(ω̃ + iỹ[1; 0]))

iỹ
dỹ .

An application of the definition of the distributional tensor product in equation (3.1) to ŵOstock in terms

of g̃Ostock in equation (B.20) then yields equation (3.9), as required.

B.4 Volatility derivatives

Proof of lemma 3.2. Define by [logS]∗t the jump-adjusted quadratic variation of the stock price, having

dynamics

d[logS]∗t = ΩS(Zt−) dt+ 2 (exp(JS,t)− ι>− JS,t) dNt .

Here, ΩS(z) = AΩ,S + BΩ,Sz is the instantaneous diffusive variance of the stock price and exp(JS,t)

denotes the elementwise exponential of the stock jump sizes JS,t. Under constant interest rates and

dividend yields, the jump-adjusted quadratic variations of the stock price and of its forward price coincide.

Utilizing the reasoning of Carr and Wu (2009), we therefore get the identity

VIX 2
t =

1

τvix
EQ[[logS]∗t+τvix − [logS]∗t |Ft] (B.21)

19By the scaling property, g(ỹ) = f(aỹ) has Fourier transform ĝ(ỹ) = f̂(ỹ/a)/|a|.
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for VIX 2
t defined in equation (3.10).

It remains to establish an expression for the expected value on the right-hand side of equation (B.21).

For this, we obtain

EQ[[logS]∗t+τvix − [logS]∗t |Ft] =

∫ τvix

0

C[logS]∗ +D[logS]∗E
Q[Zt+τ |Ft] dτ , (B.22)

where the coefficients C[logS]∗ ∈ R and D[logS]∗ ∈ R1×nZ are given by

C[log S]∗ = AΩ,S + 2 EQ[exp(JS,t)− ι>− JS,t]AQ
λ (B.23a)

D[logS]∗ = BΩ,S + 2 EQ[exp(JS,t)− ι>− JS,t]BQ
λ . (B.23b)

We moreover have

EQ[Zt+τ |Ft] = (exp(τDZ)− I)D−1
Z CZ + exp(τDZ)Zt (B.24)

with CZ ∈ RnZ and DZ ∈ RnZ×nZ determined as

CZ = AQ
µ,Z + EQ[JZ,t]A

Q
λ (B.25a)

DZ = BQ
µ,Z + EQ[JZ,t]B

Q
λ . (B.25b)

Substituting equation (B.24) into equation (B.22) and performing the integration yields the coefficients

avix ∈ R and bvix ∈ RnZ in equation (3.11) by

avix = C[log S]∗ +
1

τvix
D[log S]∗ (exp(τvixDZ)− I − τvixDZ)D−2

Z CZ (B.26a)

bvix =
1

τvix
(D[logS]∗ (exp(τvixDZ)− I)D−1

Z )> , (B.26b)

depending on the coefficients C[logS]∗ and D[logS]∗ in equation (B.23) as well as CZ and DZ in equa-

tion (B.25).

Proof of corollary 3.2. For the call payoff in equation (3.12a), define (ỹ 7→ gCvix(ỹ;K)) ∈ S∗(R) by

gCvix(ỹ;K) = g(ỹ; 1/2,K)−K1/2g(ỹ; 0,K) for g as in lemma B.1. Combining equations (B.1) and (B.2),

we obtain the associated distributional Fourier transform (ỹ 7→ ĝCvix(ỹ;K)) ∈ S∗(R) as

ĝCvix(ỹ;K) = ĝ(ỹ; 1/2,K)−K1/2ĝ(ỹ; 0,K)

=
1
2Γ(1/2, iKỹ)

Γ(3/2)
ĝ(ỹ; 1/2, 0)

= 1
2Γ(1/2, iKỹ) (iỹ)−3/2 ,

in terms of the tempered distribution (iỹ)−3/2, where Γ denotes the upper incomplete Gamma function.

Setting ω̄1 = [0; 0], ω̂ = [0; bvix], and g1(ỹ;K) = gCvix(ỹ;K), exploiting the shift property20 of the Fourier

transform, this yields equations (3.13) and (3.14a) as a special case of proposition 3.1.

Proceeding analogously for the put payoff in equation (3.12b), define (ỹ 7→ gPvix(ỹ;K)) ∈ S∗(R) by

gPvix(ỹ;K) = K1/2
(
g(ỹ; 0, 0)− g(ỹ; 0,K)

)
−
(
g(ỹ; 1/2, 0)− g(ỹ; 1/2,K)

)
for g as in lemma B.1. Due to the

scaling property of the Fourier transform, equations (B.1) and (B.2) yield the associated distributional

20By the shift property, g(ỹ) = f(a+ ỹ) has Fourier transform ĝ(ỹ) = exp(iaỹ) f̂(ỹ).
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Fourier transform (ỹ 7→ ĝPvix(ỹ;K)) ∈ S∗(R) as

ĝPvix(ỹ;K) = K1/2
(
ĝ(ỹ; 0, 0)− ĝ(ỹ; 0,K)

)
−
(
ĝ(ỹ; 1/2, 0)− ĝ(ỹ; 1/2,K)

)
= K1/2ĝ(ỹ; 0, 0)−

1
2γ(1/2, iKy)

Γ(3/2)
ĝ(ỹ; 1/2, 0)

= 2πK1/2δ(ỹ)− 1
2γ(1/2, iKy) (iy)−3/2

in terms of the Dirac delta distributiona and again the tempered distribution (iỹ)−3/2, where γ denotes the

lower incomplete Gamma function. The last equality follows by realizing that ĝ(ỹ; 0, 0) is the distributional

Fourier transform of g(ỹ; 0, 0) = U(ỹ), which is redundant when positivity is assured. Setting ω̄1 = [0; 0],

ω̂ = [0; bvix], and g1(ỹ;K) = gPvix(ỹ;K), again exploiting the shift property of the Fourier transform, this

yields equations (3.13) and (3.14b) as a special case of proposition 3.1.

Proof of lemma 3.3. As in lemma B.2, we define the tempered distribution (iỹ)−3/2 ∈ S∗(R) for every

Schwartz function f ∈ S(R) by the convergent integral

〈(iỹ)−3/2, f(ỹ)〉 =

∫
R+

∆
(3/2)
ỹ f(ỹ)

(iỹ)3/2
dỹ , (B.27)

using the regularization ∆
(3/2)
ỹ f(ỹ) = f(ỹ) − i f(−ỹ) − (1 − i) f(0). For (y 7→ wOvix(y;K)) ∈ S∗(Y) in

equation (3.14), we have the compact expression

wOvix([ω̃; ỹ];K) = δ(ω̃)⊗ g̃Ovix(ỹ;K) . (B.28)

The tempered distribution (ỹ 7→ g̃Ovix(ỹ;K)) ∈ S∗(R) in equation (B.28) is defined as

g̃Ovix(ỹ;K) =
1− cO

2
K1/2 δ(ỹ) + FOvix(ỹ;K) (iỹ)−3/2 ,

by equation (B.27) having the integral representation

〈g̃Ovix(ỹ;K),Υ(bvix([ω̃; ỹ]))〉 =
1− cO

2
K1/2 Υ(ω̃) +

∫
R+

∆
(3/2)
ỹ (FOvix(ỹ;K) Υ(ω̃ + iỹ[0; bvix]))

(iỹ)3/2
dỹ .

An application of the definition of the distributional tensor product in equation (3.1) to ŵOvix in terms of

g̃Ovix in equation (B.28) then yields equation (3.15), as required.

C Extensions of transform-based derivatives pricing

In this appendix, we develop an extension of the transform-based pricing approach of section 3. Instead of

relying on the general formulation there using Schwartz distribution theory, we here rely on a functional

generalization of Fourier transformation, henceforth referred to as complex Fourier transformation. This

approach allows us to treat derivatives with certain payoff functions, namely those that grow exponentially

(at infinity). For these, the in this appendix yields prices in terms of ordinary integrals, avoiding the

integral regularization approach necessary in section 3 (see also appendix B for further details). In

particular, we obtain alternative (but equivalent) formulas for equity and volatility derivatives. To

maintain the connection to our other results, we still integrate a Schwartz-based formulation, which allows

to interpret our previous results as a limiting case. In principle, it may even be possible to drop the

Schwartz requirement altogether — at the expense of more tedious regularity conditions. For details, the
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interested reader is referred to Dillschneider (2020).

C.1 Complex Fourier theory

Classical Fourier theory focuses primarily on the class of square-integrable functions. Following the classical

exposition in Titchmarsh (1975), we use a simple approach to extend Fourier transformation to certain

functions outside this class. Specifically, we will be concerned with functions g exhibiting exponential

growth such that exp(−ε|y|) g(y) is bounded for some ε = ε∗ > 0 and, hence, square-integrable for each

ε > ε∗. Without loss of generality, we constrain our attention to one-sided exponential growth in the sense

that the regularized function gε(y) = exp(−εy) g(y) is square-integrable. Two-sided exponential growth

may by accounted for by appropriately splitting the support of g; e.g., using g(y) = g(y)U(y) + g(y)U(−y)

and applying the reasoning the both g(y)U(y) and g(y)U(−y) separately.

For such square-integrable gε, the Fourier transform exists in the ordinary sense as a square-integrable

function ĝε. By construction of gε and definition of Fourier transformation, ĝε satisfies the relation

ĝε(y) =

∫
R

exp(−iyỹ) gε(ỹ) dỹ =

∫
R

exp(−i(y − iε)ỹ) g(ỹ) dỹ = ĝ(y − iε) .

This last equality defines the complex Fourier transform ĝ(y− iε). It usually exists in a certain interval of

ε; when it exists for ε = 0, the complex Fourier transform of course coincides with the ordinary Fourier

transform.

C.2 Auxiliary results

In order to prepare the pricing of equity and volatility derivatives in the present setting, we first derive

some auxiliary results. We revisit the function g encountered in lemma B.1 and derive its complex Fourier

transform ĝ(y − iε; a, b) = ĝε(y; a, b). In essence, lemma B.1 exploits the expressions in lemma C.1 and

uses the limit ĝ(y; a, b) = limε↓0 ĝε(y; a, b) in the sense of distributions.

Lemma C.1. Let gε(y; a, b) = exp(−εy) g(y; a, b) = exp(−εy) ya U(y − b) for ε > 0 with a ≥ 0 and b ∈ R
such that b ≥ 0 if a 6∈ N. Then the associated distributional Fourier transform ĝ(y; a, b) is given by

ĝε(y; a, b) =
Γ(1 + a, εb+ iby)

Γ(1 + a)
ĝε(y; a, 0)

=
aΓ(a, εb+ iby)

Γ(1 + a)
ĝε(y; a, 0) + ba ĝε(y; 0, b)

(C.1)

with ĝε(y; 0, b) = Γ(1, εb+ iby) ĝε(y; 0, 0) and

ĝε(y; a, 0) = Γ(1 + a) (ε+ iy)−(1+a) . (C.2)

Here, Γ(a, z) =
∫∞
z
ξa−1 exp(−ξ) dξ denotes the upper incomplete Gamma function and (ε + iy)−(1+a)

denotes the (regular) tempered distribution acting as 〈(ε+ iy)−(1+a), f(y)〉 =
∫
R(ε+ iy)−(1+a)f(y) dy.

Proof. Equations (C.1) and (C.2) immediately follow by the calculations performed in equation (B.3) for

proving lemma B.1.

Lemma C.2 conveys that the tempered distribution ĝε is asymptotically equivalent to ĝ, through the

convergence of (ε+ iy)−a to (0 + iy)−a. In addition, it can be established that ĝε is in fact equivalent

to ĝ once the function f can be extended in a certain way to a complex domain. Such extensions will
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naturally arise when dealing with complex Fourier transforms. The following lemma formally states these

equivalence results in terms of the tempered distributions (ε+ iy)−a and (0 + iy)−a.

Lemma C.2. Let (y, ε) 7→ f(y− iε) exist and be complex differentiable in a neighborhood of R× [0, ε∗] for

some ε∗ > 0, such that (y 7→ f(y − iε)) ∈ S(R) for ε ∈ [0, ε∗]. For a ≥ 1, the regular tempered distribution

(ε+ iy)−a ∈ S∗(R) acting on f(y− iε) is equivalent to the tempered distribution (0 + iy)−a ∈ S∗(R) acting

on f(y). Specifically, it holds that

〈(ε+ iy)−a, f(y − iε)〉 =

〈(iy)−a, f(y)〉 , a 6∈ N

ia−1π 〈δ(a−1)(y), f(y)〉+ 〈(iy)−a, f(y)〉 , a ∈ N
(C.3)

with integral representation

∫ +∞

−∞

f(y − iε)

(ε+ iy)a
dy =


∫ +∞

0

∆
(a)
y f(y)

(iy)a
dy , a 6∈ N

(−i)a−1π f (a−1)(0) +

∫ +∞

0

∆
(a)
y f(y)

(iy)a
dy , a ∈ N .

(C.4)

Proof. Extending the definition before, we now use the (complex) Taylor residual

f̃a(y − iε) = f(y − iε)−
ba−c−1∑
k=0

(−i)k

k!
f (k)(0) (ε+ iy)k , (C.5)

denoting by ba−c = limε′↓0ba− ε′c the strict floor. As noted previously, we have
∫ +∞
−∞ (ε+ iy)−a dy = 0

for ε > 0 and a > 1. Adding and subtracting the Taylor polynomial in equation (C.5) thus yields∫ +∞

−∞

f(y − iε)

(ε+ iy)a
dy =

∫ +∞

−∞

f̃a(y − iε)

(ε+ iy)a
dy . (C.6)

Further noting that f = f̃a for a = 1, the identity displayed in equation (C.6) in fact holds for ε > 0 and

a ≥ 1. As a consequence of the Cauchy integral theorem (e.g., theorem 10.35 in Rudin (1987)), we find

that the right-hand-side of equation (C.6) may be written as∫ +∞

−∞

f(y − iε)

(ε+ iy)a
dy =

∮
C(ρ)

f̃a(y)

(iy)a
dy +

∫ −ρ
−∞

f̃a(y)

(iy)a
dy +

∫ +∞

+ρ

f̃a(y)

(iy)a
dy

=

∮
C(ρ)

f̃a(y)

(iy)a
dy +

∫ +∞

+ρ

f̃a(y) + (−1)af̃a(−y)

(iy)a
dy ,

(C.7)

where C(ρ) is a positively oriented (open) semicircle from −ρ to +ρ, so that the pole at the origin lies in

the exterior of the (infinite) closed curve along which the path integral is computed. Letting ρ ↓ 0 in

equation (C.7), we obtain∫ +∞

−∞

f(y − iε)

(ε+ iy)a
dy = iπRes((iy)−af̃a(y), 0) +

∫ +∞

0

f̃a(y) + (−1)af̃a(−y)

(iy)a
dy , (C.8)

where Res(f, z) denotes the residue of the function f at the point z. Intuitively, the integral along the

semicircle C(ρ) corresponds to half of the integral of the full circle, which obtains directly by virtue of the

Cauchy residue theorem (e.g., theorem 10.42 in Rudin (1987)). Moreover, following the argument in the

proof of lemma B.2, the integral on the right-hand-side of equation (C.8) is convergent in the sense of a

Cauchy principal value integral.
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It remains to determine the residue term in equation (C.8), for which we distinguish the cases a 6∈ N
and a ∈ N. For the easier case a 6∈ N, the residue term vanishes and we obtain∫ +∞

−∞

f(y − iε)

(ε+ iy)a
dy =

∫ +∞

0

f̃a(y) + (−1)af̃a(−y)

(iy)a
dy . (C.9)

Evidently, equation (C.9) corresponds to the non-integer cases in equations (C.3) and (C.4).

For a ∈ N, we instead have that Res((iy)−af̃a(y), 0) = (−i)af (a−1)(0), so that∫ +∞

−∞

f(y − iε)

(ε+ iy)a
dy = (−i)a−1π f (a−1)(0) +

∫ +∞

0

f̃a(y) + (−1)af̃a(−y)

(iy)a
dy . (C.10)

By definition of the Dirac delta distribution and distributional derivatives, equation (C.10) corresponds

to integer cases in equations (C.3) and (C.4).

C.3 General derivatives

To study the pricing of general derivatives using complex Fourier theory, we start with an analogue

of proposition B.1. For this, we impose that the pricing transform Π is a Schwartz function after

regularization (shifting) and, hence, square-integrable. Instead of requiring that g represents a tempered

distribution, we now impose that g is square-integrable after regularization (scaling). In that case, the

regularized gε is locally integrable and, hence, represents a regular tempered distribution. Moreover, the

ordinary Fourier transform ĝε is also square-integrable and represents a regular tempered distribution.

Under these conditions, a generalized transform relation can be derived using well-established results from

ordinary Fourier theory, as in Dillschneider (2020). Formulating our result for one-side regularization is

not restrictive in this context, since within two-side regularization proposition C.1 may straightforwardly

be invoked twice after appropriately splitting the support of g.

Proposition C.1. Let (y 7→ gε(y) = exp(−εy) g(y)) ∈ S∗(R) ∩ L2(R) and (y 7→ Π(ω + εω̂ + iyω̂; T̃ , z)) ∈
S(R) ∩ L2(R) for some ε ∈ R and all z ∈ Z. Then

Πg(ω, ω̂; T̃ , Zt) = EQ[Dt(T̃m̃) exp(ω ·Xt⊕T̃ ) g(ω̂ ·Xt⊕T̃ ) |Ft]

=
1

2π
〈ĝε(y),Π(ω + εω̂ + iyω̂; T̃ , Zt)〉

=
1

2π

∫
R
ĝε(y) Π(ω + εω̂ + iyω̂; T̃ , Zt) dy

in terms of the distributional Fourier transform ĝε ∈ S∗(R) ∩ L2(R).

Proof. By construction, we have the identity Πg(ω, ω̂; T̃ , Zt) = Πgε(ω + εω̂, ω̂; T̃ , Zt). Under the imposed

conditions, invoking the results in Dillschneider (2020) as a consequence of Parseval’s formula (e.g., p. 189

in Rudin (1991)), it follows that

Πgε(ω + εω̂, ω̂; T̃ , z) =
1

2π

∫
R
ĝε(y) Π(ω + εω̂ + iyω̂; T̃ , z) dy .

As ĝε represents a regular tempered distribution, rewriting yields the stated expressions.

With proposition C.1 at hand, we may revisit the pricing of general derivatives as in section 3.2.

Staying within the framework introduced there, we appropriately modify the imposed assumptions in

order to apply the complex Fourier theory. Analogous to assumptions 3.1 and 3.2, we impose the following

conditions on the payoff function and pricing transform in assumption 3.1 and equation (3.3), respectively.
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Assumption C.1. The payoff function h satisfies equation (3.2) for ω̄i, ω̂ ∈ RnXm̃ and (ỹ 7→ gi,εi(ỹ;K) =

exp(−εiỹ) gi(ỹ;K)) ∈ S∗(R) ∩ L2(R) with εi ∈ R.

Assumption C.2. (y 7→ Π(b(y); T̃ , z)) ∈ S(Yε) for b([ω; ỹ]) = ω + iỹω̂, Yε =
⋃nh
i=1{ω̄i + εiω̂} × R, and

all z ∈ Z.

The modifications in assumptions C.1 and C.2 allow the application of the generalized transform

result in proposition C.1. Analogous to proposition 3.1, we obtain a transform-based pricing formula

for general derivatives. Unlike before, we can now routinely express derivatives prices in terms of Dirac

delta distributions and regular tempered distributions ĝi,εi . The last equality in equation (C.11) uses the

integral notation for Dirac delta distribution to highlight the integral form.

Proposition C.2. Let assumptions C.1 and C.2 hold. Then we have

V(Zt;K, T̃ ) = EQ[Dt(T̃m̃)h(Xt⊕T̃ ;K) |Ft]

= 〈wε(y;K),Π(b(y); T̃ , Zt)〉

=

∫
Yε
wε(y;K) Π(b(y); T̃ , Zt) dy ,

(C.11)

where y = [ω̃; ỹ] and b([ω̃; ỹ]) = ω̃+iỹω̂. Moreover, (y 7→ wε(y;K)) ∈ S∗(Yε) is given by the distributional

tensor product

wε([ω̃; ỹ];K) =
1

2π

nh∑
i=1

δ(ω̃ − ω̄i − εiω̂)⊗ ĝi,εi(ỹ;K) , (C.12)

in terms of the distributional Fourier transforms (ỹ 7→ ĝi,εi(ỹ;K)) ∈ S∗(R) ∩ L2(R).

Proof. Using the definition of the pricing transform Π in equation (3.3), the imposed assumptions together

with proposition C.1 yield

V(Zt;K, T̃ ) =
1

2π

nh∑
i=1

〈ĝi,εi(ỹ;K),Π(b([ω̄i + εiω̂; ỹ]); T̃ , Zt)〉 . (C.13)

Following the reasoning in the proof of proposition 3.1 with obvious modifications and admitting

the integral notation for the Dirac delta distribution, equation (C.13) thus justifies equations (C.11)

and (C.12).

C.4 Equity derivatives

Consider the pricing of equity derivatives in the setting of section 3.3. As an analogue of corollary 3.1,

the following corollary to proposition C.2 yields an expression for VOstock using complex Fourier theory.

Corollary C.1. Let hOstock be as in equation (3.6). Moreover, let assumption C.2 hold for ω̄1 = [1; 0],

ω̄2 = [0; 0], ω̂ = [1; 0], ε1 = ε2 = cOε with ε > 0. Then we have

VOstock(Zt;K, T̃ ) = 〈wOstock,ε(y;K),Π(bstock(y); T̃ , Zt)〉 , (C.14)

where y = [ω̃; ỹ] and bstock([ω̃; ỹ]) = ω̃ + iỹ[1; 0]. The associated (y 7→ wOstock,ε(y;K)) ∈ S∗(Yε) are given

by

wCstock,ε([ω̃; ỹ];K) = (δ(ω̃ − (1 + ε)[1; 0])− exp(K) δ(ω̃ − ε[1; 0]))⊗ FCstock,ε(ỹ;K) (ε+ iỹ)−1 (C.15a)

wPstock,ε([ω̃; ỹ];K) = (exp(K) δ(ω̃ + ε[1; 0])− δ(ω̃ − (1− ε)[1; 0]))⊗ FPstock,ε(ỹ;K) (ε+ iỹ)−1 (C.15b)
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with FOstock,ε(ỹ;K) = FOstock(ỹ − iε;K).

Proof. We proceed analogous to the proof of corollary 3.1. For the call payoff in equation (3.6a), now

define (ỹ 7→ gCstock,ε(ỹ;K)) ∈ S∗(R) ∩ L2(R) by gCstock,ε(ỹ;K) = gε(ỹ; 0,K) for gε as in lemma C.1. With

equations (C.1) and (C.2), we then obtain the associated Fourier transform (ỹ 7→ ĝCstock,ε(ỹ;K)) ∈
S∗(R) ∩ L2(R) as

ĝCstock,ε(ỹ;K) = ĝε(ỹ; 0,K)

= exp(−εK − iKỹ) (ε+ iỹ)−1 ,

in terms of the (regular) tempered distribution (ε+ iỹ)−1. Continuing the argument as before, we arrive

at equations (C.14) and (C.15a) as a special case of proposition C.2.

For the put payoff in equation (3.6b), define (ỹ 7→ gPstock,ε(ỹ;K)) ∈ S∗(R) ∩ L2(R) by gPstock,ε(ỹ;K) =

−g−ε(−ỹ; 0,−K) for gε as in lemma C.1. Invoking the scaling property of the Fourier transform, we

obtain (ỹ 7→ ĝPstock,ε(ỹ;K)) ∈ S∗(R) ∩ L2(R) as

ĝPstock,ε(ỹ;K) = − ĝ−ε(−ỹ; 0,−K)

= exp(−εK − iKỹ) (ε+ iỹ)−1 ,

again in terms of the (regular) tempered distribution (ε+ iỹ)−1. Following the rest of the argument thus

yields equations (C.14) and (C.15b) as a special case of proposition C.2.

For practical implementation, we may now easily obtain an integral representation of wOstock,ε in

corollary C.1. Intuitively, the corresponding representation in lemma 3.1 corresponds to the limiting

case of lemma C.3 when letting ε ↓ 0. Whenever Υ(bstock([ω̃; ỹ])) is Hermitian as a function of ỹ,

a computationally more efficient representation may be obtained. Noting that both integrands in

equation (C.16) are products of Hermitian functions and, hence, themselves Hermitian, the integrands

may be replaced by twice their real parts.

Lemma C.3. Let (y 7→ Υ(bstock(y))) ∈ S(Yε). Then wOstock,ε in corollary C.1 can be represented in

integral form as

〈wOstock,ε(y;K),Υ(bstock(y))〉 =

∫
R

FOstock,ε(ỹ;K) Υ((1 + cOε)[1; 0] + iỹ[1; 0])

ε+ iỹ
dỹ

− exp(K)

∫
R

FOstock,ε(ỹ;K) Υ(cOε[1; 0] + iỹ[1; 0])

ε+ iỹ
dỹ ,

(C.16)

with option indicators cC = +1 and cP = −1.

Proof. We proceed along the lines of the proof of lemma 3.1. The regular tempered distribution (ε+ iỹ)−1

in equation (C.15) can be represented by a convergent integral, such that for every Schwartz function

f ∈ S(R), we have

〈(ε+ iỹ)−1, f(ỹ)〉 =

∫
R

f(ỹ)

ε+ iỹ
dỹ . (C.17)

We may write (y 7→ wOstock,ε(y;K)) ∈ S∗(Yε) in equation (C.15) compactly as

wOstock,ε([ω̃; ỹ];K) = (δ(ω̃ − (1 + cOε)[1; 0])− exp(K) δ(ω̃ − cOε))⊗ g̃Ostock,ε(ỹ;K) (C.18)

with (ỹ 7→ g̃Ostock,ε(ỹ;K)) ∈ S∗(R) in equation (C.18) given by g̃Ostock,ε(ỹ;K) = FOstock,ε(ỹ;K) (ε + iỹ)−1,
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whose integral representation in equation (C.17) implies

〈g̃Ostock,ε(ỹ;K),Υ(bstock([ω̃; ỹ]))〉 =

∫
R

Fstock,ε(ỹ;K) Υ(ω̃ + iỹ[1; 0])

ε+ iỹ
dỹ .

An application of the definition of the distributional tensor product in equation (3.1) to ŵOstock,ε in terms

of g̃Ostock,ε in equation (C.18) then yields equation (C.16), as required.

C.5 Volatility derivatives

Consider the pricing of volatility derivatives in the setting of section 3.4. As an analogue of corollary 3.2,

the following corollary to proposition C.2 yields an expression for VOvix using complex Fourier theory.

Corollary C.2. Let hOvix be as in equation (3.12). Moreover, let assumption C.2 hold for ω̄1 = [0; 0],

ω̂ = [0; bvix], ε1 = ε with ε > 0. Then we have

VOvix(Zt;K, T̃ ) = 〈wOvix,ε(y;K),Π(bvix(y); T̃ , Zt)〉 , (C.19)

where y = [ω̃; ỹ] and bvix([ω̃; ỹ]) = ω̃ + iỹ[0; bvix]. The associated (y 7→ wOvix,ε(y;K)) ∈ S∗(Yε) are given

by

wCvix,ε([ω̃; ỹ];K) = δ(ω̃ − ε[0; bvix])⊗ FCvix,ε(ỹ;K) (ε+ iỹ)−3/2 (C.20a)

wPvix,ε([ω̃; ỹ];K) = δ(ω̃)⊗K1/2 δ(ỹ) + δ(ω̃ − ε[0; bvix])⊗ FPvix,ε(ỹ;K) (ε+ iỹ)−3/2 (C.20b)

with FOvix,ε(ỹ;K) = FOvix(ỹ − iε;K).

Proof. We proceed analogous to the proof of corollary 3.2. For the call payoff in equation (3.12a),

define (ỹ 7→ gCvix,ε(ỹ;K)) ∈ S∗(R) ∩ L2(R) by gCvix,ε(ỹ;K) = gε(ỹ; 1/2,K) − K1/2gε(ỹ; 0,K) for gε as

in lemma C.1. With equations (C.1) and (C.2), we obtain the associated Fourier transform (ỹ 7→
ĝCvix,ε(ỹ;K)) ∈ S∗(R) ∩ L2(R) as

ĝCvix,ε(ỹ;K) = ĝε(ỹ; 1/2,K)−K1/2ĝε(ỹ; 0,K)

=
1
2Γ(1/2, εK + iKỹ)

Γ(3/2)
ĝε(ỹ; 1/2, 0)

= 1
2Γ(1/2, εK + iKỹ) (ε+ iỹ)−3/2 ,

in terms of the (regular) tempered distribution (ε + iỹ)−3/2. Keeping the setting as before and using

the shift property of the Fourier transform yields equations (C.19) and (C.20a) as a special case of

proposition C.2.

For the put payoff in equation (3.12b), define (ỹ 7→ gPvix,ε(ỹ;K)) ∈ S∗(R) ∩ L2(R) by gPvix,ε(ỹ;K) =

K1/2
(
gε(ỹ; 0, 0)−gε(ỹ; 0,K)

)
−
(
gε(ỹ; 1/2, 0)−gε(ỹ; 1/2,K)

)
for gε as in lemma C.1. The scaling property

of the Fourier transform together with equations (C.1) and (C.2) yields the associated Fourier transform

(ỹ 7→ ĝPvix,ε(ỹ;K)) ∈ S∗(R) ∩ L2(R) as

ĝPvix,ε(ỹ;K) = K1/2
(
ĝε(ỹ; 0, 0)− ĝε(ỹ; 0,K)

)
−
(
ĝε(ỹ; 1/2, 0)− ĝε(ỹ; 1/2,K)

)
= K1/2ĝε(ỹ; 0, 0)−

1
2γ(1/2, εK + iKy)

Γ(3/2)
ĝε(ỹ; 1/2, 0)

= 2πK1/2 δ(ỹ − iε)− 1
2γ(1/2, εK + iKy) (ε+ iy)−3/2 ,
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in terms of the (complex) Dirac delta distribution, acting as 〈δ(ỹ − iε), f(ỹ)〉 = f(iε), and the (regular)

tempered distribution (ε+ iy)−3/2. The last equality follows by realizing that ĝε(ỹ; 0, 0) = (ε+ iỹ)−1 is the

complex Fourier transform of g(ỹ; 0, 0) = U(ỹ), which is redundant when positivity is assured. Invoking

the shift property of the Fourier transform thus yields equations (C.19) and (C.20b) as a special case of

proposition C.2.

For practical implementation, wOvix,ε in corollary C.2 straightforwardly implies an integral representation.

Intuitively, the corresponding representation in lemma 3.3 may be interpreted as a limiting case of

lemma C.4 when letting ε ↓ 0. From a computational perspective, a more efficient representation can be

devised for the special case of Υ(bvix([ω̃; ỹ])) being Hermitian as a function of ỹ. In that case, the integrand

in equation (C.21) is a product of Hermitian functions of ỹ and, hence, itself Hermitian. Therefore, the

integrand may be replaced by twice its real part.

Lemma C.4. Let (y 7→ Υ(bvix(y))) ∈ S(Yε). Then wOvix,ε in corollary C.2 can be represented in integral

form as

〈wOvix,ε(y;K),Υ(bvix(y))〉 =
1− cO

2
K1/2 Υ([0; 0]) +

∫
R

FOvix,ε(ỹ;K) Υ(ε[0; bvix] + iỹ[0; bvix])

(ε+ iỹ)3/2
dỹ , (C.21)

with option indicators cC = +1 and cP = −1.

Proof. We proceed as in the proof of lemma 3.3. The regular tempered distribution (ε+ iỹ)−3/2 ∈ S∗(R)

for every Schwartz function f ∈ S(R) can be represented by the convergent integral

〈(ε+ iỹ)−3/2, f(ỹ)〉 =

∫
R

f(ỹ)

(ε+ iỹ)3/2
dỹ . (C.22)

Moreover, we may compactly express (y 7→ wOvix,ε(y;K)) ∈ S∗(Yε) in equation (C.20) as

wOvix,ε([ω̃; ỹ];K) =
1− cO

2
K1/2 δ(ω̃)⊗ δ(ỹ) + δ(ω̃ − ε[0; bvix])⊗ ˜̃gOvix,ε(ỹ;K) (C.23)

with (ỹ 7→ ˜̃gOvix,ε(ỹ;K)) ∈ S∗(R) in equation (C.23) defined as ˜̃gOvix,ε(ỹ;K) = FOvix,ε(ỹ;K) (ε + iỹ)−3/2,

whose integral representation in equation (C.22) implies

〈˜̃gOvix,ε(ỹ;K),Υ(bvix([ω̃; ỹ]))〉 =

∫
R

FOvix,ε(ỹ;K) Υ(ω̃ + iỹ[0; bvix])

(ε+ iỹ)3/2
dỹ .

An application of the definition of the distributional tensor product in equation (3.1) to ŵOvix,ε in terms of

the Dirac delta distribution and ˜̃gOvix,ε in equation (C.23) then yields equation (C.21), as required.

D Supplement to moments involving derivatives prices

This appendix contains the proofs for the results in section 4.

D.1 Auxiliary results

Using the definition of extended Schwartz spaces in section 4.2, consider a generic transform Υ satisfying

((y, z) 7→ Υ(y; z)) ∈ S̃(Ỹ × Z ñ;1⊗ v) for Ỹ ⊂ Rm and some positive weighting function v ∈ C∞(Z ñ).

Given this construction, we define ψ(z) = 〈g̃(y),Υ(y; z)〉 for g̃ ∈ S∗(Ỹ) = S̃∗(Ỹ ;1). We aim at determining

moments involving ψ(Zt+τ̃ ) and functions of the augmented state vector Xt⊕τ̃ . Using the results in
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Dillschneider (2020), we have the following Fubini-type result that allows to interchange the order of the

tempered distribution and the expectation operator.

Proposition D.1. Let g̃ ∈ S̃∗(Ỹ;1) and ((y, z) 7→ Υ(y; z)) ∈ S̃(Ỹ × Z ñ;1⊗ v) with

EM[|h(Xt⊕τ̃ )| v(Zt+τ̃ )−1] <∞ . (D.1)

Then ψ(z) = 〈g̃(y),Υ(y; z)〉 satisfies

EM[f(Xt⊕τ̃ )ψ(Zt+τ̃ )] = EM[h(Xt⊕τ̃ ) 〈g̃(y),Υ(y;Zt+τ̃ )〉]

= 〈g̃(y),EM[h(Xt⊕τ̃ ) Υ(y;Zt+τ̃ )]〉 .
(D.2)

Proof. The first equality in equation (D.2) holds by definition of ψ. For the second equality, denote

the (linear) expectation functional Eh by 〈Eh(z), f(z)〉 = EM[h(Xt⊕τ̃ ) f(Zt+τ̃ )]. Condition (D.1) assures

that Eh ∈ S̃∗(Z ñ; v). It holds by construction of extended Schwartz spaces and tempered distributions

that g̃ ⊗ Eh ∈ S̃∗(Ỹ × Z ñ;1⊗ v). Here, the action of the tensor product 〈g̃(y)⊗ Eh(z),Υ(y; z)〉 equals

〈Eh(z), 〈g̃(y),Υ(y; z)〉〉 = 〈g̃(y), 〈Eh(z),Υ(y; z)〉〉, analogous to equation (3.1). This yields the second

equality in equation (D.2).

D.2 Exact moments

Proof of lemma 4.1. The proof is split into two steps. First, we derive the relevant expressions for each

(Vt+τ̃j )
βj . By construction of the vector Vt, from equation (4.1), we have

Vi,t+τ̃j = Vi(Zt+τ̃j ;Ki, T̃i) = 〈wi(yi,j ;Ki),Π(bi(yi,j); T̃i, Zt+τ̃j )〉

for (yi,j 7→ wi(yi,j ;Ki)) ∈ S∗(Yi) and (yi,j 7→ Π(bi(yi,j); T̃i, Zt+τ̃j )) ∈ S(Yi). Given multi-indices

βj ∈ NnV , define associated index vectors q(βj) ∈ N|βj | with multiplicities according to βj such that

(Vt+τ̃j )
βj =

∏|βj |
i=1 Vqi(βj),t+τ̃j . By definition of tensor products of tempered distributions in equation (3.1),

we thus have

(Vt+τ̃j )
βj = 〈wβj (yj ;K),Πβj (b(yj); T̃ , Zt+τ̃j )〉 (D.3)

for (yj 7→ wβj (yj ;K)) ∈ S∗(Yβj ) and (yj 7→ Πβj (b(yj); T̃ , Zt+τ̃j )) ∈ S(Yi) on the Cartesian product space

Yβj =
∏|βj |
i=1 Yqi(βj). Each tempered distributions wβj in equation (D.3) is given by the distributional

tensor product

wβj (yj ;K) =

|βj |⊗
i=1

wqi(βj)(yi,j ;Kqi(βj)) (D.4)

and each Πβj in equation (D.3) by

Πβj (b(yj); T̃ , Zt+τ̃j ) =

|βj |∏
i=1

Πqi(βj)(bqi(βj)(yi,j); T̃qi(βj), Zt+τ̃j )

= exp(A
βj
Π (b(yj); T̃ ) +B

βj
Π (b(yj); T̃ ) · Zt+τ̃j ) .

(D.5)
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Moreover, the coefficients A
βj
Π and B

βj
Π in equation (D.5) are determined as

A
βj
Π (b(yj); T̃ ) =

|βj |∑
i=1

AΠ(bqi(βj)(yi,j); T̃qi(βj)) (D.6a)

B
βj
Π (b(yj); T̃ ) =

|βj |∑
i=1

BΠ(bqi(βj)(yi,j); T̃qi(βj)) . (D.6b)

This completes the first step.

Second, we combine the expressions relating to (Vt+τ̃j )
βj to obtain analogous expressions relating

to (Vt+τ̃ )β =
∏ñ
j=1(Vt+τ̃j )

βj . Using wβj from equation (D.4) and again invoking the definition of the

distributional tensor product in equation (3.1) yields equation (4.2) with wβ defined by the distributional

tensor product

wβ(y;K) =

ñ⊗
j=1

wβj (yj ;K) , (D.7)

where (y 7→ wβ(y;K)) ∈ S∗(Yβ) on the Cartesian product space Yβ =
∏ñ
j=1 Yβj . Moreover, Πβ in

equation (4.2) is given by

Πβ(b(y); T̃ , Zt+τ̃ ) =

ñ∏
j=1

Πβj (b(yj); T̃ , Zt+τ̃j ) (D.8)

with (y 7→ Πβ(b(y); T̃ , Zt+τ̃ )) ∈ S(Yβ). Since each of the Πβj in equation (D.5) is exponentially affine in

Zt+τ̃j , it follows that Πβ in equation (D.8) is exponentially affine in Zt+τ̃ , yielding equation (4.3) with

coefficients AβΠ and BβΠ given as

AβΠ(b(y); T̃ ) =

ñ∑
j=1

A
βj
Π (b(yj); T̃ ) (D.9a)

BβΠ(b(y); T̃ ) = [Bβ1

Π (b(y1); T̃ ); . . . ;BβñΠ (b(yñ); T̃ )] (D.9b)

in terms of the coefficients A
βj
Π and B

βj
Π in equation (D.6). This concludes the second step and, hence,

the proof.

Proof of proposition 4.1. To ease notation, we introduce

F
(α)
t+τ̃ (ω) = exp(ω ·Xt⊕τ̃ ) (Xt⊕τ̃ )α , (D.10)

satisfying ΦM,[α](ω; τ̃ ,∞) = EM[F
(α)
t+τ̃ (ω)]. Further using (Vt+τ̃ )β from equation (4.2), we obtain

Φ̃M,[α,β](ω, 0; τ̃ ,∞) = EM[F
(α)
t+τ̃ (ω) (Vt+τ̃ )β ]

= EM[〈wβ(y;K),Πβ(b(y); T̃ , Zt+τ̃ )F
(α)
t+τ̃ (ω)〉]

= 〈wβ(y;K),EM[Πβ(b(y); T̃ , Zt+τ̃ )F
(α)
t+τ̃ (ω)]〉 ,

(D.11)

the last equality following from proposition D.1.

Finally, using the exponentially affine form of Πβ in equation (4.3) and the definition of F
(α)
t+τ̃ in

equation (D.10), we arrive at

EM[Πβ(b(y); T̃ , Zt+τ̃ )F
(α)
t+τ̃ (ω)] = exp(AβΠ(b(y); T̃ )) EM[F

(α)
t+τ̃ (ω + [0;BβΠ(b(y); T̃ )])]

= exp(AβΠ(b(y); T̃ )) ΦM,[α](ω + [0;BβΠ(b(y); T̃ )]; τ̃ ,∞)
(D.12)
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with ΦM,[α] as in equation (2.9). Substituting equation (D.12) into equation (D.11) yields equation (4.4),

as required.

D.3 Approximate moments

Proof of proposition 4.2. From lemma 4.2 and basis representation in terms of monomials, equation (4.6)

holds with coefficients

b̃V,η,(p) =
∑
|γ|≤p

b
(γ)
φ,η c̃V,γ .

Moreover, using Vt+τ̃ ,(p) =
∑ñ
j=1 ej ⊗ Vt+τ̃j ,(p) with ej ∈ Nñ and Vt+τ̃j ,(p) in the form of equation (4.6),

we conclude that equation (4.7) is valid with all non-zero coefficients being of the form

bV,ej⊗η = ej ⊗ b̃V,η .

By Taylor expansion, using the Faà di Bruno formula (A.1) and bV,η,(p) from equation (4.7), it moreover

follows that equation (4.8) holds with coefficients

b
(β)
V,η,(p) =

1

η!

∑
|ρ|≤|η|
ρ≤β

β!

(β − ρ)!
bβ−ρV,0,(p)

∑
Q(η,ρ)

Mρ
k,`[bV,`,(p)(`!)]

k .
(D.13)

Equation (4.9) is then a straightforward consequence of the form of (Vt+τ̃ ,(p))
β in equation (4.8) and the

definition of pl-linear moments in equation (2.9).

For the convergence result, we invoke the Vitali convergence theorem (e.g., p. 187 in Folland (1999)).

Defining L1(Z,M) to be the space of integrable functions on Z against the probability measure M, we

thereby have that the following are equivalent: (i) L1(Z,M) convergence and (ii) convergence in the

measure M and uniform integrability. By L2(Z,M) convergence of ((Vt+τ̃ ,(p))
β)p and the imposed uniform

integrability, the convergence result in proposition 4.2 follows.

Proof of lemma 4.3. To obtain equation (4.10), note that

c̃V,α =

nV∑
i=1

ei EM[Vi,t φα(Zt)]

=

nV∑
i=1

ei
∑
γ4α

b
(α)
φ,γ EM[Vi,t (Zt)

γ ]

=

nV∑
i=1

ei
∑
γ4α

b
(α)
φ,γ Φ̃M,[[0;γ],ei](0, 0; 0,∞) .

(D.14)

By the imposed assumptions, according to proposition 4.1, each Φ̃M,[[0;γ],ei] in equation (D.14) can be com-

puted as a special case of equation (4.4). Using that wei(y;K) = wi(yi;Ki), A
ei
Π (b(y); T̃ ) = AΠ(bi(yi); T̃i),

and BeiΠ (b(y); T̃ ) = BΠ(bi(yi); T̃i) by lemma 4.1 thus yields the result stated in equation (4.10).
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Duffie, D., D. Filipović, and W. Schachermayer (2003). “Affine Processes and Applications in Finance”. Annals of

Applied Probability 13 (3), pp. 984–1053.

Duffie, D. and R. Kan (1996). “A Yield-factor Model of Interest Rates”. Mathematical Finance 6 (4), pp. 379–406.

Duffie, D., J. Pan, and K. Singleton (2000). “Transform Analysis and Asset Pricing for Affine Jump-Diffusions”.

Econometrica 68 (6), pp. 1343–1376.

Duffie, D. and K. J. Singleton (1993). “Simulated Moments Estimation of Markov Models of Asset Prices”.

Econometrica 61 (4), pp. 929–952.

Dunkl, C. F. and Y. Xu (2014). Orthogonal Polynomials of Several Variables. 2nd ed. Cambridge University Press.

Durham, G. B. (2006). “Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor

stochastic volatility models”. Journal of Econometrics 133 (1), pp. 273–305.

— (2013). “Risk-neutral Modeling with Affine and Nonaffine Models”. Journal of Financial Econometrics 11 (4),

pp. 650–681.

Egloff, D., M. Leippold, and L. Wu (2010). “The Term Structure of Variance Swap Rates and Optimal Variance

Swap Investments”. Journal of Financial and Quantitative Analysis 45 (5), pp. 1279–1310.

Eraker, B. (2001). “MCMC Analysis of Diffusion Models with Application to Finance”. Journal of Business &

Economic Statistics 19 (2), pp. 177–191.

— (2004). “Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices”. Journal

of Finance 59 (3), pp. 1367–1403.

Eraker, B., M. Johannes, and N. Polson (2003). “The Impact of Jumps in Volatility and Returns”. Journal of

Finance 58 (3), pp. 1269–1300.

Fang, F. and C. W. Oosterlee (2009). “A Novel Pricing Method for European Options Based on Fourier-Cosine

Series Expansions”. SIAM Journal on Scientific Computing 31 (2), pp. 826–848.

Feunou, B. and C. Okou (2018). “Risk-Neutral Moment-Based Estimation of Affine Option Pricing Models”.

Journal of Applied Econometrics 33 (7), pp. 1007–1025.
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Menćıa, J. and E. Sentana (2013). “Valuation of VIX derivatives”. Journal of Financial Economics 108 (2),

pp. 367–391.

Merton, R. C. (1973). “Theory of Rational Option Pricing”. Bell Journal of Economics and Management Science

4 (1), pp. 141–183.

Newey, W. K. and K. D. West (1987). “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation

Consistent Covariance Matrix”. Econometrica 55 (3), pp. 703–708.
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Figure 1: Pricing errors for equity derivatives, SV1 model

This figure shows relative pricing errors for equity derivatives within the SV1 model of the polynomial
price approximation procedure in lemma 4.2 for different approximation orders p. Each plot shows relative
pricing errors EP[(Vi,t,(p) − Vi,t)2]1/2/EP[Vi,t] (y-axis, in log scale) plotted against the option strike K
(x-axis) for the given maturity T (in months). Each line style corresponds to a different approximation
order: p = 1, p = 2, p = 4. Vi,t denotes the exact option price for the respective option
specification; Vi,t,(p) denotes its polynomial approximation according to lemmas 4.2 and 4.3. Equity
derivatives are defined as in section 3.3. Further details are provided in section 6.1.
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Figure 2: Pricing errors for volatility derivatives, SV1 model

This figure shows relative pricing errors for volatility derivatives within the SV1 model of the polynomial
price approximation procedure in lemma 4.2 for different approximation orders p. Each plot shows relative
pricing errors EP[(Vi,t,(p) − Vi,t)2]1/2/EP[Vi,t] (y-axis, in log scale) plotted against the option strike K
(x-axis) for the given maturity T (in months). Each line style corresponds to a different approximation
order: p = 1, p = 2, p = 4. Vi,t denotes the exact option price for the respective option
specification; Vi,t,(p) denotes its polynomial approximation according to lemmas 4.2 and 4.3. Volatility
derivatives are defined as in section 3.4. Further details are provided in section 6.1.
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Figure 3: Moment errors for equity derivatives, SV1 model

This figure shows relative moment errors for equity derivatives within the SV1 model of the polynomial
moment approximation procedure in proposition 4.2 for different moment orders N and approximation
orders p. Each plot shows relative moment errors |EP[(Vi,t,(p))

N ]− EP[(Vi,t)
N ]|/EP[(Vi,t)

N ] (y-axis, in log
scale) plotted against the option strike K (x-axis) for the given maturity T (in months) and moment
order N . Each line style corresponds to a different approximation order: p = 1, p = 2, p = 4.
Vi,t denotes the exact option price for the respective option specification; Vi,t,(p) denotes its polynomial
approximation according to lemmas 4.2 and 4.3. Equity derivatives are defined as in section 3.3. Further
details are provided in section 6.1.
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Figure 4: Moment errors for volatility derivatives, SV1 model

This figure shows relative moment errors for volatility derivatives within the SV1 model of the polynomial
moment approximation procedure in proposition 4.2 for different moment orders N and approximation
orders p. Each plot shows relative moment errors |EP[(Vi,t,(p))

N ]− EP[(Vi,t)
N ]|/EP[(Vi,t)

N ] (y-axis, in log
scale) plotted against the option strike K (x-axis) for the given maturity T (in months) and moment
order N . Each line style corresponds to a different approximation order: p = 1, p = 2, p = 4.
Vi,t denotes the exact option price for the respective option specification; Vi,t,(p) denotes its polynomial
approximation according to lemmas 4.2 and 4.3. Volatility derivatives are defined as in section 3.4.
Further details are provided in section 6.1.
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P Q

SV1 SV1J SV2J SV1 SV1J SV2J

bP0 0.048 0.048 0.048 bQ0 0.038 0.038 0.038

bP1 1.190 1.190 1.190 bQ1 −0.310 −0.310 −0.310

κP1 2.5 2.5 2.5 κQ1 2 2 2

θP1 0.04 0.04 θQ1 0.05 0.05

ς1 0.3 0.3 0.3

κP2 0.625 κQ2 0.5

θP2 0.04 θQ2 0.05

ς2 0.2

ρ1 −0.8 −0.8 −0.8

λP0 0 2 2 λQ0 0 2 2

λP1 0 10 10 λQ1 0 10 10

µP
0,J −0.01 −0.01 µQ

0,J −0.02 −0.02

σP
0,J 0.04 0.04 σQ

0,J 0.04 0.04

µP
1,J 0.005 0.005 µQ

1,J 0.01 0.01

Table 1: Model parameters

This table specifies the parameters used for the numerical analyses in section 6. The SV1 and SV1J
models are based on the dynamics (2.2). The SV2J model is based on the dynamics (2.4). Jump size
distributions are specified such that under M, J11,X,t follows a Gaussian distribution with mean µM

0,J and

standard deviation σM
0,J , while J21,X,t follows an exponential distribution with mean µM

1,J .
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SV1J SV2J

p = 1 p = 2 p = 4 p = 1 p = 2 p = 4

(a) Monte Carlo simulation

4.06×10−2 1.16×10−2 1.72×10−3 1.16×10−1 5.55×10−2 1.71×10−2

(9.34×10−1) (2.00×10−1) (7.04×10−2) (1.43×100) (3.37×10−1) (1.62×10−1)

(b) Density approximation

4.01×10−2 1.14×10−2 1.62×10−3 1.14×10−1 5.48×10−2 1.92×10−2

(9.15×10−1) (1.93×10−1) (7.11×10−2) (1.42×100) (3.93×10−1) (1.69×10−1)

(c) Closed-form benchmark

4.66×10−2 1.45×10−2 2.66×10−3

(1.12×100) (2.45×10−1) (9.80×10−2)

Table 2: Pricing errors for equity derivatives, SV1J and SV2J models

This table reports aggregate relative pricing errors for equity derivatives within the SV1J and SV2J
models of the polynomial price approximation procedure in lemma 4.2 for different approximation orders
p. Panels (a) and (b) report aggregate pricing errors determined by Monte Carlo simulation and density
approximation, respectively. Panel (c) reports aggregate pricing errors within the SV1 model. Each entry
reports the median (maximum in parenthesis) of relative pricing errors EP[(Vi,t,(p) − Vi,t)2]1/2/EP[Vi,t]
taken over option strikes K and maturities T . Vi,t denotes the exact option price for the respective option
specification; Vi,t,(p) denotes its polynomial approximation according to lemmas 4.2 and 4.3. Equity
derivatives are defined as in section 3.3. Further details are provided in section 6.1.
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SV1J SV2J

p = 1 p = 2 p = 4 p = 1 p = 2 p = 4

(a) Monte Carlo simulation

1.22×10−1 1.54×10−2 1.19×10−3 5.56×10−1 2.41×10−1 4.72×10−2

(4.20×100) (1.61×100) (4.22×10−1) (4.19×100) (1.34×100) (5.95×10−1)

(b) Density approximation

1.18×10−1 1.51×10−2 9.78×10−4 5.39×10−1 2.44×10−1 5.01×10−2

(4.16×100) (1.65×100) (3.93×10−1) (4.28×100) (1.34×100) (8.11×10−1)

(c) Closed-form benchmark

9.91×10−2 1.68×10−2 2.45×10−3

(3.41×100) (1.07×100) (3.15×10−1)

Table 3: Pricing errors for volatility derivatives, SV1J and SV2J models

This table reports aggregate relative pricing errors for volatility derivatives within the SV1J and SV2J
models of the polynomial price approximation procedure in lemma 4.2 for different approximation orders
p. Panels (a) and (b) report aggregate pricing errors determined by Monte Carlo simulation and density
approximation, respectively. Panel (c) reports aggregate pricing errors within the SV1 model. Each entry
reports the median (maximum in parenthesis) of relative pricing errors EP[(Vi,t,(p) − Vi,t)2]1/2/EP[Vi,t]
taken over option strikes K and maturities T . Vi,t denotes the exact option price for the respective option
specification; Vi,t,(p) denotes its polynomial approximation according to lemmas 4.2 and 4.3. Volatility
derivatives are defined as in section 3.4. Further details are provided in section 6.1.
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SV1J SV2J

p = 1 p = 2 p = 4 p = 1 p = 2 p = 4

(a) Monte Carlo simulation

N = 2 1.33×10−3 1.92×10−3 1.94×10−3 1.51×10−2 1.80×10−2 1.71×10−2

(2.05×10−1) (3.86×10−2) (3.70×10−2) (2.50×10−1) (2.84×10−2) (2.30×10−2)

N = 3 1.29×10−2 3.18×10−3 3.06×10−3 7.78×10−2 2.26×10−2 1.63×10−2

(6.69×10−1) (7.13×10−2) (7.26×10−2) (7.03×10−1) (2.19×10−1) (4.15×10−2)

N = 4 4.54×10−2 7.37×10−3 1.13×10−2 2.11×10−1 4.05×10−2 1.94×10−2

(8.77×10−1) (3.72×10−1) (1.05×10−1) (8.77×10−1) (1.11×100) (2.86×10−1)

(b) Density approximation

N = 2 1.28×10−3 1.06×10−4 1.88×10−6 8.14×10−3 1.83×10−3 3.70×10−4

(1.76×10−1) (9.98×10−3) (1.21×10−3) (2.41×10−1) (2.38×10−2) (3.71×10−3)

N = 3 1.29×10−2 5.99×10−4 1.43×10−5 6.27×10−2 5.42×10−3 1.01×10−3

(6.41×10−1) (1.15×10−1) (7.24×10−3) (7.04×10−1) (1.95×10−1) (1.53×10−2)

N = 4 4.59×10−2 3.18×10−3 5.10×10−5 2.00×10−1 2.77×10−2 4.90×10−3

(8.62×10−1) (5.10×10−1) (2.43×10−2) (8.83×10−1) (8.95×10−1) (2.78×10−1)

(c) Closed-form benchmark

N = 2 1.82×10−3 1.71×10−4 6.36×10−6

(2.14×10−1) (1.30×10−2) (1.74×10−3)

N = 3 1.75×10−2 9.67×10−4 2.79×10−5

(6.88×10−1) (1.32×10−1) (9.22×10−3)

N = 4 5.97×10−2 3.49×10−3 8.30×10−5

(8.83×10−1) (5.99×10−1) (2.78×10−2)

Table 4: Moment errors for equity derivatives, SV1J and SV2J models

This table reports aggregate relative moment errors for equity derivatives within the SV1J and SV2J
models of the polynomial moment approximation procedure in proposition 4.2 for different moment orders
N and approximation orders p. Panels (a) and (b) report aggregate moment errors determined by Monte
Carlo simulation and density approximation, respectively. Panel (c) reports aggregate moment errors
within the SV1 model. Each entry reports the median (maximum in parenthesis) of relative moment
errors |EP[(Vi,t,(p))

N ]−EP[(Vi,t)
N ]|/EP[(Vi,t)

N ] taken over option strikes K and maturities T . Vi,t denotes
the exact option price for the respective option specification; Vi,t,(p) denotes its polynomial approximation
according to lemmas 4.2 and 4.3. Equity derivatives are defined as in section 3.3. Further details are
provided in section 6.1.
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SV1J SV2J

p = 1 p = 2 p = 4 p = 1 p = 2 p = 4

(a) Monte Carlo simulation

N = 2 1.56×10−2 5.69×10−3 4.82×10−3 7.15×10−2 2.15×10−2 1.71×10−2

(6.59×10−1) (1.85×10−1) (1.02×10−1) (5.95×10−1) (1.24×10−1) (8.78×10−2)

N = 3 1.31×10−1 9.90×10−3 1.93×10−2 3.66×10−1 5.07×10−2 1.59×10−2

(9.65×10−1) (5.85×10−1) (1.33×10−1) (9.54×10−1) (4.23×10−1) (1.23×10−1)

N = 4 2.56×10−1 3.28×10−2 3.05×10−2 5.37×10−1 3.00×10−1 4.99×10−2

(9.96×10−1) (7.83×10−1) (1.39×10−1) (9.94×10−1) (1.39×100) (2.07×100)

(b) Density approximation

N = 2 1.02×10−2 1.56×10−4 6.02×10−6 7.36×10−2 1.27×10−2 9.48×10−4

(6.22×10−1) (9.77×10−2) (6.71×10−3) (5.88×10−1) (5.82×10−2) (1.90×10−2)

N = 3 1.12×10−1 6.15×10−3 7.20×10−5 3.58×10−1 6.03×10−2 2.92×10−3

(9.60×10−1) (5.26×10−1) (2.93×10−2) (9.52×10−1) (3.41×10−1) (3.22×10−2)

N = 4 2.23×10−1 3.26×10−2 4.30×10−4 5.27×10−1 3.75×10−1 3.01×10−2

(9.96×10−1) (7.73×10−1) (2.27×10−1) (9.95×10−1) (1.30×100) (1.61×100)

(c) Closed-form benchmark

N = 2 6.10×10−3 1.90×10−4 9.07×10−6

(5.46×10−1) (5.60×10−2) (5.73×10−3)

N = 3 6.53×10−2 2.54×10−3 3.39×10−5

(9.35×10−1) (4.18×10−1) (3.11×10−2)

N = 4 1.60×10−1 3.53×10−2 2.02×10−4

(9.93×10−1) (7.81×10−1) (2.71×10−1)

Table 5: Moment errors for volatility derivatives, SV1J and SV2J models

This table reports aggregate relative moment errors for volatility derivatives within the SV1J and SV2J
models of the polynomial moment approximation procedure in proposition 4.2 for different moment orders
N and approximation orders p. Panels (a) and (b) report aggregate moment errors determined by Monte
Carlo simulation and density approximation, respectively. Panel (c) reports aggregate moment errors
within the SV1 model. Each entry reports the median (maximum in parenthesis) of relative moment
errors |EP[(Vi,t,(p))

N ]−EP[(Vi,t)
N ]|/EP[(Vi,t)

N ] taken over option strikes K and maturities T . Vi,t denotes
the exact option price for the respective option specification; Vi,t,(p) denotes its polynomial approximation
according to lemmas 4.2 and 4.3. Volatility derivatives are defined as in section 3.4. Further details are
provided in section 6.1.
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