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Abstract

We investigate the impact of Exchange-Traded Funds (ETFs) on the comove-

ments of their constituent securities using a novel identification which exploits the

switch from synthetic to physical replication of a large French ETF. After the

switch, constituent stocks experience greater commonality, in both returns and

liquidity. For both the full sample of ETF constituents and the least liquid ETF

constituents, a larger part of the variation in individual stock returns or liquidity

is explained by market-wide variations. We present evidence that ETF arbitrage

is the transmission mechanism of the comovements. Moreover, we show that the

comovements do not appear excessive.
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�Université Paris-Dauphine, PSL Research University, CNRS, UMR 7088, DRM, 75016 Paris, France;
Tel: +33 (0)1 44 05 49 88; email: fabrice.riva@dauphine.psl.eu. We gratefully acknowledge the helpful
comments and suggestions from Amber Anand, Carole Comerton-Forde, Jean-Gabriel Cousin, Jérôme
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1. Introduction

Exchange Traded Funds (ETFs) have experienced exceptional growth in the last 20 years.

As of July 2022, according to ETFGI1, 9,093 ETFs were traded worldwide, totaling $9.1

trillion in Assets under Management (AuM). The success of ETFs arises from the advantages

they provide in terms of diversification, transparency, tax efficiency, management fees, and

liquidity (Madhavan (2016), Ben-David, Franzoni, and Moussawi (2017)).

Besides these benefits however, a growing literature has pointed out troublesome results

regarding the impact of ETFs on their underlying assets. Ben-David, Franzoni, and Mous-

sawi (2018) find that stocks with higher ETF ownership display significantly higher volatility.

Dannhauser (2017) evidences reduced liquidity for high yield bonds that become eligible to

ETFs. Da and Shive (2018) report excessive return comovements for ETF constituent securi-

ties while the findings by Agarwal, Hanouna, Moussawi, and Stahel (2018) indicate that ETF

ownership significantly increases the liquidity commonality of ETF underlying stocks. Col-

lectively, these results suggest that ETFs may impair the market quality of their constituent

assets and give rise to increased risk premia.

Whether ETFs harm their constituent securities market is an important question. This

issue is all the more relevant as the effects that have been highlighted so far are likely to gain

importance in the future due to the expected development of the ETF market. In this paper,

we test the effects of ETFs on their constituent stock properties using a novel identification

strategy that relies on a change in the way an ETF tracks its benchmark index.

Index tracking by an ETF is achieved either by physical replication or synthetic replica-

tion. In the physical replication framework, the ETF sponsor physically holds the constituent

securities, while in synthetic replication the sponsor enters into a swap contract with a coun-

terparty (typically its parent bank) to obtain the exact performance of the benchmark index.

In both structures, the link between the ETF price and the value of its constituent securities

1ETFGI (www.etfgi.com) is an independent research and consulting firm covering the global ETF and
ETP products.
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is ensured by authorized participants (APs). When the price of the ETF deviates from the

value of its basket, APs perform arbitrage trades that result in the creation or redemption

of ETF shares. In synthetic ETFs, ETF units are created or redeemed in exchange for cash.

In contrast, in physical ETFs, the creation or redemption is made in-kind, i.e. in exchange

for the constituent securities. An important feature of the in-kind process is that arbitrage

trades by APs involve the simultaneous purchase or sale of each of the ETF benchmark

constituent securities. These portfolio-wide trades are likely to be responsible for the docu-

mented increase in correlation across ETF underlying stocks (Malamud (2015)). Conversely,

in synthetic ETFs, the arbitrage process does not involve any exchange of the ETF con-

stituents between the AP and the sponsor since creation and redemption are made in cash.

We thus hypothesize that the impact of synthetic ETFs on their constituent securities should

be less pronounced than for physical ETFs.

We test this prediction using a sample of European ETFs whose baskets contain European

stocks. We first analyze the effect of ETF ownership on stock-level daily commonality in

liquidity and returns over a long period in a panel regression setting. During the period

from December 2013 to January 2017, we find a positive relation between ETF ownership

and securities commonality in both liquidity and returns. This result is our first piece

of evidence indicating that ETFs increase the comovements of their constituent securities.

However, although our analysis includes controls for observable stock characteristics and

includes time fixed effects, ETF ownership might be endogenous and two mechanisms could

be responsible for our findings. The first one is the index effect. In this view, the comovements

we document may just reflect the fact that ETFs replicate existing indexes and thus own

stocks that already comove as they pertain to the same index. The second possibility is the

ETF effect. In this view, the ETF causes commonality as a result of the arbitrage activity

of APs.

To disentangle the index effect from the ETF effect, we exploit a quasi-natural experiment

provided by a recent ETF replication method change in Europe. On July 11, 2014, the

3



Lyxor CAC, the largest French ETF tracking the CAC 40 index, switched from synthetic to

physical replication. After the switch, ETF APs have to deliver all the constituent securities

as part of the creation/redemption process, including the least liquid constituent securities.

Therefore, we would expect an increase in stock comovements after the ETF switched from

synthetic to physical replication. Our approach is to compare the comovements around

the switch between stocks subject to this event and a control group of stocks unrelated

to the switched ETF. We find that, relative to the control group, stocks included in the

Lyxor CAC experience a statistically significant increase by 8% of a standard deviation in

return commonality and a statistically significant increase by 27% in liquidity commonality.

Moreover, the least liquid stocks also exhibit greater commonality, consistent with the fact

that we expect these stocks to be more impacted by the trading activity related to APs’

arbitrage trades. Next, we investigate the transmission mechanism by studying whether the

arbitrage activity of ETF APs is responsible for the increased comovements we document.

We find that constituent stocks exhibit stronger commonality on days with ETF arbitrage

activity compared to those without.

Finally, we investigate whether the increase in comovements is excessive. Looking at

price reversals, we find no evidence of a change in the autocorrelation of constituent stock

successive daily returns after the switch. Turning to variance ratios, we find that the switch

is followed by a significant 7% decrease in the weekly–to–5-day variance ratio of constituent

stock returns. Collectively, besides showing that ETF-induced comovements are not exces-

sive, our results rather suggest that ETFs improve the link between market fundamentals

and stock prices.

There is a rapidly growing literature on the effect of ETFs on the comovements of their

constituent stocks. Da and Shive (2018) find that ETFs increase return commonality. Our

study is also closely related to Agarwal, Hanouna, Moussawi, and Stahel (2018) analysis

of the effect of ETFs on stock commonality in liquidity in U.S markets. They show that

ETFs significantly increase stock liquidity commonality. Our main contribution is to resolve
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endogeneity concerns via a different quasi-natural experiment. In a theoretical model, Cespa

and Foucault (2014) show that the liquidity across markets can be influenced by cross-

market arbitrageurs, whose activity may lead to liquidity spillovers. Our findings that the

commonality is stronger on the days with arbitrage support this theoretical prediction.

Another strand of the literature focuses on the effect of ETFs on the price efficiency of

their constituent stocks. The results have mostly shown a beneficial effect of ETFs on the

price efficiency of their components. Glosten, Nallareddy, and Zou (2021) find that ETF own-

ership is linked to better incorporation of earnings information. Similarly, Huang, O’Hara,

and Zhong (Forthcoming) show that by facilitating hedge funds’ long-short strategies (long

stock-short industry ETF), ETFs have reduced the post-earnings-announcement-drift of in-

dustry ETF components. More generally, Easley, Michayluk, O’Hara, and Putnins (2018)

show that the amount of stock-specific information in prices is stable through time, although

ETF ownership has been growing rapidly. In contrast with these studies, Israeli, Lee, and

Sridharan (2017) find that stocks whose ETF ownership increases experience a decline in

their pricing efficiency. In particular, they evidence that greater ownership is associated with

larger stock return synchronicity across ETF constituents and a decline in future earnings

response coefficients. Bhattacharya and O’Hara (2016) document possible herding and prop-

agation of shocks in the extreme case of U.S.-traded Greek ETFs and stocks when Greek

markets were closed, amidst the downturn of August 2015. Using microstructure measures

of price efficiency, our results support the view that ETFs increase the price efficiency of

their stocks.

Finally, our paper adds to the vast literature on commonality. Pindyck and Rotemberg

(1993), Chordia, Roll, and Subrahmanyam (2000), Hartford and Kaul (2005), Hasbrouck

and Seppi (2001) and Korajczyk and Sadka (2008) all document commonality in returns

and liquidity across stocks. Lee, Shleifer, and Thaler (1991), Barberis and Shleifer (2003),

Barberis, Shleifer, and Wurgler (2005), and Kumar and Lee (2006) provide behavioral ex-

planations to the commonality issue. Andrade, Chang, and Seasholes (2008), Greenwood
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and Thesmar (2011), and Antón and Polk (2014) investigate financial friction-based explana-

tions of commonality. Koch, Ruenzi, and Starks (2016) establish a demand-side explanation

of commonality. Finally, Boulatov, Hendershott, and Livdan (2013) and Pasquariello and

Vega (2015) analyze the extent to which return comovements are caused by informed order

flow. We contribute in showing that although ETFs do increase the comovements of their

constituents, they also increase their price efficiency.

The remainder of the paper is as follows: Section 2 presents our hypotheses development.

Section 3 describes the data. Section 4 analyzes the relations between ETF ownership and

commonality in a panel setting, and through a quasi-natural experiment. Section 5 and

Section 6 make further use of the quasi-natural experiment to investigate if the comovements

we document are excessive and their transmission mechanism. Section 7 presents several

robustness tests. Section 8 concludes.

2. Institutional background and hypotheses develop-

ment

2.1. Physical and Synthetic ETFs institutional details

ETFs are exchange-traded products which seek to replicate an underlying index. There are

two ways for an ETF to reproduce its index. In this section, we detail both replication

methods and their evolution.

For an ETF that uses physical replication, the assets of the fund are a basket of securities

that aims to replicate the index. The market capitalization of these assets determines the

Net Asset Value (NAV) of the ETF. In the simple structure of a physical ETF, the ETF

investors hold all the liabilities of the fund in the form of ETF shares. The ETF portfolio

managers’ objective is to minimize the difference between the evolution of the NAV and the

index. However, physical replication can be costly for ETFs that track indexes that include
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a large number of - or illiquid securities.2

By contrast, the use of a total return swap by synthetic ETFs theoretically avoids both

tracking error risk and the cost of trading constituent securities. In a synthetic ETF, the

ETF enters into a total return swap with a financial intermediary (often its parent bank)

which provides the return of the index to the ETF. The swap involves two steps. In the first

step, the ETF transfers the cash from the investors in ETF shares to the swap counterparty

in exchange for a basket of collateral assets. Since the primary purpose of the collateral is to

protect the ETF from a default of the swap counterparty,3 the collateral assets of a synthetic

ETF can differ vastly from the index it tracks. For example, as reported in Table 1, several

of the main securities collateralized for an ETF tracking French stocks were not French. In

the second step, the total return of the collateral basket is exchanged for the index return.

While in the U.S. the Investment Company Act of 1940 limits the use of synthetic ETFs in

the profit of physical ETFs, in Europe the UCITS regulations permit synthetic ETFs, and

issuers launched predominantly synthetic ETFs.

Even in Europe, synthetic ETFs gradually are becoming unpopular for two reasons. First,

in a context of stricter capital requirement imposed by Basel III, the swap is increasingly

using the capital of the financial intermediaries that provide the swaps to the ETFs.4 Sec-

ond, synthetic ETFs are criticized for their complexity and their potential counterparty risk

compared with physical ETFs.5 Due to the above considerations, from 2014 onward there

2For example, the Russell 3000, the MSCI World, and several bond indexes include over a thousand
securities. Illiquid securities such as emerging market stocks or bonds imply higher transactions costs. To
mitigate costs, ETF portfolio managers can choose to replicate the index with only a subset of its constituents
(see for example Koont, Ma, Pastor, and Zeng (2022)). Yet, these sampling strategies can result in large
tracking errors.

3See Hurlin, Iseli, Pérignon, and Yeung (2019) for a detailed analysis of the counterparty risk of physical
and synthetic ETFs.

4Even though swaps can reduce the capital requirements of the banks (Shan, Tang, and Yan (2017)), in
the case of a synthetic ETF the swap counterparty is still prompted to post capital for the swap. Physical
ETFs are a superior structure in that regard: a physical ETF is a separate entity entirely funded by the
investors holding ETF shares, which therefore consumes no capital for its issuer.

5For instance, Larry Fink from Blackrock (which owns iShares, the lead issuer of physical ETFs in
the U.S.) wrote in December 2011 “If you buy a Lyxor product, you’re an unsecured creditor of SocGen”
(French bank Société Générale, also known as SocGen, is Lyxor’s parent company, and provides the swap
that guarantees the index returns to Lyxor ETFs).
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has been an institutional change: large European ETFs have switched from synthetic to

physical replication. As a result, a 2017 FED report shows that physical ETFs account for

98% of the AuM of ETFs across the world.6

2.2. Liquidity provision and ETF structure

APs provide liquidity to ETFs during the trading day. The arbitrage operations they perform

ensure that the price of ETFs in the secondary market stays in line with the value of their

constituent securities. However, the arbitrage process takes a different form depending on

the ETF structure.

For a physical ETF with full replication (such as the main large cap equity ETFs), APs

who participate to an ETF creation or redemption trade all the constituent securities. For

instance, if the ETF is trading at a premium, APs will sell the ETF and proceed to the

creation of ETF shares. During the trading day, to hedge themselves, APs will buy all the

constituent securities. At the end of the day, through the ETF primary market, APs will

cover their short ETF position by receiving the newly created ETF shares from the issuer,7

and unwind their constituent securities position by delivering all the constituent securities

to the issuer.

In contrast, for a synthetic ETF, APs trade any relevant security as a hedge (a futures

contract, another ETF, or a selected basket of liquid securities). For example, APs can sell

an ETF trading at a premium and buy futures contract as a hedge. If they proceed to the

creation of ETF shares to cover their short ETF position, APs will unwind their futures

position at the time of the ETF creation. Since the ETF creation of a synthetic ETF takes

place in cash, APs will receive the ETF shares in exchange for cash without exchanging the

constituent securities.

6“Synthetic ETF net assets remained steady around $75 billion, which represents about 2% of all global
ETFs.” (Aramonte, Caglio and Tuzun, 2017). “Synthetic ETFs” FED Notes, Washington (Board of Gover-
nors of the Federal Reserve System, August 10, 2017).

7Following a creation, the ETF balance sheet grows: its assets with the constituent securities and its
liabilities with the newly created ETF shares.
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In summary, for the ETF primary market, APs of physical ETFs trade all the constituent

securities while APs of synthetic ETFs do not. This difference between synthetic and physical

ETFs fosters our hypothesis that the comovements generated by ETFs should depend on

the ETF structure.

2.3. Testable implications

Malamud (2015) argues that ETFs increase the comovements of their components because

of the arbitrage activity of APs. To create physical ETF shares, APs have to deliver all the

components of the index. Hence, if ETFs increase the comovements of their components

because of arbitrage, stocks held by physical ETFs should exhibit greater comovements than

those of synthetic ETFs. Thus, we formulate our main testable hypothesis :

Hypothesis 1 For physical ETFs, ETF ownership increases the comovements of the un-

derlying stocks.

Since they are costly to trade, it is unlikely that the illiquid constituent securities would

be used for the arbitrage by APs in the case of a synthetic ETF, or used as collateral for

the swap by the parent bank. In contrast, for physical ETFs, APs must exchange with

the fund even the least liquid components of the index. Therefore, the impact of physical

ETFs should be stronger for the least liquid index constituents. This motivates the following

testable hypothesis:

Corollary 1 The least liquid stocks included in an ETF co-move more with the market after

the ETF switches to physical replication.

Following Malamud (2015) and Shim (2019), the transmission channel should be the

arbitrage process by the APs. Hence, physical ETFs should impact their components via

the ETF primary market. This latter consideration leads to our second corollary:

Corollary 2 For physical ETFs, the comovements should be stronger on days with arbitrage.
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3. Data

3.1. ETF sample

Our sample period goes from December 2013 to January 2017. We first identify from their

main issuer websites and from the ETFdb website8 European ETFs replicating the major

European indexes (Eurostoxx 50, STOXX 50, IBEX, STOXX 600, CAC 40, DAX MSCI

Europe, and MSCI EMU) as well as U.S. ETFs with an exposure to European, EMU and

World developed indexes. The reason for including the latter is that major U.S. ETFs repli-

cating these indexes own a non trivial fraction of European stocks. Since we focus on the

effect of ETF ownership, we consider only ETFs physically holding their index constituent

stocks over the whole sample period, or synthetic ETFs that eventually switched to physical

replication before January 2017. To avoid any potential bias, the physical ETFs we include

in our sample are those that reproduce their indexes without sampling.9 Finally, to avoid

potential representativeness issues, we further restrict our sample to ETFs holding a min-

imum of 1 billion euro of assets under management. This procedure yields a sample of 11

ETFs.

3.2. Variable definitions

3.2.1. ETF ownership per stock

We retrieve the composition of our set of indexes either from Refinitif-Eikon or from the index

providers. To avoid currency fluctuations, we only include European firms whose stock is

trading in euro. The procedure yields 853 stocks. For the CAC 40 and the DAX, the index

composition is available but the Refinitiv database does not report the index weights. We

thus use the information on the free float to obtain the stock weights in the index.

8https://etfdb.com
9For large indexes with multiple thousand components, the composition and the assets of the ETF can

differ slightly from the index. In this instance, fund managers use a sampling strategy. Those ETFs are
excluded from this study as the main country large-cap indexes such as the S&P 500, the CAC and the DAX
are replicated fully without sampling.
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We compute ETF ownership for stock i on day t as in Ben-David, Franzoni, and Moussawi

(2018) and Dannhauser (2017) :

ETFowni,t =

∑J
j=1 holdingsi,j,t

MarketCapi,t

(1)

where holdingsi,j,t is the holding (in euro), of stock i by ETF j on day t, and MarketCapi,t

is the market capitalization (in euro) of stock i on day t. For European ETFs, we compute

holdingsi,j,t as the product the stock’s weight in the ETF and the ETF market capitaliza-

tion.10 For U.S. ETFs, we first retrieve ETF quarterly holdings from the CRSP mutual fund

database. We then compute holdingsi,j,t as the product of the quarterly weight of stock i in

ETF j (keeping the weight constant on a given quarter) and the daily ETF market capital-

ization. Finally, we use the daily EURUSD exchange rate to convert the U.S. holdings into

euro.

3.2.2. Comovement variables

The potential comovements arising from ETF ownership are analyzed first by looking at

return comovements across ETF consituents. Second, we analyze whether ETFs are respon-

sible for increased comovements in the liquidity of their underlying assets. Following Koch,

Ruenzi, and Starks (2016) and Agarwal, Hanouna, Moussawi, and Stahel (2018) we measure

liquidity using the Amihud (2002) illiquidity ratio. We compute the ratio as the absolute

value of daily return over euro volume in millions so that we measure the price impact in

basis point for a 1 million euro trade. We use Amihud (2002) in two ways. First, as the

measurement of commonality in liquidity requires a metric that captures changes in stock

liquidity levels, we use the first difference in daily log Amihud (2002) value.11 Second, for

10We can compute the holding of a stock as per (1) since the ETFs we consider use full replication without
sampling. Therefore, the weight of stock i in ETF j is the same as the weight of stock i in the underlying
index that is replicated by ETF j.

11We have tested that our results on liquidity comovements are materially unchanged when using the
following alternative measures of liquidity: (i) Corwin and Schultz (2012)’s transaction cost measure based
on daily high and low prices, and (ii) euro volume. The results are available upon request.
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additional robustness tests, the daily Amihud (2002) value also enters our regressions as a

control variable that accounts for the potential effect of stock liquidity levels.

Table 2b presents summary statistics for the daily stock-level sample of our main ex-

planatory variables before standardization. The ETF average ownership per stock is 1.6%.

It is lower than in Ben-David, Franzoni, and Moussawi (2018), who document an average

ETF ownership of 2.6% for S&P 500 stocks and 2.8% for Russell 3000 stocks over the period

2000-2015. Although our sample period runs from 2013 to 2017, the 1.6% average we find

is close to their 2006 estimate of ETF ownership for the U.S. market. This gap reflects the

later development of ETFs in Europe. The firms in our sample display an average Amihud

ratio of 37 basis points and an average market value of 7.68 billion euro. Our sample thus

contains firms whose liquidity and size are in between those of S&P 500 and Russell 3000

firms according to Ben-David, Franzoni, and Moussawi (2018)’s findings. Collectively, our

estimates are consistent with the fact that, by selecting stocks that pertain to major Euro-

pean indexes, our sample contains large and actively-traded stocks. We further describe our

variables in later sections and provide definitions in Table 2a. In the rest of the analyses, all

variables are standardized to facilitate interpretation, and daily returns and Amihud ratios

are winsorized at their 1% and 99% percentiles to mitigate the impact of outliers.

4. Liquidity and return commonality

4.1. Empirical approach

We investigate the relation between ETF ownership and daily comovements using panel

regressions. Specifically, we run the following regression, for each stock i in our full sample

of European stocks, and for day t in our sample period (December, 2013 to January, 2017):

∆yi,t = αi + λt + θ1 · (ETFowni,t-1×∆ymarket,t) + θ2 ·∆ETFowni,t-1

+ β′ ·Xi,t + εi,t

(2)
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where ETF ownership captures the physical ETF ownership of a stock by both European

and American ETFs.

For the commonality in liquidity analysis, ∆yi,t is the daily change of the Amihud ratio,

∆ ymarket,t is the value-weighted mean of the daily change of the Amihud ratio from all stocks

in the sample. Analog to Chordia, Roll, and Subrahmanyam (2000), Xi,t includes as controls

the lead and lagged dependent variable to capture lagged adjustment in commonality. As in

Ben-David, Franzoni, and Moussawi (2018), Xi,t also includes the inverse of the price and

the market capitalization as time-varying stock controls to account for the potential effect of

stock price and firm size. To account for time-invariant stock heterogeneity, we include stock

fixed effect αi. Finally, we include daily time fixed effects λt to control for common time

trend in ETF ownership and liquidity comovements. Since variable ∆ymarket,t is subsumed

by the fixed effects, it is not included in regression (2).

We proceed analogously for the commonality in returns. We run regression (2) where

∆yi,t now denotes the daily stock return of stock i, and ∆ymarket,t denotes the value-weighted

mean return for all stocks in the sample.

Coefficient θ1 on the interaction term (ETFowni,t-1×∆ymarket,t) captures the impact of

ETF ownership on the sensitivity of a stock’s movements (either in prices or in liquidity)

to the movements of the market. As such, it measures the contribution of ETF ownership

to stocks’ commonality. Since our main hypothesis states that securities with a high level

of ETF ownership should exhibit greater comovements than those with a low level of ETF

ownership, we expect a positive estimate for θ1. A potential issue however, is that ETF

ownership might impact returns and changes in liquidity directly rather than through in-

creased comovements. To rule out this possibility and get a better identification of the effect

of ETF ownership on commonality, we also include variable ETFowni,t-1 without interaction

in regression (2).
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4.2. Results

The estimates of regression (2) are reported in columns 1 and 2 of Table 3. Coefficient θ1 is

positive and significant at the 1% level: stocks with a larger value of lagged ETF ownership

display a higher sensitivity to market returns (column 1) and to market liquidity (column

2). This finding supports our hypothesis that comovements increase with ETF ownership.

To account for a potential non-linear impact of ETF ownership on comovements, we also

report in columns 3 and 4 of Table 3 the coefficients of regression (2) where we replace lagged

ETF ownership by the lagged value of HighETFown, a dummy variable equal to one for stocks

that are in the top quartile of ETF ownership and zero otherwise. For high ETF ownership

stocks, a one-standard-deviation increase (decrease) in market return is related to a 11.4%

standard deviation increase (decrease) in stock return relative to other stocks. The economic

magnitude is large: since the standard deviation is 1.97% for stock returns and 1.14% for

market returns, a 1% increase (decrease) in market return implies a 19.7 basis points increase

(decrease) in high ETF ownership stock returns relative to other stocks. Differently stated,

the sensitivity of high ETF ownership stocks to market movements is around 2% higher

compared with other stocks. Similarly, a one-standard-deviation increase (decrease) in the

market liquidity is associated with a 7.7% standard deviation increase (decrease) of the

stock’s liquidity for the stocks in the top quartile of ETF ownership relative to other stocks.

This positive link we document between ETF ownership and commonality in returns and

liquidity provides our first piece of evidence in support of the hypothesis of a positive effect

of ETFs on the comovements of their stocks.12

12In the internet appendix, we show that results are robust to quarterly comovements using a two-stage
process as Koch, Ruenzi, and Starks (2016) and Agarwal, Hanouna, Moussawi, and Stahel (2018).
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4.3. Quasi-natural experiment: switch in replication technique

4.3.1. Identification methodology

In this section, we further investigate the causal relation between ETF and the comovements

of stocks. ETFs could self-select stocks that tend to comove more. In line with this idea,

the comovements could result from an index effect rather than an ETF effect.

To investigate the causal impact of ETFs, we use a novel identification strategy which

exploits the Lyxor CAC switch in replication method that occurred on July 11, 2014. The

switch from synthetic to physical replication provides us with the opportunity to test the

causal impact of physical ETF for several reasons. First, once the switch has occurred,

the ETF fund has to hold all constituent stocks. This change entails a positive exogenous

shock in CAC constituents’ ETF ownership. Second, beside the variation in ownership,

after the change APs must trade all ETF constituents when performing arbitrage trades

and proceeding to creation/redemption. Third, although ETF ownership increases and the

way arbitrage trades are conducted is different, the index and its constituents stay the same

during both the pre and post period. Collectively, these features allow us to distinguish the

index effect from the physical ETF effect.

We select the Lyxor CAC for three main reasons. First, it is the first large ETF switch

with assets under management of 4.4 billion euros at the time of the switch.13 Second, no

other large ETF changed its replication technique during the Lyxor CAC event window.

Third, as the Lyxor CAC replicates the major French CAC 40 index, it has trading activity,

in the form of both turnover and creation/redemption intensity, above the average of large

European ETFs. These characteristics of the Lyxor CAC entail a sustained level of activity

from the APs, which is key for identifying their contribution to comovements.

We adopt a difference-in-differences approach to identify the physical ETF causal impact

13French ETF assets amount to 63.3 billion euros in 2016 according to the AMF (the French market
authority). As with every other ETF market, the French ETF market is heavily concentrated. For instance,
even though the French ETF market is composed of hundreds of ETFs, the Lyxor CAC ETF exceeds 10%
of the total assets (the Lyxor CAC accounted for 7 billion euros in 2016). The CAC ETF tracks the French
blue chips stocks index.
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on the commonality in liquidity and returns of its underlying stocks. We compare stocks

included in the lyxor CAC ETF (treated stocks) to a group of non-treated stocks that are

otherwise as similar as possible. Following Dannhauser (2017), our data set is constructed

using a 6-month window around the switch event. To avoid the potential noise arising from

the rebalancing of the ETF before the event, we exclude the month preceding the switch.

We define the treated stocks as stocks included in the CAC 40 index for the full sample

period. Control stocks are selected among all European stocks in our sample which are

neither in a physical ETF nor in an ETF whose replication method has switched during the

sample period. To select control stocks as similar as possible to our treated stocks, we use

Propensity Score Matching (PSM).14 Since the CAC 40 index selects stocks based on their

size, we use market capitalization as the main variable to select control stocks. To further

enhance the quality of the matching procedure, we include also dummy variables on the 11

GICS sectors.

We compute PSM by running first the following logistic regression over the 6-month

estimation window preceding the switch, for all stock i in our sample of 853 stocks:

1Treatedi =
1

1 + e−(α+γ·MVi +φ′·Sector+ εi)
(3)

where 1Treatedi takes on the value 1 for CAC 40 stocks and 0 otherwise; MVi denotes stock i’s

average market capitalization over the estimation window; Sector is a 853 × 11 matrix where

each row represents a sample stock and each column represents one of the 11 GICS sector.

Cell (i, j) of matrix Sector equals 1 if stock i’s GICS sector is equal to j and 0 otherwise. We

next use the estimated PSM values to match each CAC 40 stock with its minimum distance

control stock imposing a one-to-one match.

14In the robustness section, we test the sensitivity of our findings to alternative choices to select control
stocks. We show that the main results hold when we select the control stocks (i) by using only a market
capitalization filter instead of PSM and (ii) using PSM with different selection criteria
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We then estimate the following regression for each stock i, and day t:

yi,t = αi + λt + θ1 · (1Postt ×1Treatmenti) + θ2 · (1Treatmenti × ymarkett)

+ θ3 · (1Postt ×1Treatmenti × ymarkett)

+ β′ ·Xi,t + εi,t

(4)

In the liquidity commonality analysis, yi,t is the daily change in the Amihud ratio, and

ymarkett is the daily change in the value-weighted Amihud ratio of the portfolio of treated

and control stocks. In the return commonality analysis, yi,t is the stock return, and ymarkett

is the daily value-weighted return of the portfolio of treated and control stocks.15 In both

analyses, 1Postt is a dummy variable that takes on the value 1 after the switch date and 0

before; 1Treatmenti is a dummy variable that takes on the value 1 for CAC 40 stocks and 0 for

control stocks.

Consistent with our previous regression, Xi,t controls for daily market capitalization and

the inverse of the lagged stock price. Day time fixed effects, λt, control for common shocks

and trends. To account for time-invariant stock heterogeneity, stock fixed effects αi are

included. As variables ymarkett , 1Postt , 1Treatmenti and the interaction term (1Postt × ymarkett)

are subsumed by the fixed effects, we do not include them in regression (4).

Our coefficient of interest is θ3, which captures the differential impact of the switch on

stocks’ commonality between CAC 40 constituents and control stocks. Since our main hy-

pothesis states that the switch to physical replication should result in stronger comovements

across constituent stocks, we expect θ3 to be positive.

4.3.2. Quasi-natural experiment results

The results in Table 4 show that treated stock commonality in both liquidity and returns

increases following the Lyxor CAC switch to physical replication. The coefficient on the

triple interaction term (1Postt ×1Treatmenti × ymarkett) is positive and statistically significant

15The results are qualitatively unchanged when computing market return and market liquidity using
equal-weighting instead of value-weighting.
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at the 1% level. Relative to control stocks, the switch leads to an increase in comovements

for CAC 40 stocks of 8% of a standard deviation for returns and 27% of a standard deviation

for liquidity. The magnitude of the increase appears to be quite large considering that the

average change in CAC 40 stock ownership caused by the switch is around 0.3 percentage

point.

To test our hypothesis that the effect of the switch should be particularly significant for

the least liquid stocks, we split the previous sample in two. We define illiquid treated stocks

as those whose liquidity level is below their group liquidity median. Similarly, the illiquid

control stocks are those whose liquidity level is below their group liquidity median. We

rerun regression (4) on the sub-sample that now contains the illiquid control stocks and the

illiquid treated stocks. For both return and liquidity comovements, the impact of the switch

on treated stocks is positive and statistically significant at the 1% level. Relative to the least

liquid control stocks, the return comovements of the CAC 40 least liquid stocks increase by

13% of a standard deviation, compared to 8% for the whole sample. After the switch the

relative increase in liquidity comovements of CAC 40 least liquid stock is equal to 30% of

a standard deviation, compared to 27% for the whole sample. Collectively, these findings

support our hypothesis that ETFs induce comovements, especially for the least liquid stocks.

5. Transmission mechanism

In this section, we investigate the transmission mechanism driving our results. We test

the hypothesis that ETFs impact the comovements of their stocks through ETF arbitrage

activity. To capture ETF arbitrage, we use the absolute value of the Lyxor CAC primary

market activity per day, where primary market activity is defined as the change in the

number of ETF shares. We investigate how the comovements evolve after the switch in the

replication method for both the days with primary market activity and for the days without

by running regression (4) separately on both types of days. Since arbitrage can take more
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than one day, we include both the day of the creation/redemption and the following day in

our sub-sample of days with ETF arbitrage. Our sub-sample of days without ETF arbitrage

includes the rest of the days.

Table 5 presents the results of the main difference-in-differences framework for both sub-

samples. Results in column 1 show that the commonality in returns increases for treated

stocks on days with ETF arbitrage. In contrast, results in column 3 indicate that there is no

increase in return comovements on days without ETF arbitrage. This result validates our

hypothesis that the arbitrage activity of the ETF APs increases return commonality.

Next we turn to the liquidity commonality. Consistent with our previous findings, we

find that the liquidity commonality of the treated stocks increases for the sub-sample of days

with ETF arbitrage, as the coefficient on the interaction term (1Postt ×1Treatmenti × ymarkett)

is positive and significant at the 1% level. Turning to the sub-sample of days without ETF

arbitrage, the estimates drop from 0.45 to 0.12 and are only significantly different from zero

at the 10% level, even though the sample size is twice as large. These results are consistent

with the view that it is the ETF arbitrage activity that drives the effect of ETFs on their

stock commonality in liquidity.

In summary, following the ETF switch to physical replication, the comovements of the

underlying stocks are greater on the days with ETF arbitrage activity. These findings sug-

gest that ETF arbitrage by APs is the mechanism that is responsible for the increase in

comovements.

6. Pricing efficiency

We have shown in section 4.2 that stocks whose ETF ownership is higher exhibit a greater

sensitivity in both returns and liquidity to market movements. Whether this stronger re-

sponse to market fluctuations reflects excessive comovements or is the outcome of a better

incorporation of market-wide information into stock prices is an important question. We
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address this issue using two alternative approaches. The first one relies on price reversals,

whereas the second one analyzes the behavior of variance ratios.

6.1. Price reversals

To test if comovements are excessive, we first follow Da and Shive (2018) and investigate

price reversals. If ETFs cause stock prices to deviate from a random walk, then ETFs should

make returns more negatively autocorrelated. Using our difference-in-differences setting, we

regress stock returns on their lagged returns. This specification allows us to test if there

is a change in the magnitude of price reversals for stocks whose ETF switched to physical

replication. Specifically, we estimate the following regression for each stock i, and day t:

Ri,t = αi + λt + θ1 · Ri,t-1+ θ2 · (1Postt ×1Treatmenti)

+ θ3 · (1Postt ×Ri,t-1) + θ4 · (1Treatmenti ×Ri,t-1)

+ θ5 · (1Postt ×1Treatmentt ×Ri,t-1)

+ β′ ·Xi,t + εi,t

(5)

where Ri,t denotes the return of stock i on day t.

Our coefficient of interest is θ5, which measures the impact of the switch on the autocor-

relation of returns for CAC 40 (treated) stocks relative to control stocks. Our estimates are

reported in Table 6. We find no evidence of a significant change in the magnitude of price

reversals after the switch. We repeat our analysis for a subsample composed of illiquid stocks

and find similar results. Therefore, our results do not support the claim that comovements

are excessive and thus differ from earlier findings by Da and Shive (2018).

6.2. Variance Ratio

To further test if the comovements are excessive, we next follow Lo and MacKinlay (1988)

and compute variance ratios. Similar to Ben-David, Franzoni, and Moussawi (2018) we
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compute variance ratios as:

VarianceRatioi,m =

∣∣∣∣ Varm(Ri,w)

5× Varm(Ri,t)
− 1

∣∣∣∣ (6)

where the variance ratios are computed for every stock i and month m. Ri,w is the non-

overlapping weekly return, and Ri,t is day t return. Again, we use our difference-in-differences

setting to test if the variance ratios increase for the stocks in the CAC 40 after its ETF

switched to physical replication. We estimate the following regression for each stock i, and

month m:

VarianceRatioi,m = αi + λm + θ1 · (1Postm ×1Treatmenti)

+ β′ ·Xi,m + εi,t

(7)

Our difference-in-differences analysis of variance ratios is reported in Table 7. Consistent

with the previous analysis using price reversals, the results from variances ratios do not

indicate a decrease in price efficiency. We even find that, relative to control stocks, the

variance ratios of the treated stocks decrease after the switch at the 1% level. We show that

this finding is present for the full sample of stocks but not for the subsample composed only

of the least liquid stocks. Based on variance ratios, ETFs seem to increase pricing efficiency

of the most liquid stocks. Overall the results from both variance ratios and price reversals

suggest that the comovements are not excessive.

7. Robustness

7.1. Panel regressions robustness

To account for non-linearity, we reproduce our analysis by sorting stocks into sizes quartiles.

Indeed, our results could potentially be driven by a few large stocks. To test that our

results are consistent across multiple stock sizes, we aggregate stocks in quartiles based on
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their market value on the last day of 2017, where quartile 1 (4) contains the stocks with

the lowest (highest) market capitalizations. We run our specification separately for each

quartile. Table 8 and Table 9 report the results. We find supporting evidence of a positive

association between comovements and ETF ownership. The estimates in column 2 to 4 show

that for the quartiles including stocks with higher ETF ownership, the coefficient on our

commonality measure is positive and significant. In contrast, for the bottom quartile (stocks

with low market capitalization but also low ETF ownership), the coefficient is insignificant.

7.2. Quasi-natural experiment: placebo test

To mitigate concerns about model mis-specification and endogeneity, we conduct a falsifica-

tion test. We rerun regression (4) where 1Postt is now a dummy variable equal to 1 one year

before the actual switch date. We use a six-month window period around this “phantom”

event. Apart from this sample period modification, we reproduce our main difference-in-

differences framework and use of treated and control stock groups.

Table 10 presents the results for the placebo test. In support of our identification strategy,

advancing the switch date by one year results in an insignificant θ3 coefficient. The placebo

test therefore confirms that it is only after the ETF switches to physical replication that its

stock comovements increase. In addition, the results of the placebo test validate both the

parallel trend assumption and our selection process for control stocks.

7.3. Quasi-natural experiment: robustness

To test the robustness of our main results, we use three alternative specifications.

First, to test if the main results are corroborated when using an alternative method

for the selection of control stocks, we select the control stocks without using a propensity

score matching procedure. Indeed, the choice of the selection criteria of the propensity score

matching is potentially a source of bias due to researchers’ discretion regarding the selection

of the matching criteria. In this alternative specification, to remove penny stocks and stocks
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that barely trade, we simply filter out the control stocks so that their trading volume and

liquidity is above the minimum of the treated stocks. We obtain 722 control stocks instead

of 40 after the PSM. We show in Table 11 that the results of the quasi-natural experiment

are materially unchanged compared with those obtained using propensity score matching.

Second, we use alternative measures of liquidity. We test that the results for liquidity

comovements are reproduced using both the change in Corwin and Schultz (2012)’s transac-

tion cost and also the change in dollar volume instead of Amihud (2002). The main results

(available upon request) are qualitatively unchanged.

Finally, we verify that the results are robust when using an alternative measure of co-

movements. Following Morck, Yeung, and Yu (2000), we consider a comovement measure

based on the R2 from regressions of individual stock returns (liquidity) on market returns

(market liquidity). We proceed in two steps. As a first step, analog to Malceniece, Malce-

nieks, and Putniņš (2019), for each stock i in each month m, we estimate the following

regression using daily observations t to obtain its R2:

yi,t = αi + β1 · ymarkett-1 + β2 · ymarkett + β3 · ymarkett+1 +εi,t (8)

As in our main specification, for the liquidity commonality analysis, yi,t is the daily change

in the Amihud ratio, and ymarkett is the daily change in the value-weighted Amihud ratio of

the portfolio of treated and control stocks. Similarly, in the return commonality analysis, yi,t

is the stock return, and ymarkett is the daily value-weighted return of the portfolio of treated

and control stocks. In addition, to control for day-of-the-week effects in liquidity following

Karolyi, Lee, and van Dijk (2012) and Malceniece, Malcenieks, and Putniņš (2019), we also

include day of the week dummies in the liquidity commonality analysis. Consistent with this

literature, we also proceed to the logit transformation of the regression R2 to make it into

an unbounded variable. Next, for the second step, in line with the difference-in-differences

approach of Section 4, we then estimate the following regression for each stock i, and month
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m:

log(R2
i,m) = αi + λm + θ1 · (1Postm ×1Treatmenti)

+ β′ ·Xi,m + εi,m

(9)

The results in Table 12 show a higher R2 for the stocks belonging to the ETF switching

to physical replication after the switch (relative to the stocks in the control group). These

results confirm our baseline results and indicate a higher degree of comovement for stocks

in physical ETFs. Following the switch, an increasing part of the variation in the individual

stock returns or liquidity of stocks in the treatment group is explained by market-wide

variations.

8. Conclusion

In this study, we investigate the effect of equity ETFs on the comovements of their stocks.

Using first panel regressions, we show that a stock’s liquidity and return comovements are

positively linked to ETF ownership. We then exploit the exogenous switch of the Lyxor CAC

ETF from synthetic to physical replication to establish the causal impact of an ETF on its

stock comovements. We show that this switch is responsible for a significant increase in

both return and liquidity comovements of CAC 40 stocks and that the effect is particularly

significant for the least liquid stocks. Finally, analyzing the transmission mechanism, we find

that the comovements are driven by the ETF arbitrage activity.

Prior literature finds a positive causal relation between ETFs and the commonality of

their stocks returns (Da and Shive (2018)) and liquidity (Agarwal, Hanouna, Moussawi,

and Stahel (2018)). Our main contribution is that we corroborate these works by using a

quasi-natural experiment that disentangles the ETF effect from the index effect. Our second

contribution is to show that contrary to earlier findings, the comovements do not appear

excessive. We leave for future research to determine if the comovements contribute to the

information efficiency by incorporating systematic source of risk to stock prices (Glosten,
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Nallareddy, and Zou (2021)).
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Table 1 – Synthetic ETF collateral composition
Extract of the audited Lyxor CAC synthetic ETF in December 2009. The table displays part of the
composition of the assets in the ETF collateral of the swap. Several stocks in the ETF collateral
are non-French stocks and are not constituents of the French CAC 40 index.

ISIN Name Weight %

DE000SG0VLWF SOCGEN CT CAC40 OPEN 9.97
FR0000120271 TOTAL 9.58
IT0003132476 ENI SPA 7.88
IT0000072618 UNICREDIT SPA 7.40
FR0000130809 SOCIETE GENERALE 3.23
ES01132111835 BANCO BILBAO 3.01
DE000ENAG999 E.ON AG 2.72
DE00007236101 SIEMENS AG NOM 2.14
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Table 2 – Summary statistics
Panel A details the variables of interests at the stock-day level for stocks composing European ETFs.
Panel B presents the summary statistics. The sample ranges from December 2013 to January 2017
and includes 853 stocks. Variables are winsorized at the 1% and 99% levels. Return is the daily
return in %. Amihud is the price impact in % for a trade of 1 million euro. ETF Own is the share
of stocks’ market value held by European and U.S. ETFs, expressed in %. Liquidity is the daily
log difference of the Amihud ratio. Market Return is the volume-weighted average return across all
stocks in the sample. Market Liquidity is similarly constructed. MV is the market capitalization
in billion euros.

Panel A: Variable description

Variable Description Source

Return The daily discrete return net of dividends. Refinitiv
Amihud The absolute daily return over the dollar volume. Refinitiv
Liquidity The daily change in the Amihud ratio. Refinitiv
prcinv Inverse of the nominal share price. Refinitiv
RefinitivIndex composition Index weight per stock per month or quarter. Refinitiv, CRSP
Primary market activity The daily change in the number of ETF shares outstanding. Refinitiv
Switch date Date of the index replication method switch. ETF Issuer

Panel B: Summary Statistics

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

ETF Own 601,619 1.77 2.26 0.00 0.18 1.20 2.65 16.90
Return 601,619 0.04 1.97 −5.50 −1.03 0.02 1.07 6.02
Market Return 601,149 0.04 1.14 −4.26 −0.61 0.09 0.67 4.02
Liquidity 601,619 −0.00 1.41 −3.65 −0.87 −0.00 0.86 3.66
Market Liquidity 601,149 −0.00 0.50 −1.58 −0.32 −0.02 0.32 1.65
Amihud 601,619 0.36 1.23 0.00 0.00 0.02 0.16 9.56
MV 601,619 7.68 1.63 1.79 6.41 7.55 8.84 12.20
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Table 3 – Commonality in Return and Liquidity panel regressions
This table presents the results of regression (2) where individual stock returns and changes in
liquidity are regressed against market returns (MarketReturn) and liquidity variation (MarketLiq-
uidity) interacted with lagged ETF ownership (lagETFown). The sample ranges from December,
2013, to January, 2017 and includes 853 European stocks. Columns 1 and 2 report the coefficients
of the baseline specification. To account for potential non-linear effects, columns 3 and 4 report
the coefficients of the same regression where lagged ETF ownership is replaced by HighETFown, a
dummy variable equal to one for stocks that are in the top quartile of ETF ownership. Liquidity is
measured as the log difference in the Amihud ratio across successive trading days. Controls include
the lagged log market value (l MV), the lagged inverse of the price (l prcinv), the lagged Amihud
ratio (l Amihud), and the lead and lag of the dependent variable. Variables have been winsorized at
the 1% and 99% percentiles and standardized. Stock and day fixed effects are included. Standard
errors clustered at the day and stock levels are presented in parentheses. ***, **, and * represent
statistical significance at the 1%, 5%, and 10% levels, respectively.

Return Liquidity Return Liquidity

MarketReturn×lagETFown 0.042∗∗∗

(0.008)
MarketLiquidity×lagETFown 0.022∗∗∗

(0.005)
MarketReturn×lagHighETFown 0.114∗∗∗

(0.012)
MarketLiquidity×lagHighETFown 0.077∗∗∗

(0.006)
lagETFown 0.048∗∗∗ −0.008∗

(0.012) (0.004)
l HighETFown −0.017∗ −0.001

(0.009) (0.005)
l MV −0.094∗∗∗ −0.073∗∗∗ −0.096∗∗∗ −0.073∗∗∗

(0.018) (0.012) (0.018) (0.012)
l prcinv 0.006∗∗∗ −0.006∗∗∗ 0.007∗∗∗ −0.006∗∗∗

(0.002) (0.001) (0.002) (0.001)
l Amihud −0.011∗∗∗ −0.163∗∗∗ −0.012∗∗∗ −0.163∗∗∗

(0.003) (0.007) (0.003) (0.007)

Stock FE Yes Yes Yes Yes
Time FE Day Day Day Day

Observations 599,443 599,443 599,443 599,443
R2 0.253 0.506 0.253 0.507
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Table 4 – Quasi-natural experiment regressions
This table reports the results of difference-in-differences regressions to estimate the effect of the
Lyxor CAC ETF switch on the comovements of its constituents. The sample ranges from a 6-month
window around the switch event that occurred on July 11, 2014 to 6 months after, and the month
before the switch is excluded. Treated stocks are the CAC 40 index constituents, and the CAC 40
is the index whose ETF switches to physical replication. Treatment is a dummy variable that takes
on the value 1 for treated (CAC 40) stocks and 0 for control stocks. Post is a dummy variable that
takes on the value zero before the switch and 1 after. Liquidity is measured as the log difference in
the Amihud ratio across successive trading days. MarketReturn is the return of the value-weighted
portfolio of treated and control stocks. MarketLiquidity is the value-weighted Liquidity of the
portfolio of treated and control stocks. We run the regressions on the full sample of stocks and on a
sub-sample composed of illiquid stocks (those below the group liquidity median). Controls include
the lagged log market value (l MV) and the lagged inverse of the price (l prcinv). Variables have
been winsorized at the 1% and 99% percentiles and standardized. Stock and day fixed effects are
included. Robust standard errors clustered at the day and stock levels are presented in parentheses.
***, **, and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Return Liquidity Return Liquidity

Post×Treatment×MarketReturn 0.08∗∗ 0.13∗∗∗

(0.03) (0.04)
Post×Treatment×MarketLiquidity 0.27∗∗∗ 0.30∗∗∗

(0.05) (0.07)
Post×Treatment −0.003 0.03 0.01 0.02

(0.03) (0.02) (0.03) (0.03)
Treatment×MarketReturn −0.04 −0.09

(0.04) (0.06)
Treatment×MarketLiquidity −0.12∗∗∗ −0.17∗∗∗

(0.05) (0.06)
l MV 0.21 −0.10 −0.06 0.16

(0.22) (0.11) (0.20) (0.18)
l prcinv 0.08∗∗∗ 0.004 0.06∗∗∗ 0.02

(0.01) (0.01) (0.02) (0.02)

Stock FE Yes Yes Yes Yes
Time FE Day Day Day Day
Sample Full Full Illiquid Illiquid

Observations 19,504 19,403 9,516 9,462
R2 0.43 0.12 0.53 0.17
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Table 5 – Quasi-natural experiment: Transmission mechanism
This table reports the results of difference-in-differences regressions to estimate the effect of the
Lyxor CAC ETF switch on its underlying stocks’ commonality. The sample ranges from a 6-month
window around the switch event that occurred on July 11, 2014 to 6 months after, and the month
before the switch is excluded. Treatment is a dummy variable that takes on the value 1 for treated
(CAC 40) stocks and 0 for control stocks. Post is a dummy variable that takes on the value zero
before the switch and 1 after. Liquidity is measured as the log difference in the Amihud ratio across
successive trading days. MarketReturn is the return of the value-weighted portfolio of treated and
control stocks. MarketLiquidity is the value-weighted Liquidity of the portfolio of treated and
control stocks. We run the regressions on the sub sample of days with ETF arbitrage and the
sub-sample of days without. Controls include the lagged log market value (l MV) and the lagged
inverse of the price (l prcinv). Variables have been winsorized at the 1% and 99% percentiles and
standardized. Stock and day fixed effects are included. Robust standard errors clustered at the
day and stock levels are presented in parentheses. ***, **, and * represent statistical significance
at the 1%, 5%, and 10% levels, respectively.

With arbitrage Without Arbitrage

Return Liquidity Return Liquidity

Post×Treatment×MarketReturn 0.18∗∗∗ 0.02
(0.05) (0.04)

Post×Treatment×MarketLiquidity 0.45∗∗∗ 0.12∗

(0.07) (0.07)
Post×Treatment 0.06 0.07 −0.002 −0.02

(0.06) (0.05) (0.03) (0.04)
Treatment×MarketReturn −0.08 0.005

(0.05) (0.04)
Treatment×MarketLiquidity −0.17∗∗∗ −0.05

(0.05) (0.06)
l MV 0.23 −0.28 0.36 0.03

(0.19) (0.19) (0.26) (0.16)
l prcinv 0.10∗∗∗ −0.01 0.08∗∗∗ 0.01

(0.02) (0.02) (0.02) (0.02)

Stock FE Yes Yes Yes Yes
Time FE Day Day Day Day

Observations 6,758 6,708 12,667 12,616
R2 0.43 0.15 0.44 0.10
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Table 6 – Quasi-natural experiment: Price reversals
This table reports the results of the difference-in-differences regressions to estimate the effect of
the Lyxor CAC ETF switch to physical replication on the price reversals of its underlying stocks.
The sample ranges from a 6-month window around the switch event that occurred on July 11,
2014 to 6 months after, and the month before the switch is excluded. Price reversals are measured
by regressing the stock return on its lagged return. We run the regressions on the full sample of
stocks and on a sub-sample composed of illiquid stocks (those below the group liquidity median).
Treatment is a dummy variable that takes on the value 1 for treated (CAC 40) stocks and 0 for
control stocks. Post is a dummy variable that takes on the value zero before the switch and 1
after. Controls include the lagged log market value (l MV) and the lagged inverse of the price
(l prcinv). Variables have been winsorized at the 1% and 99% percentiles and standardized. Stock
and day fixed effects are included. Robust standard errors clustered at the day and stock levels are
presented in parentheses. ***, **, and * represent statistical significance at the 1%, 5%, and 10%
levels, respectively.

Return

Post×Treatment×lagged Return −0.044 0.010
(0.032) (0.038)

Treatment×lagged Return 0.031 −0.003
(0.020) (0.026)

Post×Treatment 0.00001 0.0001
(0.0004) (0.001)

Post×lagged Return 0.001 −0.021
(0.030) (0.031)

lagged Return −0.007 0.017
(0.016) (0.019)

l MV 0.003 −0.001
(0.003) (0.003)

l prcinv 0.001∗∗∗ 0.001∗∗∗

(0.0002) (0.0002)

Stock FE Yes Yes
Time FE Day Day
Sample Full Illiquid

Observations 19,504 9,516
R2 0.433 0.529
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Table 7 – Quasi-natural experiment: Variance Ratio
This table reports the results of difference-in-differences regressions to estimate the effect of the
Lyxor CAC ETF switch on the variance ratio of its constituents. The sample ranges from a 6-
month window around the switch event that occurred on July 11, 2014 to 6 months after, and the
month before the switch is excluded. Variance ratio is computed as the absolute value of five times
the daily variance over weekly variance minus one. The frequency of the data is monthly at the
stock level. We run the regressions on the full sample of stocks and on a sub sample composed of
illiquid stocks (those below the group liquidity median). Treatment is a dummy variable that takes
on the value 1 for treated (CAC 40) stocks and 0 for control stocks. Post is a dummy variable
that takes on the value zero before the switch and 1 after. Controls include the log market value
(MV) and the inverse of the price (prcinv). Stock and month fixed effects are included. Robust
standard errors clustered at the month and stock levels are presented in parentheses. ***, **, and
* represent statistical significance at the 1%, 5%, and 10% levels, respectively.

VarianceRatio

Post×Treatment −0.07∗∗∗ 0.01
(0.02) (0.05)

MV −0.08 −0.04
(0.23) (0.43)

prcinv −0.01 −0.01
(0.02) (0.03)

Stock FE Yes Yes
Time FE Month Month
Sample Full Illiquid

Observations 1,040 507
R2 0.26 0.29
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Table 8 – Quartile regressions Commonality in Return
This table presents the results of the regression of individual stock returns against market returns
(MarketReturn) interacted with lagged HighETFown, a dummy variable equal to one for stocks
that are in the top quartile of ETF ownership and 0 otherwise. The sample ranges from December,
2013, to January, 2017 and includes 853 European stocks. We split stocks into quartiles based on
their market value for the last day of 2017, with quartile 1 being the lowest (column 1) and quintile
4 the highest (column 4). We report for each quartile the median ETF ownership (ETFown) for
the last day of 2017. Controls include the lagged log market value (l MV), the lagged inverse of the
price (l prcinv) and the lead and lag of the dependent variable. Variables have been winsorized at
the 1% and 99% percentiles and standardized. Stock and day fixed effects are included. Standard
errors clustered at the day and stock levels are presented in parentheses. ***, **, and * represent
statistical significance at the 1%, 5%, and 10% levels, respectively.

Return

(1) (2) (3) (4)

MarketReturn×lagHighETFown 0.03 0.07∗∗∗ 0.06∗∗∗ 0.07∗∗∗

(0.03) (0.03) (0.02) (0.02)
lagHighETFown −0.02 −0.03∗ −0.04∗∗∗ 0.003

(0.03) (0.02) (0.01) (0.01)
l MV −0.10∗∗∗ −0.12∗∗∗ −0.07∗∗ 0.05

(0.02) (0.03) (0.04) (0.03)
l prcinv 0.01∗∗∗ 1.92 6.21∗∗ 8.10∗∗∗

(0.002) (1.95) (2.81) (2.76)

Stock FE Yes Yes Yes Yes
Time FE Day Day Day Day

Observations 141,423 137,864 151,711 167,167
R2 0.17 0.22 0.29 0.43
ETFown 0.59% 1.49% 1.74% 3.11%
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Table 9 – Quartile regressions Commonality in Liquidity
This table presents the results of the regression of individual stock liquidity changes against market
liquidity changes (MarketLiquidity) interacted with lagged HighETFown, a dummy variable equal
to one for stocks that are in the top quartile of ETF ownership and 0 otherwise. The sample ranges
from December, 2013, to January, 2017 and includes 853 European stocks. We split stocks into
quartiles based on their market value for the last day of 2017, with quartile 1 being the lowest
(column 1) and quintile 4 the highest (column 4). We report for each quartile the median ETF
ownership (ETFown) for the last day of 2017. Controls include the lagged log market value (l MV),
the lagged inverse of the price (l prcinv) and the lead and lag of the dependent variable. Variables
have been winsorized at the 1% and 99% percentiles and standardized. Stock and day fixed effects
are included. Standard errors clustered at the day and stock levels are presented in parentheses.
***, **, and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Liquidity

(1) (2) (3) (4)

MarketLiquidity×lagHighETFown 0.002 0.02∗∗∗ 0.03∗∗∗ 0.03∗∗∗

(0.01) (0.01) (0.01) (0.01)
lagHighETFown 0.003 0.002 0.02∗∗∗ −0.0001

(0.01) (0.01) (0.01) (0.01)
l MV 0.004 0.005 0.001 −0.02

(0.004) (0.01) (0.01) (0.02)
l prcinv −0.01∗∗∗ −0.11 −0.47 −1.06

(0.0004) (0.18) (0.69) (0.79)

Stock FE Yes Yes Yes Yes
Time FE Day Day Day Day

Observations 141,423 137,864 151,711 167,167
R2 0.47 0.48 0.51 0.54
ETFown 0.59% 1.49% 1.74% 3.11%
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Table 10 – Placebo Test
This table reports the results of difference-in-differences regressions where Post is a dummy variable
that takes on the value zero before the pseudo switch (1 year before tha actual switch date) and 1
after. The sample period is adjusted accordingly. Treated stocks are the CAC 40 index constituents,
and the CAC 40 is the index whose ETF switches to physical replication. Treatment is a dummy
variable that takes on the value 1 for treated (CAC 40) stocks and 0 for control stocks. Liquidity is
measured as the log difference in the Amihud ratio across successive trading days. MarketReturn
is the return of the value-weighted portfolio of treated and control stocks. MarketLiquidity is
the value-weighted Liquidity of the portfolio of treated and control stocks. Controls include the
lagged log market value (l MV) and the lagged inverse of the price (l prcinv). Variables have
been winsorized at the 1% and 99% percentiles and standardized. Stock and day fixed effects are
included. Robust standard errors clustered at the day and stock levels are presented in parentheses.
***, **, and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Return Liquidity

Post×Treatment×MarketReturn −0.04
(0.03)

Post×Treatment×MarketLiquidity 0.03
(0.10)

Post×Treatment 0.02 −0.02
(0.03) (0.03)

Treatment×MarketReturn 0.09∗∗

(0.04)
Treatment×MarketLiquidity 0.03

(0.09)
l MV 0.08 0.04

(0.11) (0.08)
l prcinv 0.09∗∗∗ 0.02

(0.01) (0.01)

Stock FE Yes Yes
Time FE Day Day
Sample Full Full

Observations 19,723 19,723
R2 0.34 0.08

39



Table 11 – Quasi-natural experiment-Robustness without PSM
This table reports the results of difference-in-differences regressions to estimate the effect of the
Lyxor CAC ETF switch on its underlying stocks’ commonality. The sample ranges from a 6-month
window around the switch event that occurred on July 11, 2014 to 6 months after, and the month
before the switch is excluded. Treated stocks are the CAC 40 index constituents, and the CAC 40
is the index whose ETF switches to physical replication. Treatment is a dummy variable that takes
on the value 1 for treated (CAC 40) stocks and 0 for control stocks. Post is a dummy variable that
takes on the value zero before the switch and 1 after. Liquidity is measured as the log difference in
the Amihud ratio across successive trading days. MarketReturn is the return of the value-weighted
portfolio of treated and control stocks. MarketLiquidity is the value-weighted Liquidity of the
portfolio of treated and control stocks. We run the regressions on the full sample of stocks and
on a sub sample composed of illiquid stocks (those below the group liquidity median). Controls
include the lagged log of the market capitalization (l MV) and the lagged inverse of the price
(l prcinv). Stock and day fixed effects are included. Variables are winsorized and standardized.
Robust standard errors clustered at the day and stock levels are presented in parentheses and .
***, **, and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Return Liquidity Return Liquidity

Post×Treatment×MarketReturn 0.089∗∗∗ 0.136∗∗∗

(0.022) (0.026)
Post×Treatment×MarketLiquidity 0.159∗∗∗ 0.198∗∗∗

(0.032) (0.040)
Post×Treatment 0.044∗∗∗ 0.013 0.034∗∗∗ 0.020

(0.011) (0.017) (0.013) (0.018)
Treatment×MarketReturn 0.060∗∗ −0.019

(0.028) (0.041)
Treatment×MarketLiquidity 0.121∗∗∗ 0.043

(0.022) (0.033)
l MV 0.846 −1.919 1.325 −0.530

(2.582) (2.118) (3.053) (1.519)
l prcinv 0.001∗∗∗ −0.0002∗∗∗ 0.162 −0.008

(0.0001) (0.00003) (0.101) (0.015)

Stock FE Yes Yes Yes Yes

Time FE Day Day Day Day

Sample Full Full Illiquid Illiquid

Observations 174,341 171,048 79,529 79,325
R2 0.206 0.032 0.292 0.052
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Table 12 – Quasi-natural experiment: Robustness test using R2.
This table reports the results of difference-in-differences regressions to estimate the effect of the
Lyxor CAC ETF switch on the comovements of its constituents. The sample ranges from a 6-
month window around the switch event that occurred on July 11, 2014 to 6 months after, and
the month before the switch is excluded. We measure comovement in returns (liquidity) using the
R2 from regressions of individual stock returns (liquidity) on market returns (market liquidity).
The frequency of the data is monthly at the stock level. Treated stocks are the CAC 40 index
constituents, and the CAC 40 is the index whose ETF switches to physical replication. Treatment
is a dummy variable that takes on the value 1 for treated (CAC 40) stocks and 0 for control stocks.
Post is a dummy variable that takes on the value zero before the switch and 1 after. Controls include
the lagged log of the market capitalization (l MV) and the lagged inverse of the price (l prcinv).
Stock and month fixed effects are included. Robust standard errors clustered at month and stock
levels are presented in parentheses. ***, **, and * represent statistical significance at the 1%, 5%,
and 10% levels, respectively.

Return R2 Liquidity R2

Post×Treatment 0.46∗∗ 0.53∗∗

(0.20) (0.22)
l MV −0.21 −1.12

(1.56) (1.15)
l prcinv −0.14 −0.10

(0.11) (0.10)

Stock FE Yes Yes

Time FE Month Month
Sample Full Full

Observations 1,034 888
R2 0.63 0.44
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