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Abstract

The banking industry has been facing a consolidation trend over the past years,
the impact of which is not yet well understood. Since the financial crisis, there
is an ongoing research that aims to better understand how the stability of the
financial system can be assessed and supported. In this context, network models
have proven an effective tool to simulate hypothetical situations and analyse the
consequences. In our study, we aim to analyze the effect of mergers and acquisitions
onto the stability of financial network models from a theoretical point of view.
We use different well-established network models and analyse a wide variety of
model assumptions, concerning e.g. connectivity, contagion channel and merge
process. Our main finding is that merging activities can stabilize or destabilize
the model financial network, depending on various details such as the connectivity
of the network and the assumed merge process. Merging activities can increase
diversification of single banks and support their resilience to shocks. However,
merging activities can also decrease stability, if e.g. the network is driven into
the contagion window or unsufficiently stable banks emerge in key positions in the
network.
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1 Introduction

The global financial system has seen a consolidation trend for four decades now DeYoung,
Evanoff, and Molyneux (2009). The number of banks is declining globally, the German
financial system not being the exception. It is noteworthy that during the global financial
crisis of 2007/08 the decrease rate was even higher. Some authors assume that in the
aftermath of the COVID-19 crisis it is likely that the consolidation trend will, similar to
2007/08, continue at an increased rate for some period of time Wéjcik and Ioannou (2020).
Motives for banks to participate in mergers and acquisitions (M&A) activity can be di-
verse. Mergers can be stockholder value enhancing, cause efficiency improvements, can
lead to higher diversification, may be motivated by managers’ hopes for higher compensa-
tion post merger or the goal to become a systemically relevant institution DeYoung et al.
(2009). A further aspect are regulatory interventions, as authorities might enforce the
acquisition of a troubled institution by its more stable competitors Gaffeo and Molinari
(2016). This might also increase consolidation rates upon crisis.

While consolidation is an ongoing process in the banking sector, the effects of the
consolidation trend on the stability of the financial system as a whole is not well under-
stood. While some literature reviewing the topic from an empirical point of view exists
(see for example Uhde and Heimeshoff (2009); De Nicolo and Kwast (2002); De Nicolo,
Bartholomew, Zaman, and Zephirin (2004); Baele, De Jonghe, and Vander Vennet (2007)),
the literature employing network tools to investigate the effects of mergers and acquisi-
tions on the stability of the financial system is sparse and focuses on specific cases (Rogers
and Veraart (2013); Gaffeo and Molinari (2016)). A selection of related literature will be
detailed in Sec. 2. Gaining more knowledge in this area would be desirable for several
reasons: As mergers are an omnipresent feature of the interbank market, closely inves-
tigating the effects of M&A activity onto the financial network, i.e. the changing bank
numbers, the changing size distributions and the change in network structure are key to
a better understanding of the development of the banking sector. Furthermore, a sound
understanding of the effects of mergers could enable the authorities to have a sound ba-
sis for decisions related to mergers, which ultimately may positively influence financial
stability.

Modeling the banking system as a network appears very natural. In modern finan-
cial systems, banks and other financial institutions, such as hedge funds and insurance
companies, are highly interconnected directly through a web of claims and obligations
Gai and Kapadia (2010) and indirectly through commonly held assets. A network ap-
proach has been widely used, in particular to evaluate systemic risk and the stability of
the system Hiiser (2016). Credit exposures on the interbank market can be conveniently
represented as links in a network of financial intermediaries. A frequently used approach
(e.g. Gai and Kapadia (2010); Gaffeo and Molinari (2015); Elliott, Golub, and Jackson
(2014)) is to externally impose an initial failure on the interbank market, which implies
that other institutions, directly exposed towards a failed bank, suffer losses. As a con-
sequence, these banks might be unable to meet their interbank obligations, leading to
further failures. This mechanism can enable losses to spread via the network of direct
interbank exposures. This is commonly referred to as the direct contagion channel Hiiser
(2016); Bluhm, Faia, and Krahnen (2014). The indirect channel on the other hand, cap-
tures more subtle links between financial institutions. The main mechanism for contagion



via the indirect channel is through fire sales of common assets (e.g. Caccioli, Shrestha,
Moore, and Farmer (2014)). When a troubled institution is forced to sell assets, the asset
prices might be quickly depressed which can impact other institutions, holding the same
asset, to suffer losses Hiiser (2016). These channels are not independent of each other: A
bank might be tempted to sell illiquid assets as a result of losses, or the fear of losses, via
the direct contagion channel or might be unable to meet its liabilities due to losses via
the indirect channel Huser (2016); Glasserman and Young (2015). While the literature
(see e.g. Upper (2011)) suggests that contagion via the direct channel alone is unlikely,
it is still worthwhile to investigate this channel due to its connection to other channels of
contagion.

In this paper we will investigate the effect of mergers on common simplified financial
network models, considering both the direct and the indirect channel. The basis of our
investigations will be simple network models, namely the financial contagion model by
Gai and Kapadia (GK model) Gai and Kapadia (2010) for the direct channel and the
model introduced in Caccioli et al. (2014) for the indirect channel.

To model how the consolidation trend affects the stability of the interbank network
model, we will introduce M&A into the model. The merger of two institutions is imple-
mented in a very natural way. Quantities external to the interbank market are simply
added, while claims and obligations on the interbank market are consolidated. We in-
vestigate different methods to select banks for merging and compare a random selection
of merging banks with a process that favors larger institutions to take part in the merge
process. We also perform several robustness checks to validate our results.

The structure of this paper is as follows. In the next section we review the relevant
literature, where we focus on stability analysis on interbank network models and on lit-
erature related to merging activities. Then, the network models are introduced and the
merge process is specified. We then show our results on how merging activities influence
the stabilitiy of the network models and discuss them with respect to other literature.

2 Related Literature

In this section we give a brief overview over the most important literature related to the
subject.

While it has been a research topic for several decades, there is still a deep need for
understanding and an ongoing debate on the roots of systemic risk and financial contagion,
e.g. Allen and Gale (2000); Eisenberg and Noe (2001); Acemoglu, Ozdaglar, and Tahbaz-
Salehi (2015); Glasserman and Young (2015). In this context, modelling the interbank
market and banks’ exposure to common assets as directed networks is today a widespread
technique that has proven an efficient tool to gain a better understanding of financial
systems and potential systemic risk factors, e.g. Elliott et al. (2014); Hiiser (2016); Neveu
(2018).

In their seminal work, Gai and Kapadia introduced a simple interbank network model
(GK model), where banks (nodes) with stylized balance sheets are connected via randomly
chosen claims (links) against each other. In their model, if a bank fails, it defaults on all
its interbank liabilities and thus can induce further defaults, potentially leading to system-
wide cascades. The authors showed that this simple model exhibits a robust-yet-fragile



tendency, which constitutes the basis for many subsequent analyses.

As an example, since the assumption of a random network is not backed by empirical
observation, in Caccioli, Catanach, and Farmer (2012), the GK model is investigated on
different topologies and asset distributions. They find that a scale-free topology, which
has been reported for several banking systems (see e.g. Hiiser (2016); Boss, Elsinger,
Summer, and Thurner 4 (2004)) has a positive effect on the stability of the system if the
initially shocked bank is chosen at random, but a drastical worsening of the stability if a
highly connected bank is chosen. For a heterogeneous (power law) asset distribution, the
contagion window is wider than for the homogenous distribution. Similar results are also
found in Guan and Pollak (2016).

The GK model focuses on the interbank channel, which is often referred to as the
Direct Channel of Contagion (DCC). However, there are also network approaches to
model cascades that arise through common asset holdings, which are believed to have
been the primary vector of contagion in the 2007/08 financial crisis Upper (2011); Caccioli
et al. (2014)

In Caccioli, Farmer, Foti, and Rockmore (2015), the authors extend the GK model by
introducing a single common asset of which all banks hold some fraction in their balance
sheets. Once a bank fails it fire sells all its illiquid assets, which causes a devaluation of
the common asset. The extended model therefore allows to investigate the interplay of the
DCC and the Indirect Channel of Contagion (ICC). The authors find that the considered
networks are relatively stable if only the DCC is present, however, the combination of the
two channels greatly amplifies cascades.

Other studies focus solely on the ICC, e.g. in Caccioli et al. (2014), a bipartite network
model of overlapping portfolios is introduced by modeling banks and assets as nodes, and
links are established between banks and assets, representing an investment of a bank into
a certain asset. Upon default of a bank it fire sells its portfolio. As a consequence, the
value of every asset in the bank’s portfolio declines which affects other banks invested
in the same asset. In the study, the authors investigate the stability of the network as
a function of parameters such as market crowding and diversification, and pinpoint the
parameter space where cascades predominantly occur.

While network models are commonly used to analyse the stability of the financial
system, to our knowledge, there are only few studies considering the impact of M&A
in this context. One study (Rogers and Veraart (2013)) focuses on the direct interbank
network and tries to grasp under which conditions other banks have an incentive to
rescue a troubled institution. The authors set up a framework for this research question
and establish conditions in which cases a rescue consortium exists. They also discuss
a few explicit toy examples such as a ring network. In Gaffeo and Molinari (2016), a
small network of banks connected via the DCC is considered. Contagion is spread via
a bail-in mechanism. The authors include three different topology altering processes:
vertical merge (one large bank acquires smaller counterparties), horizontal merge (one
bank is disassembled, and its shares are evenly distributed over other institutions) and
semi-horizontal merge (merge can only happen between two small banks). Claims on the
interbank market are rearranged after every merge round using rules sensitive to banks
size. In this setup, the authors find for a certain range of capitalization that the stability
of the system increases under a vertical merge process.

In another study Cheng and Zhao (2019), a model for the interbank market similar



to the GK model is analysed, where the authors discuss forced mergers as a possible
intervention policy. The merging institutions are chosen by different micro- and macro-
prudential regulation frameworks. They find that mergers are, within a certain regime of
connectivity, a viable intervention policy, i.e. increase stability compared to the unmerged
network.

While the mentioned former models study the impact of mergers on the stability of the
system, they only consider direct connections between banks. Furthermore, these works
consider special cases such as small networks or random topologies, and assume specific
merge processes. In our study, we will try to fill those gaps: we additionally study different
merge processes on networks where financial intermediaries are indirectly connected, and
check the validity of our results also on the potentially more realistic scale-free topologies.

While our analysis is purely theoretical, there are also empirical analyses related to the
effect of mergers on the stability of a financial system. In Uhde and Heimeshoff (2009),
the authors find that a more concentrated market has a negative impact on the stability
of the system. A similar result was found in De Nicolo and Kwast (2002), however the
authors claim that factors other than consolidation might have been responsible for the
systemic risk increase.

A separate strand of literature focuses on the question why banks participate in merg-
ing activities, a question which can also turn relevant for model setup. Recent literature
provides different motives DeYoung et al. (2009). Studies on M&A activity inside and
outside the U.S. find evidence that mergers are stockholder value enhancing and cause
efficiency improvements. On the other hand, another study (Craig and Dinger (2008))
showed that mergers can lead to decreasing checking account rates and thus may neg-
atively impact conditions for customers. Further, studies have shown that cost-efficient
banks tend to acquire more inefficient counterparts Hannan and Pilloff (2009). Studies
examining large U.S. bank mergers have found that CEO compensation benefits post
merger Anderson, Becher, and Campbell II (2004) which might be an incentive for bank
managers. Last, mergers can enable a bank to increase its diversification, i.e. lead to bank
portfolios that cover a wider range of geographies and types of products and investments
Berger, Buch, DeLong, and DeYoung (2004).

The literature is inconclusive how M&A activity and thus higher banking market
concentration affects financial stability and whether the concentration-stability or the
concentration-fragility view is dominant Uhde and Heimeshoff (2009). Supporters of the
concentration-stability hypothesis argue that large banks may increase profits which pro-
vides higher capital buffers to counter shocks Boyd, De Nicolo, and Smith (2004). Fur-
thermore, larger banks may increase loan portfolio diversification of the banking sector,
e.g. they might be more likely to invest in foreign markets thus increasing geographical
diversification, which can reduce risk Boyd and Prescott (1986). Last, a concentrated
market may be easier to monitor which would decrease the risk for system-wide cascades
Allen and Gale (2000).

On the other hand, supporters of the concentration-fragility hypothesis argue that the
existence of large institutions systematically increases systemic risk Moch (2018). Very
large banks may be tempted to take on risky investments, as they might be likely to be
rescued by the government due to their systemic importance Mishkin (1999). Moreover,
larger banks might demand higher loan interest rates. As a consequence, borrowers might
be more likely to take on risky investments to compensate higher loan repayments Boyd



and De Nicolo (2005). It is to note on this argument that other works suggest lower
loan interest rates of larger banks Montoriol-Garriga (2008). Some authors also raise
the concern that larger banks might be more difficult to monitor as larger banks are
geographically and business wise expanded Beck, Demirgiic-Kunt, and Levine (2006).
There are also empirical studies in favor of the concentration-fragility hypothesis Weif3,
Neumann, and Bostandzic (2014).

In our study, we will also contribute to this debate as our results indicate that M&A
activity can increase or decrease stability, depending on the exact constellation (in terms
of network connectivity and the merge process) and the measure of stability.

3 Modelling Approach

Our modelling approach leverages upon well-established modeling approaches, namely,
the model by Gai and Kapadia (2010) for the direct channel and a model by Caccioli
et al. (2014) for the indirect channel. We furthermore adopt the setup of the merging
process from Gaffeo and Molinari (2016). Our model assumptions are detailed in the
following paragraphs.

Network model The financial system is represented as a multilayer network comprising
a set of financial institutions (banks for brevity, but it could also comprise other financial
institutions) B and a set of commonly held assets A. For simplicity, we consider random
network structures!, characterized by the average bank degree z (i.e. the banks’ degrees
follow a Poisson distribution). The number of banks in the system is denoted by n := |B],
the number of commonly held assets by m := |A|. Two types of links (i.e. two network
layers) are present in the network: directed links between banks 7,j € B, weighted by
w%?j), represent interbank claims and obligations?, while undirected links between a bank
1 € B and a commonly held asset a € A, weighted by wg.‘;}, represent investments of a
bank into a certain asset. The weight represents the amount of monetary units of the
interbank claim or investment, respectively.

Each bank ¢ € B is assigned a balance sheet. Balance sheets capture the financial
state of the bank, that is its total assets A¥ and total liabilities LY, as well as the amount
of shock the bank is facing at time ¢, resulting from losses on assets via the contagion
channels ~;(t) and the banks capital K;(t) := A> —~;(t) — L. The capital determines the
solvency of a bank: if K;(¢) < 0, bank 7 is insolvent. The asset side is further subdivided
into interbank assets AI®, assets invested into the commonly held assets AS* and external
assets A where the former two are given by

B ._ 1B CA _ CA
jEB acA

and AY are not further modeled assets external to the network. The relative impor-
tance of these asset positions is characterized by two parameters o'f := AIB / A¥ and
a® := APA /AF. The liability side, on the other hand, is subdivided into interbank lia-

ITo note that we consider more realistic network structures as robustness checks.
2 An outgoing link represents an obligation for a bank, i.e. money that the banks owes to a counterparty.



bilities L}® and external liabilities LF. Since every interbank asset is an interbank liability
for a counterparty bank, the interbank liabilities are endogenously determined from the
interbank assets. The capital in the banks’ balance sheets is initially fixed by a parameter

We consider two different contagion channels: For the direct channel of contagion,
shock is spread over the web of interbank claims and obligations. As in Gai and Kapadia
(2010), we make a zero recovery assumption, i.e. assume that a defaulted bank is unable
to repay any of its interbank liabilities®>. Thus, every creditor a defaulted bank has is
shocked by the full size of its loan. On the other hand, shock is spread over the indirect
channel via overlapping portfolios. Each asset is assigned a price p;(t), where prices are
initialized to one. Upon insolvency, a bank liquidates its asset portfolio which causes a
devaluation of the liquidated assets. Devaluation is dictated by a market impact function
f. For our analyses we consider two market impact functions: First, fi(d;) = % where
¢ € [0,1] is a depreciation factor and d; is the number of defaulted banks invested into
asset j (see e.g. Sanchez (2017)). Second, fo(x;) = exp(—kx;), where k is a constant and
x; is the fraction of asset j that has been liquidated (in accordance with Caccioli et al.
(2014)).

We further consider two types of initial shock to the network: The perturbation is
either induced by an initial bankruptcy of one bank in the network that then spreads
shock via the direct and indirect channel, or via the initial devaluation of a network asset
(toxic asset). Shock is then spread until the cascade terminates.

Mergers We extend the network model by allowing banks to engage in M&A. In
accordance with Gaffeo and Molinari (2016), mergers are performed in separate rounds,
called merge rounds R. This allows us to distinguish states of the system. We merge
two banks in the network 7 and j to a new bank k by first adding the external quantities
in the balance sheets*. Afterwards, interbank links are combined such that the merged
bank has the sum of all interbank claims and obligations of the previously separated
banks. However, two cases deserve special attention: First, if the merging banks share a
counterparty, the links to the same counterparty are joined into one, which reduces the
number of links, and second, if the merging banks have obligations between one another,
these obligations are resolved at the time of the merger, which reduces the number of links
and the number of total assets in the system. The investment portfolios, i.e. the links
to commonly held assets, are also combined, such that the merged bank invests in the
union of the two previously separate portfolios. Note that we do not explicitly account
for merger costs.

To summarize, in our model, the merge process changes the network in three key ways:
the number of banks decreases, the interbank assets are rearranged and the number of
links and the total interbank assets may decrease through the merge process. We are aware
that the reduction of merging activities to these mechanistic changes is a simplification,
but we will discuss later the implications of these assumptions.

3To note that we challenge this assumption as a robustness check.
4E.g. for liabilities LF = LF + L}E.



Simulation To analyze the effects of mergers onto system stability, we start with an
unmerged network with some initial degree zzr—o and perform consecutive merge rounds
while constantly measuring stability after each round. Our standard setup is a network
of n = 1000 banks and a total of R = 500 merge rounds. For our analysis, we always
consider 1000 realizations of a given network connectivity zgz—o. Stability is measured in
terms of two parameters: the Contagion Frequency (CF) is the probability that a system-
wide cascade, i.e. a cascade where more than 5% of network assets default, occurs. It
is given by the fraction of realizations that show a system-wide cascade. The Contagion
Extent (CE) on the other hand, is given by the average fraction of defaulted system assets
in realizations, where a system-wide cascade occurred.

We consider two stylized processes to select banks for merging in each round: in the
Random Merge Process (RMP) we choose the merging partners at random and in the
Vertical Merge Process (VMP) one bank, in the following referred to as the acquiring
bank (AB), is selected as the merging institution and keeps acquiring other banks which
leads to the emergence of one dominating and highly interconnected bank in the system.

4 Results

We consider three different scenarios: In scenario (1) only a DCC is present (m = 0). We
choose a“* = 0 and o!® = 0.2 in accordance with Gai and Kapadia (2010). In scenario (2)
both DCC and ICC are present, i.c. o™ = 0.2,a%* = 0.02. For simplicity we set m = 1
and assume that every bank in the network invests into this asset. Shock is transmitted
according to f1%. And finally, in scenario (3), only an ICC is present, i.e. o'® = 0 and
a® = 0.8. Shock is transmitted according to f»7. Other scenarios could be discussed,
but the three selected configurations already provide a rich variety of results. The capital
share is always set to x = 0.04 as in Gai and Kapadia (2010).%

Before turning our attention towards mergers, let us present the results for the un-
merged network that have previously been found in the literature, e.g. Gai and Kapadia
(2010); Caccioli et al. (2015); Sanchez (2017). In Fig. 1, the CE and CF are plotted over
the average degree z.

Instability is observed within a certain window of the average degree z, the contagion
window. Below this window, for small values of z, the network exhibits many small
connected components. An initial shock is only spread within the respective connected
component and therefore does not affect the vast majority of banks in the network. For
large values of z, above the contagion window, banks diversify their assets such that they
are able to withstand a few counterparty defaults, thus rendering cascades very unlikely.
Towards the upper end of the contagion window, the system exhibits a robust-yet-fragile

5This choice could also be interpreted as simplified mean-field approach, where every bank suffers a
similar average shock through devaluation of assets.

SIn the simplified picture, where we only consider one asset in the network (mean-field approach), we
further assume that the impact on the asset deprecation is independent of the bank size, thus use the
market impact function f;. We set ¢ = 0.3 in accordance with Sanchez (2017)

7As done by other authors, we set k = 1.0536 such that an asset losses 10% of its value when 10% of
holdings have been liquidated.

8To note that for better comparability, the default parameter values are chosen similar to existing
studies, which in turn are often inspired by corresponding values in real financial networks. In numerous
robustness checks, we varied the parameter values.
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Figure 1: Contagion Extent (CE) and Contagion Frequency (CF) over average degree z
for all considered scenarios. For scenario (3) shock is induced via an initial bankruptcy.

tendency Gai and Kapadia (2010). System-wide cascades are very unlikely, but they cause
a complete network collapse if they occur. We also note, that the interplay of a direct
and indirect channel (scenario (2)) causes the most unstable networks.

We now turn to mergers in the network. In Fig. 2, the results for scenarios (1) and
(2) are shown for the RMP and the VMP for two different initial connectivities which are
chosen at the lower end and towards the upper end of the contagion window, respectively.
We plot the CE and CF over the merge rounds R. First, consider scenario (1), where only
a DCC is present. Shock is induced via the default of a randomly selected bank in the
network. For the RMP, we observe that the CF decreases over the merge rounds, while
the CE stays constant or increases, depending on initial connectivity. Since the network is
sparse (z < n), most of the randomly selected merge partners are neither interconnected,
nor share common neighbors. Therefore, mergers increase the diversification of merged
banks - this is particularly the case for the initially denser network (right column of
Fig. 2). Although it is possible for a bank to participate in more than one merger, this
occurs only randomly under the RMP and the network prevails overall similar to the
initial homogenous state’. The increased diversification through mergers increases the
ability of merged banks to stop cascades in the early stages, hence the CF decreases.
However, banks are not sufficiently diversified to stop a rolling cascade and thus the CE

9Since the network remains rather similar to the homogenous state, stability trends mostly agree with
the contagion window observed in the unmerged system, considering that the average degree z roughly
doubles over the 500 merge rounds.
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Figure 2: Results for scenarios (1) and (2). Contagion Extent (CE) and Contagion
Frequency (CF) are plotted over merge rounds R for the Random Merge Process (RMP)
(top row) and the Vertical Merge Process (VMP) (bottom row).

is not impacted.

For the VMP, similar to the RMP, we observe a decrease of the CF in scenario (1),
but also a decrease of the CE after some merge round. These stability changes can be
attributed to the AB. Through consecutive mergers, the AB becomes more and more
the center point of the network. Particularly for the initially denser network, the AB is
connected to almost the entire network after 500 merge rounds.! During this process,
the AB becomes more and more stable and acts as a cascade barrier in the network. After
some point, the AB becomes stable enough to even absorb larger shocks in the event of
system-wide cascades, thereby stopping a system-wide cascade and decreasing the CE.
The point where the AB starts to survive, even if a system-wide cascade occurs, coincides

10This is of course an extreme, and extremely stylized process and should not be understood as mimick-
ing real merging activities. Rather, the aim is to explore the ultimate impact of such extreme situations,
under the assumptions as detailed above.

dINY

dINA



with the point where the CE decreases.!!

Next, we consider the addition of an ICC, i.e. scenario (2). Shock is again induced via
the random default of a bank in the network. For the RMP we observe that the CF greatly
increases under the inclusion of an ICC. The effect is particularly visible for the higher
connectivity. This can be understood as follows: As discussed above, the RMP stabilizes
systems, at least in part, by causing increased diversification of interbank loans. Through
the additional ICC banks are gradually weakened by losses on the common external
asset, thus decreasing their capital, which renders banks more susceptible towards direct
contagion and relativizes the benefits of increased diversification. For the VMP we observe
that the CF is higher with an additional ICC, but only for the initially denser network
- the zr—y = 2 network is unaffected. Furthermore, the point where the CE decreases is
pushed to higher merge rounds. The reason for the CF in the zzr_g = 2 being unaffected
by the additional ICC is that in the VMP all banks except one remain unmerged. The
ICC, through the market impact function, induces higher losses particularly at the start of
the cascade which increases counterparty risk for otherwise sufficiently diversified banks.
In the sparse zgr—g = 2 case, interbank asset diversification is weak anyway and banks are
typically vulnerable towards a single counterparty default, thus the effect of the additional
ICC onto the CF is weak. For the initially denser network, however, banks are more
diversified and can typically (without the ICC) withstand counterparty defaults, thus
here we observe an effect through the ICC. To sum up the results from scenario (2), the
introduction of an additional contagion channel can, compared to the original network,
naturally only decrease stability. It depends, however, on the network structure in terms
of connectivity and on the merge process whether the ICC impacts stability or whether
stability is unchanged.

To further investigate the additional instabilities of the ICC, we now consider the
results for scenario (3), where only an ICC is present, in Fig. 3. The top row shows the
stability metrics over R for the RMP, the bottom row for the VMP. In this scenario, as
the relevant links in the network are established between banks and assets, but we do not
model direct links between banks, we distinguish between two different mechanisms to
induce shock: either via a defaulted bank or via a toxic asset.!?

We first focus on the top row, where the results for the RMP are detailed. For both
initial connectivities, we observe a net decrease of the CF, however, the effect of mergers
seems to be stronger if shock is induced via a toxic asset in the system. The CE increases
or is unaffected by the mergers. The reason for the net decrease of the CF is again
the increased diversification caused by the RMP. Through the mergers, the investment
portfolios of the merged banks increase in size, which reduces the importance of a single
asset. On the other hand, merged banks pose a greater risk for the system if they are
troubled. The RMP typically increases portfolio sizes and investment volumes, which are
associated with a higher market impact risk. Since we do not see any stabilization trends
in the CE, we deduce that merged banks are not capable of surviving in the event of a

HUHere we would like to emphasize that the setup of our analysis implies that the share of risky assets
on a bank’s balance sheet can only decrease through merging activities, while the share of capital may
increase if interbank links are eliminated through merging activities. This may seem to introduce a bias
in our analysis towards a higher stability of merged banks. However, we analyze the impact of this
assumption in the robustness checks.

2In the toxic asset case, the initially devalued asset is chosen randomly, and its value is reduced by
35%.
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Figure 3: Results for scenario (3). The Contagion Extent (CE) and the Contagion Fre-
quency (CF) are plotted over the merge rounds R for the Random Merge Process (RMP)
(top row) and the Vertical Merge Process (VMP) (bottom row).

system-wide cascade. The reason that the effects of mergers are stronger in case of a toxic
asset in the system is again related to the increased diversification. First, it must be noted
that initially shocking a randomly chosen asset must not cause any defaults in the network,
if banks invested into the initially shocked asset are able to absorb the depreciation. If
average diversification increases, the probability that the initial depreciation is absorbed
also increases. Second, while the average bank degree roughly doubles over the merge
process, the average asset degree stays constant or even slightly decreases. Hence, the
impact of an initial bankruptcy increases, while the impact of initial asset depreciation
stays constant or decreases, and potentially might be absorbed by diversified banks.
Next, we focus on the VMP, i.e. the bottom row in Fig. 3. Again, we observe
a stabilization trend in the CF over the merge rounds. The CE is mostly unaffected.
Through the VMP, the AB heavily increases its portfolio size (number of different assets in
the portfolio) as well as the average investment per asset in the portfolio. In consequence,
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the AB concentrates a high market impact, through the large investment volumes, and
additionally excels at absorbing shocks, thanks to its strong diversification. This can,
in this stylized setting, reduce the risk of system-wide cascades. If, however, a cascade
does break out, the AB is almost always pushed into default, which then has catastrophic
consequences for the rest of the system. Therefore, we see a destabilization trend in the
CE. Again we observe that the network is more stable if shock is induced via a toxic asset
in the network. Reasons for this have already been discussed above.

4.1 Robustness checks

As noted above, due to the simplicity of the used models, the results can in general not be
easily transferred to concrete, real financial systems, but should rather be seen as general
theoretical insights into possible mechanics of merging activities onto financial networks.
In this section, to challenge the generality of our theoretical results, in our modelling
approach, there are several assumptions that should be challenged.

As a first robustness check, we vary the numeric parrameters of the model. The initial
model setup contains a choice for different parameter values which could of course be
changed. A variation of the relevant parameters (e.g. portion of interbank assets, capital)
has also been performed in previous studies (e.g. Gai and Kapadia (2010)) and we see
similar trends here, which is why we summarize them in brief: An increase in capital in
general increases stability, while an increase in the risky assets decreases stability. These
observations appear very natural and even mechanistic. However, we checked that the
main results of our study relating to the impact of merging activities on stability remain
unchanged to a variation of these parameters if kept in a meaningful range.

A second robustness check concerns the topology: One assumption in the network
models presented above is that of a random network structure. However, to note that
the GK model is very flexible regarding the underlying network structure and has also
been used to explore the impact of different topologies (e.g. Caccioli et al. (2012)). There
are studies reporting real interbank markets to have a scale-free degree distribution, e.g.
Boss et al. (2004); Bech and Atalay (2010). Thus, to challenge the dependency on the
network structure, we repeat the simulations with a scale-free topology. For this, we
use Chung-Lu scale-free networks (scale-free networks) Chung and Lu (2002), a more
realistic topology Boss et al. (2004); Bech and Atalay (2010). We find that the scale-
free topology benefits stability compared to the random topology if the bank initially
defaulted is selected randomly, however, if we instead apply a targeted shock to a hub-
bank, system stability worsens drastically.!®> The general stability implications of mergers,
we saw in random networks, remain the same in scale-free networks. Here, we would like
to state that while the structure of a scale-free network may appear more realistic, we
chose to present our main results based on the random network structure. This is mainly
because the scale-free network contains initially already a few hub banks which makes
interpretation of the role of these banks a bit more complicated. In random networks,
these hub banks only emerge and show their particular role in the merging process in the
random network.

A further robustness check concerns the zero recovery assumption and the assumption
of permanent asset devaluation: In the DCC, a bank defaults on all of its interbank

13For unmerged networks this has previously been found e.g. in Caccioli et al. (2012)
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liabilities and in the ICC, any asset devaluation is considered to be permanent. While
these assumptions seem simplistic and rather strong, a relaxation does not provide any
surprising insights - this conclusion has previously been drawn from a similar analysis that
has been done in the original paper Gai and Kapadia (2010). We repeated our simulations
with a relaxed assumption: If banks can recover part of their claims against a defaulted
bank, the stability naturally increases. However, this is similar to decreasing the portion
of interbank assets present on the banks’ balance sheets (i.e. changing a = 0.2 to a smaller
value). Similarly, by allowing a devaluated asset to increase its value would be equivalent
to reducing the effect of the market impact function or to reduce the portion of external
common assets.

A less obvious assumption to challenge is the development of interbank assets and
capital in the DCC. As described above, through the mechanic merge process, interbank
claims can disappear if two banks connected by a link merge. In this case, the (risky)
interbank assets are reduced while the remaining balance sheet is unchanged. This implies
that merged banks may have a comparative advantage over unmerged banks, as the ratio
between their capital and their total assets may (mechanically) increase, if their total
assets decrease through the described process. To challenge this assumption, we performed
additional simulations where we correct, after each merge round, for the potentially lost
interbank assets, such that the ratio between capital and interbank assets stays constant.
The stability trends are identical to the results shown above, such that we are confident
that this detail does not influence our conclusions.

It could further be perceived as restriction of our study that we only consider two
merge processes, namely the random and the vertical merge process. Here, to note that
we performed additional selective analyses with the semi-horizontal merge process, which
was analyzed in Gaffeo and Molinari (2016) and in which only unmerged parties are
selected for merging - this process could thus in some sense be considered as opposite of
the VMP. However, given that in our setup, the merge process starts with a network of
1000 banks of size 1 and ends up with a network of 500 banks of size 2, the results were
of limited interest for the analysis of real merge processes.

Last, to mention that our network size (1000 banks) is to some extent arbitrary, but
of a meaningful size (e.g. the number of German banks lies between 1000 and 2000
Bankenverband (2020)). The number of merge rounds (500) is also arbitrary, but should
allow to get a significant change of the network structure (by decreasing the number of
banks to one half of the initial size which is not unrealistic given the developments of the
banking sector over the last years).

5 Discussion

To analyze how the stability of the banking system can be affected by the consolidation
trend, we consider different well-established network models of the financial system and
extend them with M&A. We also consider qualitatively different merge processes, where
the processes differ by the selection of merge partners. Despite these models being ex-
tremely stylized, they allow for valuable insight into how stability may be altered by the
modeled M&A activity.

Our goal is to capture the key channels of contagion in financial systems as well as
their interplay: the Direct Channel of Contagion (DCC) and the Indirect Channel of
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Contagion (ICC). The DCC refers to losses on the interbank market due to defaults
on loans and therefore captures counterparty risk for the banks in the system. For the
indirect channel, one key connection are overlapping portfolios Upper (2011).

Our main result is that the impact of merging activities onto system stability is diverse
and depends on several aspects. In some constellations, mergers can benefit stability, while
in others, it is detrimental. Particularly for the RMP, stability outcomes show a sensitive
dependence to the initial connectivity; while for highly connected systems the increased
diversification caused by the mergers leads to more stable systems, weakly connected
systems tend to show a destabilization trend. For the VMP we find a stabilization trend
in cascade probability, independent of the initial connectivity. The cascade extent, on
the other hand, is unaffected or increases initially but then may decrease for large merge
rounds. This dramatically changes if the dominating bank, formed through consecutive
vertical mergers, is attacked. Its default leads to a sudden system breakdown. We find that
these results hold true both for a random and a scale-free network topology. Our results
regarding the partially stabilizing effect of mergers agrees with the related literature. In
Gaffeo and Molinari (2016), the authors also find a stabilizing effect of vertical mergers.
Although the authors in Cheng and Zhao (2019) consider different merge processes, they
also find a stabilizing effect of mergers in some range of the connectivity.

The literature suggests that indirect connections between banks are of particular im-
portance for the stability of the system Upper (2011). In our simulations, we find that
particularly the stability of networks resistant to shocks through diversification via the
direct channel are negatively impacted by this additional channel and that the effect is
even stronger in (the more realistic) scale-free networks than in random networks. For
both considered merge processes, the RMP and the VMP, the additional indirect channel
decreases the partial positive effects of mergers on stability. This shows the importance
to consider different contagion channels. However, mergers can still increase the stability
against the unmerged system under some circumstances.

For a network subject solely to the ICC, we find that mergers generally can benefit
stability, however the effect is weaker than in the GK model. For the RMP the stability
outcome is again more sensitive to initial connectivity than for the VMP. We further
find that in merged systems, the initial idiosyncratic default of a bank is potentially more
harmful to the system than a toxic asset that suddenly suffers devaluation. However, as
discussed above, this is also partly due to the assumptions employed in the present model.
Nevertheless, we think it is worth mentioning that the source of the initial shock (either
one initially defaulting bank, which is a huge shock on one single bank, or a devaluated
asset, leading to a less intense shock on several banks) may impact different networks
differently.

In the scope of our rather stylized modeling approaches we can formulate the following
results that are common to our different modeling approaches: First, mergers generally
seem to increase stability of financial systems under certain circumstances and may thus
potentially be an effective intervention policy. The mergers of small and medium-sized
banks can benefit stability, but only for certain network topologies. The acquisition of
smaller banks by its larger competitors, that lead to an increased market share of the
acquiring bank, might increase stability, but only if the survival of the larger bank is
ensured. In this sense, the merger of a small troubled institution with a stable (larger)
bank in the system could be considered a viable resolution strategy. However, our results
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show that in this case the robustness of the larger bank is key, which also supports existing
measures as the G-SII/OSRI buffers which are aimed to ensure a sound capital basis of
large banks.

While our analysis is able to give some model-based insights into the effects of mergers,
thereby extending the sparse literature on the effects of M&A on systemic stability, we
are also well aware of limitations and shortcomings of the current approach.

While we base our analysis on random and scale-free topologies, there is also some
evidence that real interbank markets may exhibit a core-periphery structure Fricke and
Lux (2015). In a core-periphery network, banks are partitioned into two sets based on their
relations with each other. Core banks are connected to each other and to periphery banks,
but periphery banks are not connected to each other Hiser (2016). An investigation of
the effects of M&A on a core-periphery network could be an interesting extension to our
investigations. In particular, we think it might be useful to analyze the vertical merge
process, when considering a couple of core banks in the role of the acquiring bank(s),
and potentially incorporating contagion dynamics between them. Additionally, it could
be valuable to explore the impact of different types of mergers, namely core-core, core-
periphery or periphery-periphery bank mergers.

While we did investigate the interaction of the direct and indirect channel, we limited
ourselves to a rather simplistic case. We would expect, however, that the destabilization
trend compared to only directly linked networks, which we saw from our simplistic ap-
proach, would occur in a similar way. Furthermore, we would expect that the stabilizing
effects through diversification, but also the (de)stabilizing effects through centralization
would be observed in a similar way. Nevertheless, it might deserve a separate study to
explore the possible interactions between the ICC and the DCC in more detail.

Another detail is that we neither explicitly accounted for merger costs nor increasing
efficiencies through mergers. This is on the one hand due to keep a simplistic model -
merger costs/benefits would introduce additional parameters that would need to be esti-
mated and set in a reasonable range. On the other hand, we think that due to the simple
nature of the models, introducing these features would not yield any surprising results:
Merging activities would be systematically more stabilizing or destabilizing, depending
on the choice of parameters. However, we acknowledge that this feature is not present in
our analysis.

While we analysed different merge processes, the implementation of merging activities
contains to a large extent a random element - in particular, we did not attempt to merge
banks for which a merger is e.g. optimal in a specific sense (apart from the assumption
that the acquiring bank in the VMP attempts to get larger). This modeling choice could
be interpreted such that banks do not have any information to decide whether a merger
is favorable for them (or for the network). It would certainly be an interesting extension
to analyse strategic mergers where merging partners are chosen under certain selection
rules (e.g. Rogers and Veraart (2013)).

A common feature of all models considered in this work is that they are static with
regard to the network structure. The reasoning behind this assumption is simplicity, but
also the idea that merging banks continue to pursue their activities similarly to their
pre-merger business. This would e.g. be a reasonable assumption for banks that intend
a strategic portfolio extension with their merger. Another interpretation would be that
we assume that banks do not have time to rebalance their portfolio before failing. These
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points motivate that banks neither react to mergers, nor to defaults. It could be an
interesting yet more complex addition, however, to allow banks to rebalance their asset
portfolio and interbank market connections as a reaction to defaults and mergers. How-
ever, to note that this requires additional assumptions on how the merged bank (and
possibly all other banks) will reallocate their exposures among their potential counter-
parts. It is not clear that these additional assumptions will finally be more realistic than
the static assumption, but we acknowledge that our results are certainly influenced by
this assumption.

Other than that, we note that despite our efforts to motivate our parameter choices
with empirical data and the choices in previous studies, the various model parameters
would further allow for possible calibration to concrete real-world financial systems (e.g.
size distribution of banks, number of counterparties/external assets per bank etc.), to
some extent. While this could be an interesting extension, we think that such investi-
gations would wrongfully suggest a non-existent similarity of the analyzed models with
real financial networks. A representative study would require large data sets over suffi-
cient observation periods. In contrast, we are convinced that the more general analysis
performed in this work makes the best advantage of the simplified stylized models and
allows for an easy and meaningful interpretation.

Finally, it must be noted that all results in this work are purely theoretical. The use
of stylized models in general is a strong simplification, which can yet provide interesting
insights into possible mechanisms. As we have seen in these simplified systems, mergers
can improve or worsen system stability, depending on the connectivity and size of the
merge partners, the overall size and degree distribution of the network and the contagion
source and channel. These general insights can provide a basis for additional, more
targeted research to support or contradict the observed features in more elaborated models
or in real financial systems.

6 Conclusion

In this work, motivated by the ongoing consolidation trend in the banking sector on the
one hand, and the high importance of network models for analyzing financial systems
on the other hand, we aim to shed light on the effects of mergers on financial network
models, with a focus on their stability. A sound understanding of the effects of mergers
onto the stability of the financial system can provide important additional information to
market participants and supervisors, and might support decision processes of authorities
supervising the financial sector and monitoring the M&A activity.

Using different well-established network models of the financial system enriched with
M&A, we find that in the stylized models under consideration, mergers can improve or
worsen system stability, depending on a variety of details such as the connectivity and
size of the merge partners, the overall size and degree distribution of the network and the
contagion source and channel. This rich variety which was observed already in simplified
models should be understood as first step and motivation to gain a deeper understanding
of the impact of merging activities onto the financial system.

16



References

Acemoglu, D.; A. Ozdaglar, and A. Tahbaz-Salehi (2015). Systemic risk and stability in
financial networks. AMERICAN ECONOMIC REVIEW 105, 564-608.

Allen, F. and D. Gale (2000). Financial contagion. Journal of political economy 108(1),
1-33.

Anderson, C. W., D. A. Becher, and T. L. Campbell II (2004). Bank mergers, the market
for bank ceos, and managerial incentives. Journal of Financial Intermediation 13(1),
6-27.

Baele, L., O. De Jonghe, and R. Vander Vennet (2007). Does the stock market value bank
diversification? Journal of Banking & Finance 31(7), 1999-2023.

Bankenverband (2020). Die Entwicklung der Anzahl verschiedener Kreditinstitute in
Deutschland von 2004 bis 2019.

Bech, M. L. and E. Atalay (2010). The topology of the federal funds market. Physica A:
Statistical Mechanics and its Applications 389(22), 5223-5246.

Beck, T., A. Demirgiic-Kunt, and R. Levine (2006). Bank concentration, competition,
and crises: First results. Journal of banking & finance 30(5), 1581-1603.

Berger, A. N., C. M. Buch, G. DeLong, and R. DeYoung (2004). Exporting financial in-
stitutions management via foreign direct investment mergers and acquisitions. Journal
of International money and Finance 23(3), 333-366.

Bluhm, M., E. Faia, and J. P. Krahnen (2014). Monetary policy implementation in an
interbank network: Effects on systemic risk. SAFE Working Paper.

Boss, M., H. Elsinger, M. Summer, and S. Thurner 4 (2004). Network topology of the
interbank market. Quantitative finance 4(6), 677-684.

Boyd, J. H. and G. De Nicolo (2005). The theory of bank risk taking and competition
revisited. The Journal of finance 60(3), 1329-1343.

Boyd, J. H., G. De Nicolo, and B. D. Smith (2004). Crises in competitive versus monop-
olistic banking systems. Journal of Money, Credit and Banking, 487-506.

Boyd, J. H. and E. C. Prescott (1986). Financial intermediary-coalitions. Journal of
Economic theory 38(2), 211-232.

Caccioli, F., T. A. Catanach, and J. D. Farmer (2012). Heterogeneity, correlations and
financial contagion. Advances in Complex Systems 15(supp02), 1250058.

Caccioli, F., J. D. Farmer, N. Foti, and D. Rockmore (2015). Overlapping portfolios,
contagion, and financial stability. Journal of Economic Dynamics and Control 51,
50-63.

17



Caccioli, F., M. Shrestha, C. Moore, and J. D. Farmer (2014). Stability analysis of
financial contagion due to overlapping portfolios. Journal of Banking & Finance 40,
233-245.

Cheng, X. and H. Zhao (2019). Modeling, analysis and mitigation of contagion in financial
systems. Fconomic Modelling 76, 281-292.

Chung, F. and L. Lu (2002). Connected components in random graphs with given expected
degree sequences. Annals of combinatorics 6(2), 125-145.

Craig, B. R. and V. Dinger (2008). Bank mergers and the dynamics of deposit interest
rates. Bundesbank Discussion Paper 2, 1-28.

De Nicolo, G., P. Bartholomew, J. Zaman, and M. Zephirin (2004). Bank consolidation,
internationalization, and conglomeration: Trends and implications for financial risk.
Internationalization, and Conglomeration: Trends and Implications for Financial Risk.

De Nicolo, G. and M. L. Kwast (2002). Systemic risk and financial consolidation: Are
they related? Journal of Banking € Finance 26(5), 861-880.

DeYoung, R., D. D. Evanoff, and P. Molyneux (2009). Mergers and acquisitions of finan-
cial institutions: A review of the post-2000 literature. Journal of Financial services
research 36(2-3), 87-110.

Eisenberg, L. and T. H. Noe (2001). Systemic risk in financial systems. Management
Science 47(2), 236-249.

Elliott, M., B. Golub, and M. O. Jackson (2014). Financial networks and contagion.
American Economic Review 104(10), 3115-53.

Fricke, D. and T. Lux (2015). Core—periphery structure in the overnight money market:
evidence from the e-mid trading platform. Computational Economics 45(3), 359-395.

Gaffeo, E. and M. Molinari (2015). Interbank contagion and resolution procedures: in-
specting the mechanism. Quantitative Finance 15(4), 637-652.

Gaffeo, E. and M. Molinari (2016). Macroprudential consolidation policy in interbank
networks. Journal of Evolutionary Economics 26(1), 77-99.

Gai, P. and S. Kapadia (2010). Contagion in financial networks. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 466(2120), 2401-2423.

Glasserman, P. and H. P. Young (2015). How likely is contagion in financial networks?
Journal of Banking € Finance 50, 383-399.

Guan, Y. and M. Pollak (2016). Contagion in heterogeneous financial networks. Advances
in Complex Systems 19(01n02), 1650001.

Hannan, T. H. and S. J. Pilloff (2009). Acquisition targets and motives in the banking
industry. Journal of Money, Credit and Banking 41(6), 1167-1187.

18



Hiiser, A.-C. (2016). Too interconnected to fail: A survey of the interbank networks
literature. Technical report, Leibniz Institute for Financial Research SAFE.

Mishkin, F. S. (1999). Financial consolidation: Dangers and opportunities. Journal of
Banking € Finance 23(2-4), 675-691.

Moch, N. (2018). The contribution of large banking institutions to systemic risk: What
do we know? a literature review. Review of Economics 69, 231-257.

Montoriol-Garriga, J. (2008). Bank mergers and lending relationships. ECB Working
Paper (934).

Neveu, A. R. (2018). A survey of network-based analysis and systemic risk measurement.
Journal of Economic Interaction and Coordination 13, 241-281.

Rogers, L. C. G. and L. A. M. Veraart (2013). Failure and rescue in an interbank network.
Management Science 59, 882—-898.

Sanchez, P. C. (2017). Financial contagion in the interbank market.

Uhde, A. and U. Heimeshoff (2009). Consolidation in banking and financial stability in
europe: Empirical evidence. Journal of Banking & Finance 33(7), 1299-1311.

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank
markets. Journal of Financial Stability 7(3), 111-125.

Weifl; G. N.; S. Neumann, and D. Bostandzic (2014). Systemic risk and bank consolida-
tion: International evidence. Journal of Banking € Finance 40, 165-181.

Wéjcik, D. and S. Ioannou (2020). Covid-19 and finance: Market developments so far
and potential impacts on the financial sector and centres. Tiéjdschrift voor economische
en sociale geografie 111(3), 387-400.

19



	1 Introduction
	2 Related Literature
	3 Modelling Approach
	4 Results
	4.1 Robustness checks

	5 Discussion
	6 Conclusion
	References

